esp32: Fixes watchdog problem when printing core dump to uart

Also fixes generation of core dumps when flash cache is disabled
This commit is contained in:
Alexey Gerenkov 2017-01-19 20:24:55 +03:00
parent 4dd81fddd8
commit 04acc88023
7 changed files with 93 additions and 43 deletions

View File

@ -26,16 +26,17 @@
#if CONFIG_ESP32_ENABLE_COREDUMP #if CONFIG_ESP32_ENABLE_COREDUMP
#define LOG_LOCAL_LEVEL CONFIG_ESP32_CORE_DUMP_LOG_LEVEL #define LOG_LOCAL_LEVEL CONFIG_ESP32_CORE_DUMP_LOG_LEVEL
#include "esp_log.h" #include "esp_log.h"
const static char *TAG = "esp_core_dump"; const static DRAM_ATTR char TAG[] = "esp_core_dump";
#define ESP_COREDUMP_LOGE( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_ERROR) { ets_printf(LOG_FORMAT(E, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); } #define ESP_COREDUMP_LOG( level, format, ... ) if (LOG_LOCAL_LEVEL >= level) { ets_printf(DRAM_STR(format), esp_log_early_timestamp(), (const char *)TAG, ##__VA_ARGS__); }
#define ESP_COREDUMP_LOGW( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_WARN) { ets_printf(LOG_FORMAT(W, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); } #define ESP_COREDUMP_LOGE( format, ... ) ESP_COREDUMP_LOG(ESP_LOG_ERROR, LOG_FORMAT(E, format), ##__VA_ARGS__)
#define ESP_COREDUMP_LOGI( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_INFO) { ets_printf(LOG_FORMAT(I, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); } #define ESP_COREDUMP_LOGW( format, ... ) ESP_COREDUMP_LOG(ESP_LOG_WARN, LOG_FORMAT(W, format), ##__VA_ARGS__)
#define ESP_COREDUMP_LOGD( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_DEBUG) { ets_printf(LOG_FORMAT(D, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); } #define ESP_COREDUMP_LOGI( format, ... ) ESP_COREDUMP_LOG(ESP_LOG_INFO, LOG_FORMAT(I, format), ##__VA_ARGS__)
#define ESP_COREDUMP_LOGV( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_VERBOSE) { ets_printf(LOG_FORMAT(V, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); } #define ESP_COREDUMP_LOGD( format, ... ) ESP_COREDUMP_LOG(ESP_LOG_DEBUG, LOG_FORMAT(D, format), ##__VA_ARGS__)
#define ESP_COREDUMP_LOGV( format, ... ) ESP_COREDUMP_LOG(ESP_LOG_VERBOSE, LOG_FORMAT(V, format), ##__VA_ARGS__)
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH #if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
#define ESP_COREDUMP_LOG_PROCESS( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_DEBUG) { ets_printf(LOG_FORMAT(D, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); } #define ESP_COREDUMP_LOG_PROCESS( format, ... ) ESP_COREDUMP_LOGD(format, ##__VA_ARGS__)
#else #else
#define ESP_COREDUMP_LOG_PROCESS( format, ... ) do{/*(__VA_ARGS__);*/}while(0) #define ESP_COREDUMP_LOG_PROCESS( format, ... ) do{/*(__VA_ARGS__);*/}while(0)
#endif #endif
@ -345,8 +346,9 @@ void esp_core_dump_to_flash(XtExcFrame *frame)
#endif #endif
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_UART #if CONFIG_ESP32_ENABLE_COREDUMP_TO_UART
static void esp_core_dump_b64_encode(const uint8_t *src, uint32_t src_len, uint8_t *dst) { static void esp_core_dump_b64_encode(const uint8_t *src, uint32_t src_len, uint8_t *dst) {
static const char *b64 = const static DRAM_ATTR char b64[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
int i, j, a, b, c; int i, j, a, b, c;
@ -373,14 +375,14 @@ static void esp_core_dump_b64_encode(const uint8_t *src, uint32_t src_len, uint8
