Merge branch 'feature/public_ot_port' into 'master'

openthread: open source openthread port layer

See merge request espressif/esp-idf!21803
This commit is contained in:
Shu Chen 2022-12-31 09:26:23 +08:00
commit 0025915dc4
37 changed files with 3733 additions and 92 deletions

View File

@ -5,4 +5,10 @@ menu "IEEE 802.15.4"
bool
default "y" if SOC_IEEE802154_SUPPORTED
config IEEE802154_RX_BUFFER_SIZE
int "The number of 802.15.4 receive buffers"
depends on IEEE802154_ENABLED
default 20
range 2 100
endmenu # IEEE 802.15.4

View File

@ -14,6 +14,7 @@ if(CONFIG_OPENTHREAD_ENABLED)
"private_include")
set(src_dirs
"port"
"openthread/examples/platforms/utils"
"openthread/src/core/api"
"openthread/src/core/common"
@ -33,7 +34,6 @@ if(CONFIG_OPENTHREAD_ENABLED)
if(CONFIG_OPENTHREAD_FTD OR CONFIG_OPENTHREAD_MTD)
list(APPEND src_dirs
"src"
"openthread/src/core/backbone_router"
"openthread/src/core/coap"
"openthread/src/core/meshcop"
@ -105,6 +105,15 @@ if(CONFIG_OPENTHREAD_ENABLED)
"openthread/src/core/utils/child_supervision.cpp")
endif()
if(CONFIG_OPENTHREAD_RADIO_NATIVE)
list(APPEND exclude_srcs
"port/esp_openthread_radio_uart.cpp"
"port/esp_uart_spinel_interface.cpp")
elseif(CONFIG_OPENTHREAD_RADIO_SPINEL_UART)
list(APPEND exclude_srcs
"port/esp_openthread_radio.c")
endif()
if(CONFIG_OPENTHREAD_BORDER_ROUTER)
list(APPEND src_dirs
"openthread/src/core/border_router")
@ -148,7 +157,9 @@ idf_component_register(SRC_DIRS "${src_dirs}"
EXCLUDE_SRCS "${exclude_srcs}"
INCLUDE_DIRS "${public_include_dirs}"
PRIV_INCLUDE_DIRS "${private_include_dirs}"
REQUIRES esp_event mbedtls ieee802154 console lwip)
REQUIRES esp_netif lwip
PRIV_REQUIRES console driver esp_event esp_partition esp_timer
ieee802154 mbedtls spi_flash)
if(CONFIG_OPENTHREAD_ENABLED)
if(CONFIG_OPENTHREAD_RADIO)
@ -168,64 +179,20 @@ if(CONFIG_OPENTHREAD_ENABLED)
"PACKAGE_VERSION=\"${IDF_VERSION_FOR_OPENTHREAD_PACKAGE}-${OPENTHREAD_VERSION}\""
"OPENTHREAD_BUILD_DATETIME=\"${OT_BUILD_TIMESTAMP}\""
)
if(CONFIG_OPENTHREAD_RADIO)
file(WRITE ${CMAKE_BINARY_DIR}/rcp_version ${OT_FULL_VERSION_STRING})
endif()
if($ENV{OPENTHREAD_ESP_LIB_FROM_INTERNAL_SRC})
idf_component_get_property(openthread_port_lib openthread_port COMPONENT_LIB)
idf_component_get_property(lwip_lib lwip COMPONENT_LIB)
idf_component_get_property(esp_netif_lib esp_netif COMPONENT_LIB)
idf_component_get_property(esp_system_lib esp_system COMPONENT_LIB)
target_link_libraries(${COMPONENT_LIB} PUBLIC
$<TARGET_FILE:${openthread_port_lib}>
$<TARGET_FILE:${esp_system_lib}>)
target_link_libraries(${COMPONENT_LIB} PUBLIC
$<TARGET_FILE:${lwip_lib}>
$<TARGET_FILE:${esp_netif_lib}>
$<TARGET_FILE:${openthread_port_lib}>
$<TARGET_FILE:${esp_netif_lib}>
$<TARGET_FILE:${lwip_lib}>)
if(CONFIG_OPENTHREAD_BORDER_ROUTER)
if(CONFIG_OPENTHREAD_BORDER_ROUTER)
if($ENV{OPENTHREAD_ESP_BR_LIB_FROM_INTERNAL_SRC})
idf_component_get_property(openthread_br_lib openthread_br COMPONENT_LIB)
target_link_libraries(${COMPONENT_LIB} PUBLIC $<TARGET_FILE:${openthread_br_lib}>)
endif()
else()
if(IDF_TARGET STREQUAL "esp32h4")
if(CONFIG_IDF_TARGET_ESP32H4_BETA_VERSION_1)
add_prebuilt_library(openthread_port
"${CMAKE_CURRENT_SOURCE_DIR}/lib/${idf_target}/rev1/libopenthread_port.a"
REQUIRES openthread)
endif()
if(CONFIG_IDF_TARGET_ESP32H4_BETA_VERSION_2)
add_prebuilt_library(openthread_port
"${CMAKE_CURRENT_SOURCE_DIR}/lib/${idf_target}/rev2/libopenthread_port.a"
REQUIRES openthread)
endif()
elseif(IDF_TARGET STREQUAL "esp32c6")
if(CONFIG_OPENTHREAD_BORDER_ROUTER)
add_prebuilt_library(openthread_port
"${CMAKE_CURRENT_SOURCE_DIR}/lib/${idf_target}/br/libopenthread_port.a"
REQUIRES openthread)
else()
add_prebuilt_library(openthread_port
"${CMAKE_CURRENT_SOURCE_DIR}/lib/${idf_target}/cli/libopenthread_port.a"
REQUIRES openthread)
endif()
else()
add_prebuilt_library(openthread_port "${CMAKE_CURRENT_SOURCE_DIR}/lib/${idf_target}/libopenthread_port.a"
REQUIRES openthread)
endif()
add_prebuilt_library(openthread_br "${CMAKE_CURRENT_SOURCE_DIR}/lib/${idf_target}/libopenthread_br.a"
REQUIRES openthread)
target_link_libraries(${COMPONENT_LIB} INTERFACE openthread_port)
if(CONFIG_OPENTHREAD_BORDER_ROUTER)
add_prebuilt_library(openthread_br "${CMAKE_CURRENT_SOURCE_DIR}/lib/${idf_target}/libopenthread_br.a"
REQUIRES openthread)
target_link_libraries(${COMPONENT_LIB} INTERFACE openthread_br)
endif()
endif()
endif()

View File

@ -125,7 +125,7 @@ menu "OpenThread"
config OPENTHREAD_SRP_CLIENT
bool "Enable SRP Client"
depends on OPENTHREAD_ENABLED
default n
default y
help
Select this option to enable SRP Client in OpenThread. This allows a device to register SRP services to SRP
Server.

View File

@ -63,12 +63,14 @@ void esp_openthread_lock_release(void);
*
* @note Please use esp_openthread_lock_acquire() for normal cases.
*
* @param[in] block_ticks The maxinum number of RTOS ticks to wait for the lock.
*
* @return
* - True on lock acquired
* - False on failing to acquire the lock with the timeout.
*
*/
bool esp_openthread_task_switching_lock_acquire(void);
bool esp_openthread_task_switching_lock_acquire(TickType_t block_ticks);
/**
* @brief This function releases the OpenThread API task switching lock.

@ -1 +1 @@
Subproject commit 009faca9f091a1dec4508dbaaff95fa01a1abc2f
Subproject commit 31136c18c6ed890f4a100f7713e3b04ae07702c6

View File

@ -0,0 +1,91 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "esp_openthread.h"
#include "esp_check.h"
#include "esp_openthread_border_router.h"
#include "esp_openthread_common_macro.h"
#include "esp_openthread_lock.h"
#include "esp_openthread_platform.h"
#include "esp_openthread_task_queue.h"
#include "esp_openthread_types.h"
#include "freertos/FreeRTOS.h"
#include "lwip/dns.h"
#include "openthread/instance.h"
#include "openthread/netdata.h"
#include "openthread/tasklet.h"
esp_err_t esp_openthread_init(const esp_openthread_platform_config_t *config)
{
ESP_RETURN_ON_ERROR(esp_openthread_platform_init(config), OT_PLAT_LOG_TAG,
"Failed to initialize OpenThread platform driver");
esp_openthread_lock_acquire(portMAX_DELAY);
ESP_RETURN_ON_FALSE(otInstanceInitSingle() != NULL, ESP_FAIL, OT_PLAT_LOG_TAG,
"Failed to initialize OpenThread instance");
esp_openthread_lock_release();
return ESP_OK;
}
esp_err_t esp_openthread_launch_mainloop(void)
{
esp_openthread_mainloop_context_t mainloop;
otInstance *instance = esp_openthread_get_instance();
esp_err_t error = ESP_OK;
while (true) {
FD_ZERO(&mainloop.read_fds);
FD_ZERO(&mainloop.write_fds);
FD_ZERO(&mainloop.error_fds);
mainloop.max_fd = -1;
mainloop.timeout.tv_sec = 10;
mainloop.timeout.tv_usec = 0;
esp_openthread_lock_acquire(portMAX_DELAY);
esp_openthread_platform_update(&mainloop);
if (otTaskletsArePending(instance)) {
mainloop.timeout.tv_sec = 0;
mainloop.timeout.tv_usec = 0;
}
esp_openthread_lock_release();
if (select(mainloop.max_fd + 1, &mainloop.read_fds, &mainloop.write_fds, &mainloop.error_fds,
&mainloop.timeout) >= 0) {
esp_openthread_lock_acquire(portMAX_DELAY);
error = esp_openthread_platform_process(instance, &mainloop);
while (otTaskletsArePending(instance)) {
otTaskletsProcess(instance);
}
esp_openthread_lock_release();
if (error != ESP_OK) {
ESP_LOGE(OT_PLAT_LOG_TAG, "esp_openthread_platform_process failed");
break;
}
} else {
error = ESP_FAIL;
ESP_LOGE(OT_PLAT_LOG_TAG, "OpenThread system polling failed");
break;
}
}
return error;
}
esp_err_t esp_openthread_deinit(void)
{
otInstanceFinalize(esp_openthread_get_instance());
return esp_openthread_platform_deinit();
}
static void stub_task(void *context)
{
// this is a empty function used for ot-task signal pending
}
void otTaskletsSignalPending(otInstance *aInstance)
{
esp_openthread_task_queue_post(stub_task, NULL);
}

View File

@ -0,0 +1,149 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "esp_openthread_alarm.h"
#include <stdbool.h>
#include <stdint.h>
#include <sys/time.h>
#include "esp_log.h"
#include "esp_openthread_common_macro.h"
#include "esp_openthread_platform.h"
#include "esp_timer.h"
#include "openthread-core-config.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "openthread/platform/alarm-micro.h"
#include "openthread/platform/alarm-milli.h"
#include "openthread/platform/diag.h"
#include "openthread/platform/radio.h"
#include "openthread/platform/time.h"
static uint64_t s_alarm_ms_t0 = 0;
static uint64_t s_alarm_ms_dt = 0;
static bool s_is_ms_running = false;
static uint64_t s_alarm_us_t0 = 0;
static uint64_t s_alarm_us_dt = 0;
static bool s_is_us_running = false;
static const char *alarm_workflow = "alarm";
uint64_t otPlatTimeGet(void)
{
struct timeval tv_now;
int err = gettimeofday(&tv_now, NULL);
assert(err == 0);
return (uint64_t)tv_now.tv_sec * US_PER_S + tv_now.tv_usec;
}
void otPlatAlarmMilliStartAt(otInstance *aInstance, uint32_t aT0, uint32_t aDt)
{
OT_UNUSED_VARIABLE(aInstance);
s_alarm_ms_t0 = aT0;
s_alarm_ms_dt = aDt;
s_is_ms_running = true;
ESP_LOGD(OT_PLAT_LOG_TAG, "Millisecond timer alarm start running, t0=%llu, dt=%llu", s_alarm_ms_t0, s_alarm_ms_dt);
}
void otPlatAlarmMilliStop(otInstance *aInstance)
{
OT_UNUSED_VARIABLE(aInstance);
s_is_ms_running = false;
}
uint32_t otPlatAlarmMilliGetNow(void)
{
return esp_timer_get_time() / US_PER_MS;
}
void otPlatAlarmMicroStartAt(otInstance *aInstance, uint32_t aT0, uint32_t aDt)
{
OT_UNUSED_VARIABLE(aInstance);
s_alarm_us_t0 = aT0;
s_alarm_us_dt = aDt;
s_is_us_running = true;
ESP_LOGD(OT_PLAT_LOG_TAG, "Microsecond timer alarm start running, t0=%llu, dt=%llu", s_alarm_us_t0, s_alarm_us_dt);
}
void otPlatAlarmMicroStop(otInstance *aInstance)
{
OT_UNUSED_VARIABLE(aInstance);
s_is_us_running = false;
}
uint32_t otPlatAlarmMicroGetNow(void)
{
return esp_timer_get_time();
}
esp_err_t esp_openthread_alarm_init(void)
{
return esp_openthread_platform_workflow_register(&esp_openthread_alarm_update, &esp_openthread_alarm_process,
alarm_workflow);
}
void esp_openthread_alarm_deinit(void)
{
esp_openthread_platform_workflow_unregister(alarm_workflow);
}
void esp_openthread_alarm_update(esp_openthread_mainloop_context_t *mainloop)
{
struct timeval *timeout = &mainloop->timeout;
uint64_t now = esp_timer_get_time();
int64_t remain_min_time_us = INT64_MAX;
int64_t remaining_us = 0;
if (s_is_ms_running) {
remaining_us = (s_alarm_ms_dt + s_alarm_ms_t0) * US_PER_MS - now;
if (remain_min_time_us > remaining_us) {
remain_min_time_us = remaining_us;
}
}
if (s_is_us_running) {
remaining_us = s_alarm_us_dt + s_alarm_us_t0 - now;
if (remain_min_time_us > remaining_us) {
remain_min_time_us = remaining_us;
}
}
if (remain_min_time_us > 0) {
timeout->tv_sec = remain_min_time_us / US_PER_S;
timeout->tv_usec = remain_min_time_us % US_PER_S;
} else {
timeout->tv_sec = 0;
timeout->tv_usec = 0;
}
}
esp_err_t esp_openthread_alarm_process(otInstance *aInstance, const esp_openthread_mainloop_context_t *mainloop)
{
if (s_is_ms_running && s_alarm_ms_t0 + s_alarm_ms_dt <= otPlatAlarmMilliGetNow()) {
s_is_ms_running = false;
#if OPENTHREAD_CONFIG_DIAG_ENABLE
if (otPlatDiagModeGet()) {
otPlatDiagAlarmFired(aInstance);
} else
#endif
{
otPlatAlarmMilliFired(aInstance);
}
ESP_LOGD(OT_PLAT_LOG_TAG, "Millisecond timer alarm fired");
}
if (s_is_us_running && s_alarm_us_t0 + s_alarm_us_dt <= esp_timer_get_time()) {
s_is_us_running = false;
otPlatAlarmMicroFired(aInstance);
ESP_LOGD(OT_PLAT_LOG_TAG, "Microsecond timer alarm fired");
}
return ESP_OK;
}

View File

@ -0,0 +1,94 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "esp_openthread_cli.h"
#include <stdio.h>
#include <string.h>
#include "openthread/cli.h"
#include "esp_check.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp_openthread.h"
#include "esp_openthread_common_macro.h"
#include "esp_openthread_task_queue.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "linenoise/linenoise.h"
#define OT_CLI_MAX_LINE_LENGTH 256
static TaskHandle_t s_cli_task;
static int cli_output_callback(void *context, const char *format, va_list args)
{
char prompt_check[3];
int ret = 0;
vsnprintf(prompt_check, sizeof(prompt_check), format, args);
if (!strncmp(prompt_check, "> ", sizeof(prompt_check)) && s_cli_task) {
xTaskNotifyGive(s_cli_task);
} else {
ret = vprintf(format, args);
}
return ret;
}
void esp_openthread_cli_init(void)
{
otCliInit(esp_openthread_get_instance(), cli_output_callback, NULL);
}
void line_handle_task(void *context)
{
char *line = (char *)context;
otCliInputLine(line);
free(line);
}
esp_err_t esp_openthread_cli_input(const char *line)
{
char *line_copy = strdup(line);
ESP_RETURN_ON_FALSE(line_copy != NULL, ESP_ERR_NO_MEM, OT_PLAT_LOG_TAG, "Failed to copy OpenThread CLI line input");
return esp_openthread_task_queue_post(line_handle_task, line_copy);
}
static void ot_cli_loop(void *context)
{
const char *prompt = "> ";
linenoiseSetMultiLine(true);
linenoiseHistorySetMaxLen(100);
linenoiseSetMaxLineLen(OT_CLI_MAX_LINE_LENGTH);
linenoiseAllowEmpty(false);
if (linenoiseProbe()) {
linenoiseSetDumbMode(1);
}
while (true) {
char *line = linenoise(prompt);
if (line && strnlen(line, OT_CLI_MAX_LINE_LENGTH)) {
printf("\r\n");
esp_openthread_cli_input(line);
linenoiseHistoryAdd(line);
xTaskNotifyWait(0, 0, NULL, portMAX_DELAY);
}
linenoiseFree(line);
}
}
void esp_openthread_cli_create_task()
{
xTaskCreate(ot_cli_loop, "ot_cli", 4096, xTaskGetCurrentTaskHandle(), 4, &s_cli_task);
return;
}

View File

@ -0,0 +1,65 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "esp_openthread_flash.h"
#include "esp_partition.h"
#include "openthread/instance.h"
#include "openthread/platform/flash.h"
#include "openthread/platform/settings.h"
#define ESP_OT_FLASH_PAGE_NUM 2
#define ESP_OT_FLASH_PAGE_SIZE 4096
static const esp_partition_t *s_ot_partition = NULL;
void esp_openthread_flash_set_partition(const esp_partition_t *partition)
{
s_ot_partition = partition;
}
void otPlatFlashInit(otInstance *instance)
{
assert(s_ot_partition != NULL);
assert(s_ot_partition->size >= otPlatFlashGetSwapSize(instance));
}
uint32_t otPlatFlashGetSwapSize(otInstance *instance)
{
return ESP_OT_FLASH_PAGE_SIZE;
}
void otPlatFlashErase(otInstance *instance, uint8_t index)
{
uint32_t address = ESP_OT_FLASH_PAGE_SIZE * (index != 0);
uint32_t size = ESP_OT_FLASH_PAGE_SIZE;
esp_err_t err = ESP_OK;
err = esp_partition_erase_range(s_ot_partition, address, size);
assert(err == ESP_OK);
}
void otPlatFlashRead(otInstance *instance, uint8_t index, uint32_t offset, void *data, uint32_t size)
{
esp_err_t err = ESP_OK;
offset += ESP_OT_FLASH_PAGE_SIZE * (index != 0);
err = esp_partition_read(s_ot_partition, offset, data, size);
assert(err == ESP_OK);
}
void otPlatFlashWrite(otInstance *instance, uint8_t index, uint32_t offset, const void *data, uint32_t size)
{
esp_err_t err = ESP_OK;
offset += ESP_OT_FLASH_PAGE_SIZE * (index != 0);
err = esp_partition_write(s_ot_partition, offset, data, size);
assert(err == ESP_OK);
}

View File

@ -0,0 +1,63 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "esp_openthread_lock.h"
#include "esp_err.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
static SemaphoreHandle_t s_openthread_task_mutex = NULL;
static SemaphoreHandle_t s_openthread_mutex = NULL;
bool esp_openthread_lock_acquire(TickType_t block_ticks)
{
BaseType_t ret = xSemaphoreTakeRecursive(s_openthread_mutex, block_ticks) &&
xSemaphoreTakeRecursive(s_openthread_task_mutex, block_ticks);
return (ret == pdTRUE);
}
void esp_openthread_lock_release(void)
{
xSemaphoreGiveRecursive(s_openthread_task_mutex);
xSemaphoreGiveRecursive(s_openthread_mutex);
}
bool esp_openthread_task_switching_lock_acquire(TickType_t block_ticks)
{
BaseType_t ret = xSemaphoreTakeRecursive(s_openthread_task_mutex, block_ticks);
return (ret == pdTRUE);
}
void esp_openthread_task_switching_lock_release(void)
{
xSemaphoreGiveRecursive(s_openthread_task_mutex);
}
esp_err_t esp_openthread_lock_init(void)
{
if (s_openthread_mutex != NULL || s_openthread_task_mutex != NULL) {
return ESP_ERR_INVALID_STATE;
}
s_openthread_mutex = xSemaphoreCreateRecursiveMutex();
s_openthread_task_mutex = xSemaphoreCreateRecursiveMutex();
if (s_openthread_mutex == NULL || s_openthread_task_mutex == NULL) {
return ESP_ERR_NO_MEM;
}
return ESP_OK;
}
void esp_openthread_lock_deinit(void)
{
if (s_openthread_mutex) {
vSemaphoreDelete(s_openthread_mutex);
s_openthread_mutex = NULL;
}
if (s_openthread_task_mutex) {
vSemaphoreDelete(s_openthread_task_mutex);
s_openthread_task_mutex = NULL;
}
}