static esp_err_t esp_core_dump_uart_write_start(void *priv) static esp_err_t esp_core_dump_uart_write_start(void *priv)
{ {
esp_err_t err = ESP_OK; esp_err_t err = ESP_OK;
ets_printf("================= CORE DUMP START =================\r\n"); ets_printf(DRAM_STR("================= CORE DUMP START =================\r\n"));
return err; return err;
} }
static esp_err_t esp_core_dump_uart_write_end(void *priv) static esp_err_t esp_core_dump_uart_write_end(void *priv)
{ {
esp_err_t err = ESP_OK; esp_err_t err = ESP_OK;
ets_printf("================= CORE DUMP END =================\r\n"); ets_printf(DRAM_STR("================= CORE DUMP END =================\r\n"));
return err; return err;
} }
@ -398,7 +400,7 @@ static esp_err_t esp_core_dump_uart_write_data(void *priv, void * data, uint32_t
memcpy(tmp, addr, len); memcpy(tmp, addr, len);
esp_core_dump_b64_encode((const uint8_t *)tmp, len, (uint8_t *)buf); esp_core_dump_b64_encode((const uint8_t *)tmp, len, (uint8_t *)buf);
addr += len; addr += len;
ets_printf("%s\r\n", buf); ets_printf(DRAM_STR("%s\r\n"), buf);
} }
return err; return err;
@ -427,7 +429,8 @@ void esp_core_dump_to_uart(XtExcFrame *frame)
wr_cfg.priv = NULL; wr_cfg.priv = NULL;
//Make sure txd/rxd are enabled //Make sure txd/rxd are enabled
gpio_pullup_dis(1); // use direct reg access instead of gpio_pullup_dis which can cause exception when flash cache is disabled
REG_CLR_BIT(GPIO_PIN_REG_1, FUN_PU);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD_U0RXD); PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD_U0RXD);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD_U0TXD); PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD_U0TXD);
@ -438,10 +441,6 @@ void esp_core_dump_to_uart(XtExcFrame *frame)
tm_cur = xthal_get_ccount() / (XT_CLOCK_FREQ / 1000); tm_cur = xthal_get_ccount() / (XT_CLOCK_FREQ / 1000);
if (tm_cur >= tm_end) if (tm_cur >= tm_end)
break; break;
/* Feed the Cerberus. */
TIMERG0.wdt_wprotect = TIMG_WDT_WKEY_VALUE;
TIMERG0.wdt_feed = 1;
TIMERG0.wdt_wprotect = 0;
ch = esp_core_dump_uart_get_char(); ch = esp_core_dump_uart_get_char();
} }
ESP_COREDUMP_LOGI("Print core dump to uart..."); ESP_COREDUMP_LOGI("Print core dump to uart...");
@ -455,18 +454,18 @@ void esp_core_dump_init()
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH #if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
const esp_partition_t *core_part; const esp_partition_t *core_part;
ESP_LOGI(TAG, "Init core dump to flash"); ESP_COREDUMP_LOGI("Init core dump to flash");
core_part = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_COREDUMP, NULL); core_part = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_COREDUMP, NULL);
if (!core_part) { if (!core_part) {
ESP_LOGE(TAG, "No core dump partition found!"); ESP_COREDUMP_LOGE("No core dump partition found!");
return; return;
} }
ESP_LOGI(TAG, "Found partition '%s' @ %x %d bytes", core_part->label, core_part->address, core_part->size); ESP_COREDUMP_LOGI("Found partition '%s' @ %x %d bytes", core_part->label, core_part->address, core_part->size);
s_core_part_start = core_part->address; s_core_part_start = core_part->address;
s_core_part_size = core_part->size; s_core_part_size = core_part->size;
#endif #endif
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_UART #if CONFIG_ESP32_ENABLE_COREDUMP_TO_UART
ESP_LOGI(TAG, "Init core dump to UART"); ESP_COREDUMP_LOGI("Init core dump to UART");
#endif #endif
} }