View File

@ -0,0 +1,63 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "esp_openthread.h"
#include <stdio.h>
#include "esp_log.h"
#include "esp_openthread_common_macro.h"
#include "openthread/platform/logging.h"
/**
* The default platform logging tag.
*
*/
#if (OPENTHREAD_CONFIG_LOG_OUTPUT == OPENTHREAD_CONFIG_LOG_OUTPUT_PLATFORM_DEFINED) || \
(OPENTHREAD_CONFIG_LOG_OUTPUT == OPENTHREAD_CONFIG_LOG_OUTPUT_NCP_SPINEL)
OT_TOOL_WEAK void otPlatLog(otLogLevel log_level, otLogRegion log_region, const char *format, ...)
{
va_list args;
va_start(args, format);
switch (log_level) {
case OT_LOG_LEVEL_CRIT:
if (LOG_LOCAL_LEVEL >= ESP_LOG_ERROR) {
esp_log_write(ESP_LOG_ERROR, OT_PLAT_LOG_TAG, LOG_COLOR_E "E(%lu) %s:", esp_log_timestamp(),
OT_PLAT_LOG_TAG);
esp_log_writev(ESP_LOG_ERROR, OT_PLAT_LOG_TAG, format, args);
esp_log_write(ESP_LOG_ERROR, OT_PLAT_LOG_TAG, LOG_RESET_COLOR "\n");
}
break;
case OT_LOG_LEVEL_WARN:
if (LOG_LOCAL_LEVEL >= ESP_LOG_WARN) {
esp_log_write(ESP_LOG_WARN, OT_PLAT_LOG_TAG, LOG_COLOR_W "W(%lu) %s:", esp_log_timestamp(),
OT_PLAT_LOG_TAG);
esp_log_writev(ESP_LOG_WARN, OT_PLAT_LOG_TAG, format, args);
esp_log_write(ESP_LOG_WARN, OT_PLAT_LOG_TAG, LOG_RESET_COLOR "\n");
}
break;
case OT_LOG_LEVEL_NOTE:
case OT_LOG_LEVEL_INFO:
if (LOG_LOCAL_LEVEL >= ESP_LOG_INFO) {
esp_log_write(ESP_LOG_INFO, OT_PLAT_LOG_TAG, LOG_COLOR_I "I(%lu) %s:", esp_log_timestamp(),
OT_PLAT_LOG_TAG);
esp_log_writev(ESP_LOG_INFO, OT_PLAT_LOG_TAG, format, args);
esp_log_write(ESP_LOG_INFO, OT_PLAT_LOG_TAG, LOG_RESET_COLOR "\n");
}
break;
default:
if (LOG_LOCAL_LEVEL >= ESP_LOG_DEBUG) {
esp_log_write(ESP_LOG_DEBUG, OT_PLAT_LOG_TAG, LOG_COLOR_D "D(%lu) %s:", esp_log_timestamp(),
OT_PLAT_LOG_TAG);
esp_log_writev(ESP_LOG_DEBUG, OT_PLAT_LOG_TAG, format, args);
esp_log_write(ESP_LOG_DEBUG, OT_PLAT_LOG_TAG, LOG_RESET_COLOR "\n");
}
break;
}
va_end(args);
}
#endif

View File

@ -0,0 +1,143 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <string.h>
#include "esp_netif.h"
#include "esp_netif_net_stack.h"
#include "esp_openthread.h"
#include "esp_openthread_lock.h"
#include "freertos/FreeRTOS.h"
#include "lwip/err.h"
#include "lwip/esp_netif_net_stack.h"
#include "lwip/netif.h"
#include "lwip/pbuf.h"
#include "openthread/error.h"
#include "openthread/ip6.h"
#include "openthread/link.h"
#include "openthread/message.h"
#define OPENTHREAD_IP6_MTU 1280
static err_t openthread_netif_init(struct netif *netif);
static void openthread_netif_input(void *h, void *buffer, size_t len, void *eb);
const struct esp_netif_netstack_config g_esp_netif_netstack_default_openthread = {
.lwip = {
.init_fn = openthread_netif_init,
.input_fn = openthread_netif_input,
}};
static err_t openthread_output_ip6(struct netif *netif, struct pbuf *p, const struct ip6_addr *peer_addr)
{
struct pbuf *q = p;
esp_netif_t *esp_netif = esp_netif_get_handle_from_netif_impl(netif);
esp_err_t ret = ESP_FAIL;
if (!esp_netif) {
LWIP_DEBUGF(NETIF_DEBUG, ("corresponding esp-netif is NULL: netif=%p pbuf=%p len=%d\n", netif, p, p->len));
return ERR_IF;
}
if (q->next == NULL) {
ret = esp_netif_transmit(esp_netif, q->payload, q->len);
} else {
LWIP_DEBUGF(PBUF_DEBUG, ("low_level_output: pbuf is a list, application may has bug"));
q = pbuf_alloc(PBUF_RAW_TX, p->tot_len, PBUF_RAM);
if (q != NULL) {
pbuf_copy(q, p);
} else {
return ERR_MEM;
}
ret = esp_netif_transmit(esp_netif, q->payload, q->len);
/* content in payload has been copied to OpenThread queue, it's safe to free pbuf now */
pbuf_free(q);
}
/* Check error */
switch (ret) {
case ESP_ERR_NO_MEM:
return ERR_MEM;
case ESP_OK:
return ERR_OK;
default:
return ERR_ABRT;
}
}
static void openthread_netif_input(void *h, void *buffer, size_t len, void *eb)
{
struct netif *netif = h;
struct pbuf *p;
otMessage *message = (otMessage *)buffer;
if (unlikely(buffer == NULL || !netif_is_up(netif))) {
return;
}
/* Allocate LINK buffer in case it's forwarded to WiFi/ETH */
p = pbuf_alloc(PBUF_LINK, len, PBUF_POOL);
if (p == NULL) {
LWIP_DEBUGF(NETIF_DEBUG, ("Failed to allocate input pbuf for OpenThread netif\n"));
return;
}
if (unlikely(otMessageRead(message, 0, p->payload, len) != otMessageGetLength(message))) {
LWIP_DEBUGF(NETIF_DEBUG, ("Failed to read OpenThread message\n"));
pbuf_free(p);
return;
}
/* full packet send to tcpip_thread to process */
if (unlikely(netif->input(p, netif) != ERR_OK)) {
LWIP_DEBUGF(NETIF_DEBUG, ("openthread_netif_input: IP input error\n"));
pbuf_free(p);
}
/* the pbuf will be free in upper layer, eg: tcpip_input */
}
static err_t openthread_netif_multicast_handler(struct netif *netif, const ip6_addr_t *group,
enum netif_mac_filter_action action)
{
otError error = OT_ERROR_NONE;
otIp6Address multicast_addr;
memcpy(multicast_addr.mFields.m8, group->addr, sizeof(group->addr));
esp_openthread_task_switching_lock_acquire(portMAX_DELAY);
if (action == NETIF_ADD_MAC_FILTER) {
error = otIp6SubscribeMulticastAddress(esp_openthread_get_instance(), &multicast_addr);
} else {
error = otIp6UnsubscribeMulticastAddress(esp_openthread_get_instance(), &multicast_addr);
}
esp_openthread_task_switching_lock_release();
switch (error) {
case OT_ERROR_NONE:
case OT_ERROR_ALREADY:
return ERR_OK;
case OT_ERROR_NO_BUFS:
return ERR_MEM;
case OT_ERROR_INVALID_ARGS:
return ERR_ARG;
default:
return ERR_IF;
}
}
static err_t openthread_netif_init(struct netif *netif)
{
netif->name[0] = 'o';
netif->name[1] = 't';
netif->hwaddr_len = sizeof(otExtAddress);
memset(netif->hwaddr, 0, sizeof(netif->hwaddr));
netif->mtu = OPENTHREAD_IP6_MTU;
netif->flags = NETIF_FLAG_BROADCAST;
netif->output = NULL;
netif->output_ip6 = openthread_output_ip6;
netif->mld_mac_filter = openthread_netif_multicast_handler;
netif_set_link_up(netif);
return ERR_OK;
}

View File

@ -0,0 +1,21 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "esp_openthread.h"
#include "openthread/platform/memory.h"
#include <stdlib.h>
void *otPlatCAlloc(size_t num, size_t size)
{
return calloc(num, size);
}
void otPlatFree(void *ptr)
{
free(ptr);
}

View File

@ -0,0 +1,80 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "esp_log.h"
#include "esp_openthread.h"
#include "esp_openthread_common_macro.h"
#include "esp_system.h"
#include "common/logging.hpp"
#include "openthread/platform/misc.h"
static otPlatMcuPowerState s_mcu_power_state = OT_PLAT_MCU_POWER_STATE_ON;
void otPlatReset(otInstance *aInstance)
{
esp_restart();
}
otPlatResetReason otPlatGetResetReason(otInstance *instance)
{
switch (esp_reset_reason()) {
case ESP_RST_UNKNOWN:
return OT_PLAT_RESET_REASON_UNKNOWN;
case ESP_RST_POWERON:
return OT_PLAT_RESET_REASON_POWER_ON;
case ESP_RST_EXT:
return OT_PLAT_RESET_REASON_EXTERNAL;
case ESP_RST_SW:
return OT_PLAT_RESET_REASON_SOFTWARE;
case ESP_RST_PANIC:
return OT_PLAT_RESET_REASON_FAULT;
case ESP_RST_INT_WDT:
return OT_PLAT_RESET_REASON_WATCHDOG;
case ESP_RST_TASK_WDT:
return OT_PLAT_RESET_REASON_WATCHDOG;
case ESP_RST_WDT:
return OT_PLAT_RESET_REASON_WATCHDOG;
default:
return OT_PLAT_RESET_REASON_OTHER;
}
}
void otPlatWakeHost(void)
{
// Not Implemented.
}
otError otPlatSetMcuPowerState(otInstance *instance, otPlatMcuPowerState state)
{
otError error = OT_ERROR_NONE;
OT_UNUSED_VARIABLE(instance);
switch (state) {
case OT_PLAT_MCU_POWER_STATE_ON:
case OT_PLAT_MCU_POWER_STATE_LOW_POWER:
s_mcu_power_state = state;
break;
default:
error = OT_ERROR_FAILED;
break;
}
return error;
}
otPlatMcuPowerState otPlatGetMcuPowerState(otInstance *instance)
{
OT_UNUSED_VARIABLE(instance);
return s_mcu_power_state;
}
void otPlatAssertFail(const char *filename, int line)
{
ESP_LOGE(OT_PLAT_LOG_TAG, "Assert failed at %s:%d", filename, line);
assert(false);
}

View File

@ -0,0 +1,374 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "esp_openthread_netif_glue.h"
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include "esp_check.h"
#include "esp_err.h"
#include "esp_event.h"
#include "esp_log.h"
#include "esp_netif.h"
#include "esp_openthread.h"
#include "esp_openthread_common_macro.h"
#include "esp_openthread_lock.h"
#include "esp_openthread_netif_glue_priv.h"
#include "esp_openthread_platform.h"
#include "esp_openthread_types.h"
#include "esp_vfs_eventfd.h"
#include "sdkconfig.h"
#include "common/code_utils.hpp"
#include "config/link_quality.h"
#include "freertos/FreeRTOS.h"
#include "openthread/error.h"
#include "openthread/icmp6.h"
#include "openthread/instance.h"
#include "openthread/ip6.h"
#include "openthread/link.h"
#include "openthread/message.h"
#include "openthread/thread.h"
typedef struct {
esp_netif_driver_base_t base;
int event_fd;
} esp_openthread_netif_glue_t;
static esp_openthread_netif_glue_t s_openthread_netif_glue = {
.event_fd = -1,
};
ESP_EVENT_DEFINE_BASE(OPENTHREAD_EVENT);
static QueueHandle_t s_packet_queue;
static esp_netif_t *s_openthread_netif;
static const char *netif_glue_workflow = "netif_glue";
const esp_netif_inherent_config_t g_esp_netif_inherent_openthread_config = ESP_NETIF_INHERENT_DEFAULT_OPENTHREAD();
#define NETIF_OUTPUT_SIGNAL 1
static bool is_link_local_addr(const otIp6Address *address)
{
return address->mFields.m32[0] == 0xfe800000 && address->mFields.m32[1] == 0;
}
static bool is_mesh_local_addr(const otIp6Address *address)
{
return memcmp(address->mFields.m8, otThreadGetMeshLocalPrefix(esp_openthread_get_instance())->m8,
sizeof(otThreadGetMeshLocalPrefix(esp_openthread_get_instance())->m8)) == 0;
}
static bool is_addr_locator(const otIp6Address *address)
{
return address->mFields.m32[2] == 0xff000000 && address->mFields.m16[6] == 0xfe;
}
static bool is_openthread_internal_mesh_local_addr(const otIp6AddressInfo *address_info)
{
return is_addr_locator(address_info->mAddress) && is_mesh_local_addr(address_info->mAddress);
}
static esp_err_t notify_packets_pending(void)
{
uint64_t signal = NETIF_OUTPUT_SIGNAL;
ssize_t ret = write(s_openthread_netif_glue.event_fd, &signal, sizeof(signal));
if (ret != sizeof(signal)) {
ESP_LOGW(OT_PLAT_LOG_TAG, "Thread netif failed to notify eventfd");
return ESP_FAIL;
}
return ESP_OK;
}
static void process_thread_address(const otIp6AddressInfo *address_info, bool is_added, void *context)
{
bool is_multicast = address_info->mAddress->mFields.m8[0] == 0xff;
esp_ip6_addr_t addr;
if (is_openthread_internal_mesh_local_addr(address_info)) {
return;
}
memcpy(addr.addr, address_info->mAddress->mFields.m8, sizeof(addr.addr));
if (is_added) {
if (is_multicast) {
if (esp_event_post(OPENTHREAD_EVENT, OPENTHREAD_EVENT_MULTICAST_GROUP_JOIN, &addr, sizeof(addr), 0) !=
ESP_OK) {
ESP_LOGE(OT_PLAT_LOG_TAG, "Failed to post OpenThread join multicast group event");
}
} else {
ip_event_add_ip6_t add_addr;
add_addr.addr = addr;
// if an address is not mesh local or link local, we set preferred for this address.
add_addr.preferred =
is_mesh_local_addr(address_info->mAddress) || is_link_local_addr(address_info->mAddress) ? 0 : 1;
if (esp_event_post(OPENTHREAD_EVENT, OPENTHREAD_EVENT_GOT_IP6, &add_addr, sizeof(add_addr), 0) != ESP_OK) {
ESP_LOGE(OT_PLAT_LOG_TAG, "Failed to post OpenThread got ip6 address event");
}
}
} else {
if (is_multicast) {
if (esp_event_post(OPENTHREAD_EVENT, OPENTHREAD_EVENT_MULTICAST_GROUP_LEAVE, &addr, sizeof(addr), 0) !=
ESP_OK) {
ESP_LOGE(OT_PLAT_LOG_TAG, "Failed to post OpenThread leave multicast group event");
}
} else {
if (esp_event_post(OPENTHREAD_EVENT, OPENTHREAD_EVENT_LOST_IP6, &addr, sizeof(addr), 0) != ESP_OK) {
ESP_LOGE(OT_PLAT_LOG_TAG, "Failed to post OpenThread lost ip6 address event");
}
}
}
}
static void process_thread_receive(otMessage *message, void *context)
{
esp_err_t error;
uint16_t length = otMessageGetLength(message);
error = esp_netif_receive(s_openthread_netif_glue.base.netif, message, length, NULL);
if (error != ESP_OK) {
ESP_LOGW(OT_PLAT_LOG_TAG, "process_thread_receive failed: %s", esp_err_to_name(error));
}
otMessageFree(message);
}
static esp_err_t process_thread_transmit(otInstance *instance)
{
otMessage *msg = NULL;
esp_err_t error = ESP_OK;
uint64_t event;
int ret = read(s_openthread_netif_glue.event_fd, &event, sizeof(event));
assert(ret == sizeof(event));
while (xQueueReceive(s_packet_queue, &msg, 0) == pdTRUE) {
if (msg) {
otError ot_error = otIp6Send(esp_openthread_get_instance(), msg);
if (ot_error != OT_ERROR_NONE && ot_error != OT_ERROR_DROP) {
ESP_LOGW(OT_PLAT_LOG_TAG, "ThreadNetif Failed to send OpenThread IP6 message: %s",
otThreadErrorToString(ot_error));
}
if (ot_error == OT_ERROR_DROP) {
// OpenThread will intentionally drop some multicast and ICMPv6 packets
// which are not required for the Thread network.
ESP_LOGD(OT_PLAT_LOG_TAG, "OpenThread stack filtered netif packet");
}
if (ot_error != OT_ERROR_NONE) {
break;
}
}
}
if (uxQueueMessagesWaiting(s_packet_queue) > 0) {
error = notify_packets_pending();
}
return error;
}
void esp_openthread_netif_glue_state_callback(otChangedFlags changed_flags, void *ctx)
{
otInstance *instance = esp_openthread_get_instance();
esp_err_t err = ESP_OK;
if (s_packet_queue != NULL && (OT_CHANGED_THREAD_NETIF_STATE & changed_flags)) {
if (otLinkIsEnabled(instance)) {
ESP_LOGI(OT_PLAT_LOG_TAG, "netif up");
if (esp_event_post(OPENTHREAD_EVENT, OPENTHREAD_EVENT_IF_UP, NULL, 0, 0) != ESP_OK) {
ESP_LOGE(OT_PLAT_LOG_TAG, "Failed to post OpenThread if up event");
}
} else {
ESP_LOGI(OT_PLAT_LOG_TAG, "netif down");
if (esp_event_post(OPENTHREAD_EVENT, OPENTHREAD_EVENT_IF_DOWN, NULL, 0, 0) != ESP_OK) {
ESP_LOGE(OT_PLAT_LOG_TAG, "Failed to post OpenThread if down event");
}
}
}
if (err != ESP_OK) {
ESP_LOGE(OT_PLAT_LOG_TAG, "Failed to configure netif state");
}
}
static esp_err_t openthread_netif_transmit(void *handle, void *buffer, size_t len)
{
esp_err_t error = ESP_OK;
otError ot_error = OT_ERROR_NONE;
esp_openthread_task_switching_lock_acquire(portMAX_DELAY);
otMessage *message = otIp6NewMessage(esp_openthread_get_instance(), NULL);
if (message == NULL) {
ESP_LOGE(OT_PLAT_LOG_TAG, "Failed to allocate OpenThread message");
ExitNow(error = ESP_ERR_NO_MEM);
}
ot_error = otMessageAppend(message, buffer, len);
if (ot_error != OT_ERROR_NONE) {
ESP_LOGE(OT_PLAT_LOG_TAG, "Failed to copy to OpenThread message: %s", otThreadErrorToString(ot_error));
ExitNow(error = ESP_ERR_NO_MEM);
}
if (xQueueSend(s_packet_queue, &message, 0) != pdTRUE) {