View File

@ -210,6 +210,10 @@ void start_cpu0_default(void)
/* init default OS-aware flash access critical section */ /* init default OS-aware flash access critical section */
spi_flash_guard_set(&g_flash_guard_default_ops); spi_flash_guard_set(&g_flash_guard_default_ops);
#if CONFIG_ESP32_ENABLE_COREDUMP
esp_core_dump_init();
#endif
#if CONFIG_ESP32_PHY_AUTO_INIT #if CONFIG_ESP32_PHY_AUTO_INIT
nvs_flash_init(); nvs_flash_init();
do_phy_init(); do_phy_init();
@ -221,10 +225,6 @@ void start_cpu0_default(void)
} }
#endif #endif
#if CONFIG_ESP32_ENABLE_COREDUMP
esp_core_dump_init();
#endif
xTaskCreatePinnedToCore(&main_task, "main", xTaskCreatePinnedToCore(&main_task, "main",
ESP_TASK_MAIN_STACK, NULL, ESP_TASK_MAIN_STACK, NULL,
ESP_TASK_MAIN_PRIO, NULL, 0); ESP_TASK_MAIN_PRIO, NULL, 0);

View File

@ -686,7 +686,7 @@ esp_err_t IRAM_ATTR esp_intr_disable(intr_handle_t handle)
} }
void esp_intr_noniram_disable() void IRAM_ATTR esp_intr_noniram_disable()
{ {
int oldint; int oldint;
int cpu=xPortGetCoreID(); int cpu=xPortGetCoreID();
@ -705,7 +705,7 @@ void esp_intr_noniram_disable()
non_iram_int_disabled[cpu]=oldint&non_iram_int_mask[cpu]; non_iram_int_disabled[cpu]=oldint&non_iram_int_mask[cpu];
} }
void esp_intr_noniram_enable() void IRAM_ATTR esp_intr_noniram_enable()
{ {
int cpu=xPortGetCoreID(); int cpu=xPortGetCoreID();
int intmask=non_iram_int_disabled[cpu]; int intmask=non_iram_int_disabled[cpu];

View File

@ -80,6 +80,7 @@ SECTIONS
*(.iram1 .iram1.*) *(.iram1 .iram1.*)
*libfreertos.a:(.literal .text .literal.* .text.*) *libfreertos.a:(.literal .text .literal.* .text.*)
*libesp32.a:panic.o(.literal .text .literal.* .text.*) *libesp32.a:panic.o(.literal .text .literal.* .text.*)
*libesp32.a:core_dump.o(.literal .text .literal.* .text.*)
*libphy.a:(.literal .text .literal.* .text.*) *libphy.a:(.literal .text .literal.* .text.*)
*librtc.a:(.literal .text .literal.* .text.*) *librtc.a:(.literal .text .literal.* .text.*)
*libpp.a:(.literal .text .literal.* .text.*) *libpp.a:(.literal .text .literal.* .text.*)

View File

@ -267,7 +267,7 @@ static void reconfigureAllWdts()
TIMERG1.wdt_wprotect = 0; TIMERG1.wdt_wprotect = 0;
} }
#if CONFIG_ESP32_PANIC_GDBSTUB || CONFIG_ESP32_PANIC_PRINT_HALT #if CONFIG_ESP32_PANIC_GDBSTUB || CONFIG_ESP32_PANIC_PRINT_HALT || CONFIG_ESP32_ENABLE_COREDUMP
/* /*
This disables all the watchdogs for when we call the gdbstub. This disables all the watchdogs for when we call the gdbstub.
*/ */
@ -367,11 +367,15 @@ static void commonErrorHandler(XtExcFrame *frame)
panicPutStr("Entering gdb stub now.\r\n"); panicPutStr("Entering gdb stub now.\r\n");
esp_gdbstub_panic_handler(frame); esp_gdbstub_panic_handler(frame);
#else #else
#if CONFIG_ESP32_ENABLE_COREDUMP
disableAllWdts();
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH #if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
esp_core_dump_to_flash(frame); esp_core_dump_to_flash(frame);
#endif #endif
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_UART && !CONFIG_ESP32_PANIC_SILENT_REBOOT #if CONFIG_ESP32_ENABLE_COREDUMP_TO_UART && !CONFIG_ESP32_PANIC_SILENT_REBOOT
esp_core_dump_to_uart(frame); esp_core_dump_to_uart(frame);
#endif
reconfigureAllWdts();
#endif #endif
#if CONFIG_ESP32_PANIC_PRINT_REBOOT || CONFIG_ESP32_PANIC_SILENT_REBOOT #if CONFIG_ESP32_PANIC_PRINT_REBOOT || CONFIG_ESP32_PANIC_SILENT_REBOOT
panicPutStr("Rebooting...\r\n"); panicPutStr("Rebooting...\r\n");