ESP_LOGE(OT_PLAT_LOG_TAG, "Failed to send to Thread netif: packet queue full");
ExitNow(error = ESP_ERR_NO_MEM, ot_error = OT_ERROR_NO_BUFS);
}
VerifyOrExit(notify_packets_pending() == ESP_OK, error = ESP_FAIL);
exit:
if (ot_error != OT_ERROR_NONE && message != NULL) {
otMessageFree(message);
}
esp_openthread_task_switching_lock_release();
return error;
}
static esp_err_t register_openthread_event_handlers(esp_netif_t *esp_netif)
{
ESP_RETURN_ON_ERROR(
esp_event_handler_register(OPENTHREAD_EVENT, OPENTHREAD_EVENT_START, esp_netif_action_start, esp_netif),
OT_PLAT_LOG_TAG, "OpenThread start event register failed");
ESP_RETURN_ON_ERROR(
esp_event_handler_register(OPENTHREAD_EVENT, OPENTHREAD_EVENT_STOP, esp_netif_action_stop, esp_netif),
OT_PLAT_LOG_TAG, "OpenThread stop event register failed");
ESP_RETURN_ON_ERROR(
esp_event_handler_register(OPENTHREAD_EVENT, OPENTHREAD_EVENT_IF_UP, esp_netif_action_connected, esp_netif),
OT_PLAT_LOG_TAG, "OpenThread interface up event register failed");
ESP_RETURN_ON_ERROR(esp_event_handler_register(OPENTHREAD_EVENT, OPENTHREAD_EVENT_IF_DOWN,
esp_netif_action_disconnected, esp_netif),
OT_PLAT_LOG_TAG, "OpenThread interface down event register failed");
ESP_RETURN_ON_ERROR(esp_event_handler_register(OPENTHREAD_EVENT, OPENTHREAD_EVENT_GOT_IP6,
esp_netif_action_add_ip6_address, esp_netif),
OT_PLAT_LOG_TAG, "OpenThread interface got ip6 event register failed");
ESP_RETURN_ON_ERROR(esp_event_handler_register(OPENTHREAD_EVENT, OPENTHREAD_EVENT_LOST_IP6,
esp_netif_action_remove_ip6_address, esp_netif),
OT_PLAT_LOG_TAG, "OpenThread interface remove ip6 event register failed");
ESP_RETURN_ON_ERROR(esp_event_handler_register(OPENTHREAD_EVENT, OPENTHREAD_EVENT_MULTICAST_GROUP_JOIN,
esp_netif_action_join_ip6_multicast_group, esp_netif),
OT_PLAT_LOG_TAG, "OpenThread interface join ip6 multicast group event register failed");
ESP_RETURN_ON_ERROR(esp_event_handler_register(OPENTHREAD_EVENT, OPENTHREAD_EVENT_MULTICAST_GROUP_LEAVE,
esp_netif_action_leave_ip6_multicast_group, esp_netif),
OT_PLAT_LOG_TAG, "OpenThread interface leave ip6 multicast group event register failed");
return ESP_OK;
}
static void unregister_openthread_event_handlers(void)
{
esp_event_handler_unregister(OPENTHREAD_EVENT, OPENTHREAD_EVENT_START, esp_netif_action_start);
esp_event_handler_unregister(OPENTHREAD_EVENT, OPENTHREAD_EVENT_STOP, esp_netif_action_stop);
esp_event_handler_unregister(OPENTHREAD_EVENT, OPENTHREAD_EVENT_IF_UP, esp_netif_action_connected);
esp_event_handler_unregister(OPENTHREAD_EVENT, OPENTHREAD_EVENT_IF_DOWN, esp_netif_action_disconnected);
esp_event_handler_unregister(OPENTHREAD_EVENT, OPENTHREAD_EVENT_GOT_IP6, esp_netif_action_add_ip6_address);
esp_event_handler_unregister(OPENTHREAD_EVENT, OPENTHREAD_EVENT_LOST_IP6, esp_netif_action_remove_ip6_address);
esp_event_handler_unregister(OPENTHREAD_EVENT, OPENTHREAD_EVENT_MULTICAST_GROUP_JOIN,
esp_netif_action_join_ip6_multicast_group);
esp_event_handler_unregister(OPENTHREAD_EVENT, OPENTHREAD_EVENT_MULTICAST_GROUP_LEAVE,
esp_netif_action_leave_ip6_multicast_group);
}
static esp_err_t openthread_netif_post_attach(esp_netif_t *esp_netif, void *args)
{
esp_netif_driver_base_t *base = (esp_netif_driver_base_t *)args;
base->netif = esp_netif;
// set driver related config to esp-netif
esp_netif_driver_ifconfig_t driver_ifconfig = {
.handle = &s_openthread_netif_glue, .transmit = openthread_netif_transmit, .driver_free_rx_buffer = NULL};
ESP_ERROR_CHECK(esp_netif_set_driver_config(esp_netif, &driver_ifconfig));
ESP_LOGI(OT_PLAT_LOG_TAG, "OpenThread attached to netif");
esp_err_t error = register_openthread_event_handlers(esp_netif);
s_openthread_netif = esp_netif;
if (error == ESP_OK) {
error = esp_event_post(OPENTHREAD_EVENT, OPENTHREAD_EVENT_START, NULL, 0, 0);
}
return error;
}
void *esp_openthread_netif_glue_init(const esp_openthread_platform_config_t *config)
{
otInstance *instance = esp_openthread_get_instance();
esp_err_t error = ESP_OK;
if (instance == NULL || s_packet_queue || s_openthread_netif_glue.event_fd >= 0) {
return NULL;
}
ESP_RETURN_ON_FALSE(otSetStateChangedCallback(instance, esp_openthread_netif_glue_state_callback, NULL) ==
OT_ERROR_NONE,
NULL, OT_PLAT_LOG_TAG, "Failed to install netif glue state callback");
s_packet_queue = xQueueCreate(config->port_config.netif_queue_size, sizeof(otMessage *));
if (s_packet_queue == NULL) {
ESP_LOGE(OT_PLAT_LOG_TAG, "Failed to allocate Thread netif packet queue");
ExitNow(error = ESP_ERR_NO_MEM);
}
otIp6SetAddressCallback(instance, process_thread_address, instance);
otIp6SetReceiveCallback(instance, process_thread_receive, instance);
otIp6SetReceiveFilterEnabled(instance, true);
otIcmp6SetEchoMode(instance, OT_ICMP6_ECHO_HANDLER_DISABLED);
s_openthread_netif_glue.event_fd = eventfd(0, 0);
if (s_openthread_netif_glue.event_fd < 0) {
ESP_LOGE(OT_PLAT_LOG_TAG, "Failed to create event fd for Thread netif");
ExitNow(error = ESP_FAIL);
}
s_openthread_netif_glue.base.post_attach = openthread_netif_post_attach;
error = esp_openthread_platform_workflow_register(&esp_openthread_netif_glue_update,
&esp_openthread_netif_glue_process, netif_glue_workflow);
exit:
if (error != ESP_OK) {
return NULL;
}
return &s_openthread_netif_glue.base;
}
void esp_openthread_netif_glue_deinit(void)
{
otInstance *instance = esp_openthread_get_instance();
otIp6SetAddressCallback(instance, NULL, NULL);
otIp6SetReceiveCallback(instance, NULL, NULL);
if (s_packet_queue) {
vQueueDelete(s_packet_queue);
s_packet_queue = NULL;
}
if (s_openthread_netif_glue.event_fd >= 0) {
close(s_openthread_netif_glue.event_fd);
s_openthread_netif_glue.event_fd = -1;
}
if (esp_event_post(OPENTHREAD_EVENT, OPENTHREAD_EVENT_STOP, NULL, 0, 0) != ESP_OK) {
ESP_LOGE(OT_PLAT_LOG_TAG, "Failed to stop OpenThread netif");
}
s_openthread_netif = NULL;
unregister_openthread_event_handlers();
esp_openthread_platform_workflow_unregister(netif_glue_workflow);
}
void esp_openthread_netif_glue_update(esp_openthread_mainloop_context_t *mainloop)
{
if (s_openthread_netif_glue.event_fd >= 0) {
FD_SET(s_openthread_netif_glue.event_fd, &mainloop->read_fds);
if (s_openthread_netif_glue.event_fd > mainloop->max_fd) {
mainloop->max_fd = s_openthread_netif_glue.event_fd;
}
}
}
esp_err_t esp_openthread_netif_glue_process(otInstance *instance, const esp_openthread_mainloop_context_t *context)
{
if (s_openthread_netif_glue.event_fd >= 0 && FD_ISSET(s_openthread_netif_glue.event_fd, &context->read_fds)) {
return process_thread_transmit(instance);
}
return ESP_OK;
}
esp_netif_t *esp_openthread_get_netif(void)
{
return s_openthread_netif;
}

View File

@ -0,0 +1,164 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "esp_openthread_platform.h"
#include "esp_check.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp_openthread_alarm.h"
#include "esp_openthread_common_macro.h"
#include "esp_openthread_flash.h"
#include "esp_openthread_lock.h"
#include "esp_openthread_radio.h"
#include "esp_openthread_task_queue.h"
#include "esp_openthread_types.h"
#include "esp_openthread_uart.h"
#include "esp_partition.h"
#include "common/code_utils.hpp"
#include "common/logging.hpp"
#include "core/common/instance.hpp"
#include "freertos/FreeRTOS.h"
#include "freertos/queue.h"
#include "openthread/cli.h"
#include "openthread/instance.h"
#include "openthread/tasklet.h"
static esp_openthread_platform_config_t s_platform_config;
static bool s_openthread_platform_initialized = false;
static esp_openthread_platform_workflow_t *s_workflow_list = NULL;
esp_err_t esp_openthread_platform_workflow_register(esp_openthread_update_func update_func,
esp_openthread_process_func process_func, const char *name)
{
uint8_t name_len = strnlen(name, WORKFLOW_MAX_NAMELEN);
esp_openthread_platform_workflow_t *current_workflow = s_workflow_list;
esp_openthread_platform_workflow_t *before_workflow = NULL;
esp_openthread_platform_workflow_t *add_workflow =
static_cast<esp_openthread_platform_workflow_t *>(malloc(sizeof(esp_openthread_platform_workflow_t)));
ESP_RETURN_ON_FALSE(add_workflow != NULL, ESP_ERR_NO_MEM, OT_PLAT_LOG_TAG,
"Failed to alloc memory for esp_openthread_workflow");
strncpy(add_workflow->name, name, name_len);
add_workflow->update_func = update_func;
add_workflow->process_func = process_func;
add_workflow->next = NULL;
while (current_workflow) {
if (strncmp(current_workflow->name, name, name_len) == 0) {
free(add_workflow);
add_workflow = NULL; // handle has be added in the list.
break;
} else {
before_workflow = current_workflow;
current_workflow = current_workflow->next;
}
}
if (add_workflow) {
if (before_workflow) {
before_workflow->next = add_workflow; // Add handle to the list end
} else {
s_workflow_list = add_workflow; // No handle in the list
}
}
return ESP_OK;
}
void esp_openthread_platform_workflow_unregister(const char *name)
{
esp_openthread_platform_workflow_t *current_workflow = s_workflow_list;
esp_openthread_platform_workflow_t *before_workflow = NULL;
while (current_workflow) {
if (strncmp(current_workflow->name, name, strnlen(name, WORKFLOW_MAX_NAMELEN)) == 0) {
if (before_workflow) {
before_workflow->next = current_workflow->next;
} else {
s_workflow_list = current_workflow->next;
}
free(current_workflow);
break;
}
before_workflow = current_workflow;
current_workflow = current_workflow->next;
}
}
esp_err_t esp_openthread_platform_init(const esp_openthread_platform_config_t *config)
{
ESP_RETURN_ON_FALSE(config->radio_config.radio_mode == RADIO_MODE_NATIVE ||
config->radio_config.radio_mode == RADIO_MODE_UART_RCP,
ESP_ERR_INVALID_ARG, OT_PLAT_LOG_TAG, "Radio mode not supported");
ESP_RETURN_ON_FALSE(config->host_config.host_connection_mode == HOST_CONNECTION_MODE_NONE ||
config->host_config.host_connection_mode == HOST_CONNECTION_MODE_CLI_UART ||
config->host_config.host_connection_mode == HOST_CONNECTION_MODE_RCP_UART,
ESP_ERR_INVALID_ARG, OT_PLAT_LOG_TAG, "Host connection mode not supported");
ESP_RETURN_ON_FALSE(!s_openthread_platform_initialized, ESP_ERR_INVALID_STATE, OT_PLAT_LOG_TAG,
"OpenThread platform already initialized");
s_openthread_platform_initialized = true;
esp_err_t ret = ESP_OK;
const esp_partition_t *partition = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_ANY,
config->port_config.storage_partition_name);
ESP_RETURN_ON_FALSE(partition, ESP_ERR_INVALID_ARG, OT_PLAT_LOG_TAG, "OpenThread storage partition not found");
s_platform_config = *config;
esp_openthread_flash_set_partition(partition);
ESP_GOTO_ON_ERROR(esp_openthread_lock_init(), exit, OT_PLAT_LOG_TAG, "esp_openthread_lock_init failed");
ESP_GOTO_ON_ERROR(esp_openthread_alarm_init(), exit, OT_PLAT_LOG_TAG, "esp_openthread_alarm_init failed");
if (config->host_config.host_connection_mode == HOST_CONNECTION_MODE_CLI_UART ||
config->host_config.host_connection_mode == HOST_CONNECTION_MODE_RCP_UART) {
ESP_GOTO_ON_ERROR(esp_openthread_uart_init(config), exit, OT_PLAT_LOG_TAG, "esp_openthread_uart_init failed");
}
ESP_GOTO_ON_ERROR(esp_openthread_task_queue_init(config), exit, OT_PLAT_LOG_TAG,
"esp_openthread_task_queue_init failed");
ESP_GOTO_ON_ERROR(esp_openthread_radio_init(config), exit, OT_PLAT_LOG_TAG, "esp_openthread_radio_init failed");
exit:
if (ret != ESP_OK) {
esp_openthread_platform_deinit();
}
return ret;
}
otInstance *esp_openthread_get_instance(void)
{
return (otInstance *)&ot::Instance::Get();
}
esp_err_t esp_openthread_platform_deinit(void)
{
ESP_RETURN_ON_FALSE(s_openthread_platform_initialized, ESP_ERR_INVALID_STATE, OT_PLAT_LOG_TAG,
"OpenThread platform not initialized");
s_openthread_platform_initialized = false;
esp_openthread_task_queue_deinit();
esp_openthread_radio_deinit();
if (s_platform_config.host_config.host_connection_mode == HOST_CONNECTION_MODE_CLI_UART) {
esp_openthread_uart_deinit();
}
esp_openthread_lock_deinit();
esp_openthread_alarm_deinit();
return ESP_OK;
}
void esp_openthread_platform_update(esp_openthread_mainloop_context_t *mainloop)
{
esp_openthread_platform_workflow_t *current_workflow = s_workflow_list;
while (current_workflow) {
current_workflow->update_func(mainloop);
current_workflow = current_workflow->next;
}
}
esp_err_t esp_openthread_platform_process(otInstance *instance, const esp_openthread_mainloop_context_t *mainloop)
{
esp_openthread_platform_workflow_t *current_workflow = s_workflow_list;
while (current_workflow) {
ESP_RETURN_ON_ERROR(current_workflow->process_func(instance, mainloop), OT_PLAT_LOG_TAG, "process %s failed",
current_workflow->name);
current_workflow = current_workflow->next;
}
return ESP_OK;
}