View File

@ -62,12 +62,16 @@ static esp_err_t spi_flash_translate_rc(SpiFlashOpResult rc);
const DRAM_ATTR spi_flash_guard_funcs_t g_flash_guard_default_ops = { const DRAM_ATTR spi_flash_guard_funcs_t g_flash_guard_default_ops = {
.start = spi_flash_disable_interrupts_caches_and_other_cpu, .start = spi_flash_disable_interrupts_caches_and_other_cpu,
.end = spi_flash_enable_interrupts_caches_and_other_cpu .end = spi_flash_enable_interrupts_caches_and_other_cpu,
.op_lock = spi_flash_op_lock,
.op_unlock = spi_flash_op_unlock
}; };
const DRAM_ATTR spi_flash_guard_funcs_t g_flash_guard_no_os_ops = { const DRAM_ATTR spi_flash_guard_funcs_t g_flash_guard_no_os_ops = {
.start = spi_flash_disable_interrupts_caches_and_other_cpu_no_os, .start = spi_flash_disable_interrupts_caches_and_other_cpu_no_os,
.end = spi_flash_enable_interrupts_caches_no_os .end = spi_flash_enable_interrupts_caches_no_os,
.op_lock = 0,
.op_unlock = 0
}; };
static const spi_flash_guard_funcs_t *s_flash_guard_ops; static const spi_flash_guard_funcs_t *s_flash_guard_ops;
@ -80,12 +84,12 @@ void spi_flash_init()
#endif #endif
} }
void spi_flash_guard_set(const spi_flash_guard_funcs_t* funcs) void IRAM_ATTR spi_flash_guard_set(const spi_flash_guard_funcs_t* funcs)
{ {
s_flash_guard_ops = funcs; s_flash_guard_ops = funcs;
} }
size_t spi_flash_get_chip_size() size_t IRAM_ATTR spi_flash_get_chip_size()
{ {
return g_rom_flashchip.chip_size; return g_rom_flashchip.chip_size;
} }
@ -105,18 +109,32 @@ static SpiFlashOpResult IRAM_ATTR spi_flash_unlock()
static inline void IRAM_ATTR spi_flash_guard_start() static inline void IRAM_ATTR spi_flash_guard_start()
{ {
if (s_flash_guard_ops) { if (s_flash_guard_ops && s_flash_guard_ops->start) {
s_flash_guard_ops->start(); s_flash_guard_ops->start();
} }
} }
static inline void IRAM_ATTR spi_flash_guard_end() static inline void IRAM_ATTR spi_flash_guard_end()
{ {
if (s_flash_guard_ops) { if (s_flash_guard_ops && s_flash_guard_ops->end) {
s_flash_guard_ops->end(); s_flash_guard_ops->end();
} }
} }
static inline void IRAM_ATTR spi_flash_guard_op_lock()
{
if (s_flash_guard_ops && s_flash_guard_ops->op_lock) {
s_flash_guard_ops->op_lock();
}
}
static inline void IRAM_ATTR spi_flash_guard_op_unlock()
{
if (s_flash_guard_ops && s_flash_guard_ops->op_unlock) {
s_flash_guard_ops->op_unlock();
}
}
esp_err_t IRAM_ATTR spi_flash_erase_sector(size_t sec) esp_err_t IRAM_ATTR spi_flash_erase_sector(size_t sec)
{ {
return spi_flash_erase_range(sec * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE); return spi_flash_erase_range(sec * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE);
@ -251,9 +269,9 @@ esp_err_t IRAM_ATTR spi_flash_write(size_t dst, const void *srcv, size_t size)
out: out:
COUNTER_STOP(write); COUNTER_STOP(write);
spi_flash_op_lock(); spi_flash_guard_op_lock();
spi_flash_mark_modified_region(dst, size); spi_flash_mark_modified_region(dst, size);
spi_flash_op_unlock(); spi_flash_guard_op_unlock();
return spi_flash_translate_rc(rc); return spi_flash_translate_rc(rc);
} }
@ -320,9 +338,9 @@ esp_err_t IRAM_ATTR spi_flash_write_encrypted(size_t dest_addr, const void *src,
} }
COUNTER_ADD_BYTES(write, size); COUNTER_ADD_BYTES(write, size);
spi_flash_op_lock(); spi_flash_guard_op_lock();
spi_flash_mark_modified_region(dest_addr, size); spi_flash_mark_modified_region(dest_addr, size);
spi_flash_op_unlock(); spi_flash_guard_op_unlock();
return spi_flash_translate_rc(rc); return spi_flash_translate_rc(rc);
} }
@ -444,7 +462,7 @@ esp_err_t IRAM_ATTR spi_flash_read_encrypted(size_t src, void *dstv, size_t size
} }
static esp_err_t spi_flash_translate_rc(SpiFlashOpResult rc) static esp_err_t IRAM_ATTR spi_flash_translate_rc(SpiFlashOpResult rc)
{ {
switch (rc) { switch (rc) {
case SPI_FLASH_RESULT_OK: case SPI_FLASH_RESULT_OK:

View File

@ -205,9 +205,35 @@ typedef void (*spi_flash_guard_start_func_t)(void);
* @brief SPI flash critical section exit function. * @brief SPI flash critical section exit function.
*/ */
typedef void (*spi_flash_guard_end_func_t)(void); typedef void (*spi_flash_guard_end_func_t)(void);
/**
* @brief SPI flash operation lock function.
*/
typedef void (*spi_flash_op_lock_func_t)(void);
/**
* @brief SPI flash operation unlock function.
*/
typedef void (*spi_flash_op_unlock_func_t)(void);
/** /**
* Structure holding SPI flash access critical section management functions * Structure holding SPI flash access critical sections management functions.
*
* Flash API uses two types of flash access management functions:
* 1) Functions which prepare/restore flash cache and interrupts before calling
* appropriate ROM functions (SPIWrite, SPIRead and SPIEraseBlock):
* - 'start' function should disables flash cache and non-IRAM interrupts and
* is invoked before the call to one of ROM function above.
* - 'end' function should restore state of flash cache and non-IRAM interrupts and
* is invoked after the call to one of ROM function above.
* 2) Functions which synchronizes access to internal data used by flash API.
* This functions are mostly intended to synchronize access to flash API internal data
* in multithreaded environment and use OS primitives:
* - 'op_lock' locks access to flash API internal data.
* - 'op_unlock' unlocks access to flash API internal data.
* Different versions of the guarding functions should be used depending on the context of
* execution (with or without functional OS). In normal conditions when flash API is called
* from task the functions use OS primitives. When there is no OS at all or when
* it is not guaranteed that OS is functional (accessing flash from exception handler) these
* functions cannot use OS primitives or even does not need them (multithreaded access is not possible).
* *
* @note Structure and corresponding guard functions should not reside in flash. * @note Structure and corresponding guard functions should not reside in flash.
* For example structure can be placed in DRAM and functions in IRAM sections. * For example structure can be placed in DRAM and functions in IRAM sections.
@ -215,6 +241,8 @@ typedef void (*spi_flash_guard_end_func_t)(void);
typedef struct { typedef struct {
spi_flash_guard_start_func_t start; /**< critical section start func */ spi_flash_guard_start_func_t start; /**< critical section start func */
spi_flash_guard_end_func_t end; /**< critical section end func */ spi_flash_guard_end_func_t end; /**< critical section end func */
spi_flash_op_lock_func_t op_lock; /**< flash access API lock func */
spi_flash_op_unlock_func_t op_unlock; /**< flash access API unlock func */
} spi_flash_guard_funcs_t; } spi_flash_guard_funcs_t;
/** /**