View File

@ -0,0 +1,474 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "esp_openthread_radio.h"
#include "sdkconfig.h"
#include "esp_check.h"
#include "esp_ieee802154.h"
#include "esp_ieee802154_types.h"
#include "esp_mac.h"
#include "esp_openthread_common_macro.h"
#include "esp_openthread_platform.h"
#include "esp_openthread_types.h"
#include "esp_random.h"
#include "esp_system.h"
#include "esp_timer.h"
#include "esp_vfs.h"
#include "esp_vfs_eventfd.h"
#include "rom/ets_sys.h"
#include "openthread-core-config.h"
#include "openthread/platform/diag.h"
#include "openthread/platform/radio.h"
#define ESP_RECEIVE_SENSITIVITY -120
#define EVENT_TX_DONE (1 << 0)
#define EVENT_TX_FAILED (1 << 1)
#define EVENT_RX_DONE (1 << 2)
#define EVENT_ENERGY_DETECT_DONE (1 << 3)
typedef struct {
uint8_t length;
uint8_t psdu[OT_RADIO_FRAME_MAX_SIZE];
} esp_openthread_radio_tx_psdu;
typedef struct {
uint8_t head;
uint8_t tail;
uint8_t used;
} esp_openthread_circular_queue_info_t;
static otRadioFrame s_transmit_frame;
static esp_openthread_radio_tx_psdu s_transmit_psdu;
static otRadioFrame s_receive_frame[CONFIG_IEEE802154_RX_BUFFER_SIZE];
static otRadioFrame s_ack_frame;
static int s_ed_power;
static int s_rssi = 127;
static esp_ieee802154_tx_error_t s_tx_error;
static int s_radio_event_fd = -1;
static bool s_diag_mode = false;
static const char *s_radio_workflow = "radio";
static uint8_t s_txrx_events;
static esp_openthread_circular_queue_info_t s_recv_queue = {.head = 0, .tail = 0, .used = 0};
static void set_event(uint8_t event)
{
uint64_t event_write = event;
s_txrx_events |= event;
int ret = write(s_radio_event_fd, &event_write, sizeof(event_write));
assert(ret == sizeof(event_write));
}
static inline void clr_event(uint8_t event)
{
s_txrx_events &= ~event;
}
static inline bool get_event(uint8_t event)
{
return s_txrx_events & event;
}
esp_err_t esp_openthread_radio_init(const esp_openthread_platform_config_t *config)
{
ESP_RETURN_ON_FALSE(s_radio_event_fd == -1, ESP_ERR_INVALID_STATE, OT_PLAT_LOG_TAG,
"Radio was initalized already!");
s_radio_event_fd = eventfd(0, EFD_SUPPORT_ISR);
s_transmit_frame.mPsdu = s_transmit_psdu.psdu;
for (uint8_t i = 0; i < CONFIG_IEEE802154_RX_BUFFER_SIZE; i++) {
s_receive_frame[i].mPsdu = NULL;
}
s_ack_frame.mPsdu = NULL;
memset(&s_recv_queue, 0, sizeof(esp_openthread_circular_queue_info_t));
esp_ieee802154_enable();
esp_ieee802154_set_promiscuous(false);
esp_ieee802154_set_rx_when_idle(true);
return esp_openthread_platform_workflow_register(&esp_openthread_radio_update, &esp_openthread_radio_process,
s_radio_workflow);
}
void esp_openthread_radio_deinit(void)
{
if (s_radio_event_fd > 0) {
close(s_radio_event_fd);
s_radio_event_fd = -1;
}
esp_ieee802154_disable();
esp_openthread_platform_workflow_unregister(s_radio_workflow);
}
void esp_openthread_radio_update(esp_openthread_mainloop_context_t *mainloop)
{
FD_SET(s_radio_event_fd, &mainloop->read_fds);
if (s_radio_event_fd > mainloop->max_fd) {
mainloop->max_fd = s_radio_event_fd;
}
}
esp_err_t esp_openthread_radio_process(otInstance *aInstance, const esp_openthread_mainloop_context_t *mainloop)
{
uint64_t event_read;
int ret = read(s_radio_event_fd, &event_read, sizeof(event_read));
assert(ret == sizeof(event_read));
if (get_event(EVENT_TX_DONE)) {
clr_event(EVENT_TX_DONE);
#if OPENTHREAD_CONFIG_DIAG_ENABLE
if (otPlatDiagModeGet()) {
otPlatDiagRadioTransmitDone(aInstance, &s_transmit_frame, OT_ERROR_NONE);
} else
#endif
{
if (s_ack_frame.mPsdu == NULL) {
otPlatRadioTxDone(aInstance, &s_transmit_frame, NULL, OT_ERROR_NONE);
} else {
otPlatRadioTxDone(aInstance, &s_transmit_frame, &s_ack_frame, OT_ERROR_NONE);
s_ack_frame.mPsdu = NULL;
}
}
}
if (get_event(EVENT_TX_FAILED)) {
clr_event(EVENT_TX_FAILED);
#if OPENTHREAD_CONFIG_DIAG_ENABLE
if (otPlatDiagModeGet()) {
otPlatDiagRadioTransmitDone(aInstance, &s_transmit_frame, OT_ERROR_CHANNEL_ACCESS_FAILURE);
} else
#endif
{
otError err = OT_ERROR_NONE;
switch (s_tx_error) {
case ESP_IEEE802154_TX_ERR_CCA_BUSY:
case ESP_IEEE802154_TX_ERR_ABORT:
case ESP_IEEE802154_TX_ERR_COEXIST:
case ESP_IEEE802154_TX_ERR_COEXIST_REJ:
err = OT_ERROR_CHANNEL_ACCESS_FAILURE;
break;
case ESP_IEEE802154_TX_ERR_NO_ACK:
case ESP_IEEE802154_TX_ERR_INVALID_ACK:
case ESP_IEEE802154_TX_ERR_COEXIST_ACK:
err = OT_ERROR_NO_ACK;
break;
default:
ETS_ASSERT(false);
break;
}
otPlatRadioTxDone(aInstance, &s_transmit_frame, NULL, err);
}
}
if (get_event(EVENT_ENERGY_DETECT_DONE)) {
clr_event(EVENT_ENERGY_DETECT_DONE);
otPlatRadioEnergyScanDone(aInstance, s_ed_power);
}
while (s_recv_queue.used) {
if (s_receive_frame[s_recv_queue.head].mPsdu != NULL) {
#if OPENTHREAD_CONFIG_DIAG_ENABLE
if (otPlatDiagModeGet()) {
otPlatDiagRadioReceiveDone(aInstance, &s_receive_frame[s_recv_queue.head], OT_ERROR_NONE);
} else
#endif
{
otPlatRadioReceiveDone(aInstance, &s_receive_frame[s_recv_queue.head], OT_ERROR_NONE);
}
s_receive_frame[s_recv_queue.head].mPsdu = NULL;
s_recv_queue.head = (s_recv_queue.head + 1) % CONFIG_IEEE802154_RX_BUFFER_SIZE;
s_recv_queue.used--;
}
}
return ESP_OK;
}
void otPlatRadioGetIeeeEui64(otInstance *aInstance, uint8_t *aIeeeEui64)
{
uint8_t eui64[8] = {0};
esp_read_mac(eui64, ESP_MAC_IEEE802154);
memcpy(aIeeeEui64, eui64, sizeof(eui64));
}
void otPlatRadioSetPanId(otInstance *aInstance, uint16_t panid)
{
esp_ieee802154_set_panid(panid);
}
void otPlatRadioSetExtendedAddress(otInstance *aInstance, const otExtAddress *aAddress)
{
esp_ieee802154_set_extended_address(aAddress->m8);
}
void otPlatRadioSetShortAddress(otInstance *aInstance, uint16_t aAddress)
{
esp_ieee802154_set_short_address(aAddress);
}
void otPlatRadioSetPromiscuous(otInstance *aInstance, bool aEnable)
{
esp_ieee802154_set_promiscuous(aEnable);
}
bool otPlatRadioIsEnabled(otInstance *aInstance)
{
return esp_ieee802154_get_state() != ESP_IEEE802154_RADIO_DISABLE;
}
otError otPlatRadioEnable(otInstance *aInstance)
{
// radio has been enabled in esp_openthread_radio_init()
return OT_ERROR_NONE;
}
otError otPlatRadioDisable(otInstance *aInstance)
{
esp_ieee802154_disable();
return OT_ERROR_NONE;
}
otError otPlatRadioSleep(otInstance *aInstance)
{
esp_ieee802154_sleep();
return OT_ERROR_NONE;
}
otError otPlatRadioReceive(otInstance *aInstance, uint8_t aChannel)
{
esp_ieee802154_set_channnel(aChannel);
esp_ieee802154_receive();
return OT_ERROR_NONE;
}
otError otPlatRadioTransmit(otInstance *aInstance, otRadioFrame *aFrame)
{
esp_ieee802154_set_channnel(aFrame->mChannel);
aFrame->mPsdu[-1] = aFrame->mLength; // lenth locates one byte before the psdu (esp_openthread_radio_tx_psdu);
esp_ieee802154_transmit(&aFrame->mPsdu[-1], aFrame->mInfo.mTxInfo.mCsmaCaEnabled);
otPlatRadioTxStarted(aInstance, aFrame);
return OT_ERROR_NONE;
}
otRadioFrame *otPlatRadioGetTransmitBuffer(otInstance *aInstance)
{
return &s_transmit_frame;
}
int8_t otPlatRadioGetRssi(otInstance *aInstance)
{
return s_rssi;
}
otRadioCaps otPlatRadioGetCaps(otInstance *aInstance)
{
return (otRadioCaps)(OT_RADIO_CAPS_ENERGY_SCAN | OT_RADIO_CAPS_ACK_TIMEOUT | OT_RADIO_CAPS_SLEEP_TO_TX);
}
bool otPlatRadioGetPromiscuous(otInstance *aInstance)
{
return esp_ieee802154_get_promiscuous();
}
void otPlatRadioEnableSrcMatch(otInstance *aInstance, bool aEnable)
{
esp_ieee802154_set_pending_mode(ESP_IEEE802154_AUTO_PENDING_ENABLE);
}
otError otPlatRadioAddSrcMatchShortEntry(otInstance *aInstance, uint16_t aShortAddress)
{
esp_ieee802154_add_pending_addr((uint8_t *)&aShortAddress, true);
return OT_ERROR_NONE;
}
otError otPlatRadioAddSrcMatchExtEntry(otInstance *aInstance, const otExtAddress *aExtAddress)
{
esp_ieee802154_add_pending_addr(aExtAddress->m8, false);
return OT_ERROR_NONE;
}
otError otPlatRadioClearSrcMatchShortEntry(otInstance *aInstance, uint16_t aShortAddress)
{
esp_ieee802154_clear_pending_addr((uint8_t *)&aShortAddress, true);
return OT_ERROR_NONE;
}
otError otPlatRadioClearSrcMatchExtEntry(otInstance *aInstance, const otExtAddress *aExtAddress)
{
esp_ieee802154_clear_pending_addr(aExtAddress->m8, false);
return OT_ERROR_NONE;
}
void otPlatRadioClearSrcMatchShortEntries(otInstance *aInstance)
{
esp_ieee802154_reset_pending_table(true);
}
void otPlatRadioClearSrcMatchExtEntries(otInstance *aInstance)
{
esp_ieee802154_reset_pending_table(false);
}
otError otPlatRadioEnergyScan(otInstance *aInstance, uint8_t aScanChannel, uint16_t aScanDuration)
{
esp_ieee802154_energy_detect(aScanDuration);
return OT_ERROR_NONE;
}
otError otPlatRadioGetTransmitPower(otInstance *aInstance, int8_t *aPower)
{
*aPower = esp_ieee802154_get_txpower();
return OT_ERROR_NONE;
}
otError otPlatRadioSetTransmitPower(otInstance *aInstance, int8_t aPower)
{
esp_ieee802154_set_txpower(aPower);
return OT_ERROR_NONE;
}
otError otPlatRadioGetCcaEnergyDetectThreshold(otInstance *aInstance, int8_t *aThreshold)
{
*aThreshold = esp_ieee802154_get_cca_threshold();
return OT_ERROR_NONE;
}
otError otPlatRadioSetCcaEnergyDetectThreshold(otInstance *aInstance, int8_t aThreshold)
{
esp_ieee802154_set_cca_threshold(aThreshold);
return OT_ERROR_NONE;
}
int8_t otPlatRadioGetReceiveSensitivity(otInstance *aInstance)
{
return ESP_RECEIVE_SENSITIVITY;
}
void otPlatDiagModeSet(bool mode)
{
s_diag_mode = mode;
}
bool otPlatDiagModeGet(void)
{
return s_diag_mode;
}
void otPlatDiagTxPowerSet(int8_t tx_power)
{
OT_UNUSED_VARIABLE(tx_power);
}
void otPlatDiagChannelSet(uint8_t channel)
{
OT_UNUSED_VARIABLE(channel);
}
void otPlatDiagRadioReceived(otInstance *aInstance, otRadioFrame *frame, otError error)
{
OT_UNUSED_VARIABLE(aInstance);
OT_UNUSED_VARIABLE(frame);
OT_UNUSED_VARIABLE(error);
}
void otPlatDiagAlarmCallback(otInstance *aInstance)
{
OT_UNUSED_VARIABLE(aInstance);
}
// events
void IRAM_ATTR esp_ieee802154_transmit_done(const uint8_t *frame, const uint8_t *ack,
esp_ieee802154_frame_info_t *s_ack_frame_info)
{
ETS_ASSERT(frame == (uint8_t *)&s_transmit_psdu);
if (ack != NULL) {
s_ack_frame.mLength = (uint16_t)(*ack);
s_ack_frame.mPsdu = (uint8_t *)(ack + 1);
}
set_event(EVENT_TX_DONE);
}
void IRAM_ATTR esp_ieee802154_receive_done(uint8_t *data, esp_ieee802154_frame_info_t *frame_info)
{
if (s_recv_queue.used == CONFIG_IEEE802154_RX_BUFFER_SIZE) {
ESP_EARLY_LOGE(OT_PLAT_LOG_TAG, "radio receive buffer full!");
}
s_rssi = frame_info->rssi;
s_receive_frame[s_recv_queue.tail].mPsdu = data + 1;
s_receive_frame[s_recv_queue.tail].mLength = *data;
s_receive_frame[s_recv_queue.tail].mChannel = frame_info->channel;
s_receive_frame[s_recv_queue.tail].mInfo.mRxInfo.mRssi = frame_info->rssi;
s_receive_frame[s_recv_queue.tail].mInfo.mRxInfo.mAckedWithFramePending = frame_info->pending;
s_receive_frame[s_recv_queue.tail].mInfo.mRxInfo.mTimestamp = esp_timer_get_time();
s_recv_queue.tail = (s_recv_queue.tail + 1) % CONFIG_IEEE802154_RX_BUFFER_SIZE;
s_recv_queue.used++;
set_event(EVENT_RX_DONE);
}
void IRAM_ATTR esp_ieee802154_transmit_failed(const uint8_t *frame, esp_ieee802154_tx_error_t error)
{
ETS_ASSERT(frame == (uint8_t *)&s_transmit_psdu);
s_tx_error = error;
set_event(EVENT_TX_FAILED);
}
void IRAM_ATTR esp_ieee802154_receive_sfd_done(void)
{
}
void IRAM_ATTR esp_ieee802154_transmit_sfd_done(uint8_t *frame)
{
}
void IRAM_ATTR esp_ieee802154_energy_detect_done(int8_t power)
{
s_ed_power = power;
set_event(EVENT_ENERGY_DETECT_DONE);
}
void IRAM_ATTR esp_ieee802154_cca_done(bool channel_free)
{
}
otError otPlatEntropyGet(uint8_t *aOutput, uint16_t aOutputLength)
{
esp_fill_random(aOutput, aOutputLength);
return OT_ERROR_NONE;
}

View File

@ -0,0 +1,311 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "esp_openthread_radio.h"
#include "esp_check.h"
#include "esp_err.h"
#include "esp_openthread_border_router.h"
#include "esp_openthread_common_macro.h"
#include "esp_openthread_platform.h"
#include "esp_openthread_types.h"
#include "esp_system.h"
#include "esp_uart_spinel_interface.hpp"
#include "openthread-core-config.h"
#include "lib/spinel/radio_spinel.hpp"
#include "lib/spinel/spinel.h"
#include "openthread/platform/diag.h"
#include "openthread/platform/radio.h"
using esp::openthread::UartSpinelInterface;
using ot::Spinel::RadioSpinel;
static RadioSpinel<UartSpinelInterface, esp_openthread_mainloop_context_t> s_radio;
static const char *radiouart_workflow = "radio_uart";
esp_err_t esp_openthread_radio_init(const esp_openthread_platform_config_t *config)
{
ESP_RETURN_ON_ERROR(s_radio.GetSpinelInterface().Init(config->radio_config.radio_uart_config), OT_PLAT_LOG_TAG,
"Spinel interface init falied");
s_radio.Init(/*reset_radio=*/true, /*restore_dataset_from_ncp=*/false, /*skip_rcp_compatibility_check=*/false);
return esp_openthread_platform_workflow_register(&esp_openthread_radio_update, &esp_openthread_radio_process,
radiouart_workflow);
}
void esp_openthread_register_rcp_failure_handler(esp_openthread_rcp_failure_handler handler)
{
s_radio.GetSpinelInterface().RegisterRcpFailureHandler(handler);
}
void esp_openthread_rcp_deinit(void)
{
s_radio.GetSpinelInterface().Deinit();
}
void esp_openthread_radio_deinit(void)
{
s_radio.Deinit();
esp_openthread_platform_workflow_unregister(radiouart_workflow);
}
esp_err_t esp_openthread_radio_process(otInstance *instance, const esp_openthread_mainloop_context_t *mainloop)
{
s_radio.Process(*mainloop);
return ESP_OK;
}
void esp_openthread_radio_update(esp_openthread_mainloop_context_t *mainloop)
{
s_radio.GetSpinelInterface().Update(*mainloop);
}
void otPlatRadioGetIeeeEui64(otInstance *instance, uint8_t *ieee_eui64)
{
SuccessOrDie(s_radio.GetIeeeEui64(ieee_eui64));
}
void otPlatRadioSetPanId(otInstance *instance, uint16_t pan_id)
{
SuccessOrDie(s_radio.SetPanId(pan_id));
}
void otPlatRadioSetExtendedAddress(otInstance *instance, const otExtAddress *address)
{
otExtAddress addr;
for (size_t i = 0; i < sizeof(addr); i++) {
addr.m8[i] = address->m8[sizeof(addr) - 1 - i];
}
SuccessOrDie(s_radio.SetExtendedAddress(addr));
}
void otPlatRadioSetShortAddress(otInstance *instance, uint16_t address)
{
SuccessOrDie(s_radio.SetShortAddress(address));
}
void otPlatRadioSetPromiscuous(otInstance *instance, bool enable)
{
SuccessOrDie(s_radio.SetPromiscuous(enable));
}
bool otPlatRadioIsEnabled(otInstance *instance)
{
return s_radio.IsEnabled();
}
otError otPlatRadioEnable(otInstance *instance)
{
return s_radio.Enable(instance);
}
otError otPlatRadioDisable(otInstance *instance)
{
return s_radio.Disable();
}
otError otPlatRadioSleep(otInstance *instance)
{
return s_radio.Sleep();
}
otError otPlatRadioReceive(otInstance *instance, uint8_t channel)
{
return s_radio.Receive(channel);
}
otError otPlatRadioTransmit(otInstance *instance, otRadioFrame *frame)
{
return s_radio.Transmit(*frame);
}
otRadioFrame *otPlatRadioGetTransmitBuffer(otInstance *instance)
{
return &s_radio.GetTransmitFrame();
}
int8_t otPlatRadioGetRssi(otInstance *instance)
{
return s_radio.GetRssi();
}
otRadioCaps otPlatRadioGetCaps(otInstance *instance)
{
return s_radio.GetRadioCaps();
}
bool otPlatRadioGetPromiscuous(otInstance *instance)
{
return s_radio.IsPromiscuous();
}
void otPlatRadioEnableSrcMatch(otInstance *instance, bool enable)
{
SuccessOrDie(s_radio.EnableSrcMatch(enable));
}
otError otPlatRadioAddSrcMatchShortEntry(otInstance *instance, uint16_t short_address)
{
return s_radio.AddSrcMatchShortEntry(short_address);
}
otError otPlatRadioAddSrcMatchExtEntry(otInstance *instance, const otExtAddress *ext_address)
{
otExtAddress addr;
for (size_t i = 0; i < sizeof(addr); i++) {
addr.m8[i] = ext_address->m8[sizeof(addr) - 1 - i];
}
return s_radio.AddSrcMatchExtEntry(addr);
}
otError otPlatRadioClearSrcMatchShortEntry(otInstance *instance, uint16_t short_address)
{
return s_radio.ClearSrcMatchShortEntry(short_address);
}
otError otPlatRadioClearSrcMatchExtEntry(otInstance *instance, const otExtAddress *ext_address)
{
otExtAddress addr;
for (size_t i = 0; i < sizeof(addr); i++) {
addr.m8[i] = ext_address->m8[sizeof(addr) - 1 - i];
}
return s_radio.ClearSrcMatchExtEntry(addr);
}
void otPlatRadioClearSrcMatchShortEntries(otInstance *instance)
{
SuccessOrDie(s_radio.ClearSrcMatchShortEntries());
}
void otPlatRadioClearSrcMatchExtEntries(otInstance *instance)
{
SuccessOrDie(s_radio.ClearSrcMatchExtEntries());
}
otError otPlatRadioEnergyScan(otInstance *instance, uint8_t channel, uint16_t duration)
{
return s_radio.EnergyScan(channel, duration);
}
otError otPlatRadioGetTransmitPower(otInstance *instance, int8_t *power)
{
otError error;
VerifyOrExit(power != NULL, error = OT_ERROR_INVALID_ARGS);
error = s_radio.GetTransmitPower(*power);
exit:
return error;
}
otError otPlatRadioSetTransmitPower(otInstance *instance, int8_t power)
{
return s_radio.SetTransmitPower(power);
}
otError otPlatRadioGetCcaEnergyDetectThreshold(otInstance *instance, int8_t *threshold)
{
otError error;
VerifyOrExit(threshold != NULL, error = OT_ERROR_INVALID_ARGS);
error = s_radio.GetCcaEnergyDetectThreshold(*threshold);
exit:
return error;
}
otError otPlatRadioSetCcaEnergyDetectThreshold(otInstance *instance, int8_t threshold)
{
return s_radio.SetCcaEnergyDetectThreshold(threshold);
}
int8_t otPlatRadioGetReceiveSensitivity(otInstance *instance)
{
return s_radio.GetReceiveSensitivity();
}
void otPlatRadioSetMacKey(otInstance *aInstance, uint8_t aKeyIdMode, uint8_t aKeyId, const otMacKeyMaterial *aPrevKey,
const otMacKeyMaterial *aCurrKey, const otMacKeyMaterial *aNextKey, otRadioKeyType aKeyType)
{
SuccessOrDie(s_radio.SetMacKey(aKeyIdMode, aKeyId, aPrevKey, aCurrKey, aNextKey));
}
void otPlatRadioSetMacFrameCounter(otInstance *aInstance, uint32_t aMacFrameCounter)
{
SuccessOrDie(s_radio.SetMacFrameCounter(aMacFrameCounter));
}
#if OPENTHREAD_CONFIG_DIAG_ENABLE
otError otPlatDiagProcess(otInstance *instance, int argc, char *argv[], char *output, size_t output_max_len)
{
// deliver the platform specific diags commands to radio only ncp.
char cmd[OPENTHREAD_CONFIG_DIAG_CMD_LINE_BUFFER_SIZE] = {'\0'};
char *cur = cmd;
char *end = cmd + sizeof(cmd);
for (int index = 0; index < argc; index++) {
cur += snprintf(cur, static_cast<size_t>(end - cur), "%s ", argv[index]);
}
return s_radio.PlatDiagProcess(cmd, output, output_max_len);
}
void otPlatDiagModeSet(bool aMode)
{
SuccessOrExit(s_radio.PlatDiagProcess(aMode ? "start" : "stop", NULL, 0));
s_radio.SetDiagEnabled(aMode);
exit:
return;
}
bool otPlatDiagModeGet(void)
{
return s_radio.IsDiagEnabled();
}
void otPlatDiagTxPowerSet(int8_t tx_power)
{
char cmd[OPENTHREAD_CONFIG_DIAG_CMD_LINE_BUFFER_SIZE];
snprintf(cmd, sizeof(cmd), "power %d", tx_power);
SuccessOrExit(s_radio.PlatDiagProcess(cmd, NULL, 0));
exit:
return;
}
void otPlatDiagChannelSet(uint8_t channel)
{
char cmd[OPENTHREAD_CONFIG_DIAG_CMD_LINE_BUFFER_SIZE];
snprintf(cmd, sizeof(cmd), "channel %d", channel);
SuccessOrExit(s_radio.PlatDiagProcess(cmd, NULL, 0));
exit:
return;
}
void otPlatDiagRadioReceived(otInstance *instance, otRadioFrame *frame, otError error)
{
}
void otPlatDiagAlarmCallback(otInstance *instance)
{
}
const char *otPlatRadioGetVersionString(otInstance *aInstance)
{
return s_radio.GetVersion();
}
#endif // OPENTHREAD_CONFIG_DIAG_ENABLE

View File

@ -0,0 +1,97 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "esp_openthread_task_queue.h"
#include "esp_check.h"
#include "esp_err.h"
#include "esp_openthread_common_macro.h"
#include "esp_openthread_platform.h"
#include "esp_openthread_types.h"
#include "esp_vfs.h"
#include "esp_vfs_eventfd.h"
#include "freertos/FreeRTOS.h"
#include "freertos/queue.h"
static QueueHandle_t s_task_queue = NULL;
static int s_task_queue_event_fd = -1;
static const char *task_queue_workflow = "task_queue";
typedef struct {
esp_openthread_task_t task;
void *arg;
} task_storage_t;
esp_err_t esp_openthread_task_queue_init(const esp_openthread_platform_config_t *config)
{
s_task_queue_event_fd = eventfd(0, EFD_SUPPORT_ISR);
ESP_RETURN_ON_FALSE(s_task_queue_event_fd >= 0, ESP_FAIL, OT_PLAT_LOG_TAG,
"Failed to create OpenThread task queue event fd");
s_task_queue = xQueueCreate(config->port_config.task_queue_size, sizeof(task_storage_t));
ESP_RETURN_ON_FALSE(s_task_queue != NULL, ESP_ERR_NO_MEM, OT_PLAT_LOG_TAG,
"Failed to create OpenThread task queue");
return esp_openthread_platform_workflow_register(&esp_openthread_task_queue_update,
&esp_openthread_task_queue_process, task_queue_workflow);
}
esp_err_t esp_openthread_task_queue_post(esp_openthread_task_t task, void *arg)
{
task_storage_t task_storage = {
.task = task,
.arg = arg,
};
uint64_t val = 1;
ssize_t ret;
ESP_RETURN_ON_FALSE(xQueueSend(s_task_queue, &task_storage, portMAX_DELAY), ESP_FAIL, OT_PLAT_LOG_TAG,
"Failed to post task to OpenThread task queue");
ret = write(s_task_queue_event_fd, &val, sizeof(val));
assert(ret == sizeof(val));
return ESP_OK;
}
void esp_openthread_task_queue_update(esp_openthread_mainloop_context_t *mainloop)
{
if (s_task_queue_event_fd >= 0) {
FD_SET(s_task_queue_event_fd, &mainloop->read_fds);
if (s_task_queue_event_fd > mainloop->max_fd) {
mainloop->max_fd = s_task_queue_event_fd;
}
}
}
esp_err_t esp_openthread_task_queue_process(otInstance *instance, const esp_openthread_mainloop_context_t *mainloop)
{
task_storage_t task_storage;
if (FD_ISSET(s_task_queue_event_fd, &mainloop->read_fds)) {
uint64_t val;
ssize_t ret = read(s_task_queue_event_fd, &val, sizeof(val));
assert(ret == sizeof(val));
}
ESP_RETURN_ON_FALSE(s_task_queue != NULL, ESP_ERR_INVALID_STATE, OT_PLAT_LOG_TAG,
"OpenThread task queue not initialized");
while (xQueueReceive(s_task_queue, &task_storage, 0) == pdTRUE) {
task_storage.task(task_storage.arg);
}
return ESP_OK;
}
esp_err_t esp_openthread_task_queue_deinit(void)
{
if (s_task_queue) {
vQueueDelete(s_task_queue);
s_task_queue = NULL;
}
if (s_task_queue_event_fd >= 0) {
close(s_task_queue_event_fd);
s_task_queue_event_fd = -1;
}
esp_openthread_platform_workflow_unregister(task_queue_workflow);
return ESP_OK;
}

View File

@ -0,0 +1,128 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "esp_openthread_uart.h"
#include <errno.h>
#include <fcntl.h>
#include <sys/select.h>
#include "esp_check.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp_openthread.h"
#include "esp_openthread_common_macro.h"
#include "esp_openthread_platform.h"
#include "esp_openthread_types.h"
#include "esp_vfs_dev.h"
#include "common/logging.hpp"
#include "driver/uart.h"
#include "utils/uart.h"
static int s_uart_port;
static int s_uart_fd;
static uint8_t s_uart_buffer[ESP_OPENTHREAD_UART_BUFFER_SIZE];
static const char *uart_workflow = "uart";
otError otPlatUartEnable(void)
{
return OT_ERROR_NONE;
}
otError otPlatUartDisable(void)
{
return OT_ERROR_NONE;
}
otError otPlatUartFlush(void)
{
return OT_ERROR_NONE;
}
otError otPlatUartSend(const uint8_t *buf, uint16_t buf_length)
{
int rval = write(s_uart_fd, buf, buf_length);
if (rval != (int)buf_length) {
return OT_ERROR_FAILED;
}
otPlatUartSendDone();
return OT_ERROR_NONE;
}
esp_err_t esp_openthread_uart_init_port(const esp_openthread_uart_config_t *config)
{
ESP_RETURN_ON_ERROR(uart_param_config(config->port, &config->uart_config), OT_PLAT_LOG_TAG,
"uart_param_config failed");
ESP_RETURN_ON_ERROR(
uart_set_pin(config->port, config->tx_pin, config->rx_pin, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE),
OT_PLAT_LOG_TAG, "uart_set_pin failed");
ESP_RETURN_ON_ERROR(uart_driver_install(config->port, ESP_OPENTHREAD_UART_BUFFER_SIZE, 0, 0, NULL, 0),
OT_PLAT_LOG_TAG, "uart_driver_install failed");
esp_vfs_dev_uart_use_driver(config->port);
return ESP_OK;
}
esp_err_t esp_openthread_uart_init(const esp_openthread_platform_config_t *config)
{
char uart_path[16];
esp_err_t ret = ESP_OK;
// Install UART driver for interrupt-driven reads and writes.
ESP_RETURN_ON_FALSE(config->host_config.host_connection_mode == HOST_CONNECTION_MODE_CLI_UART ||
config->host_config.host_connection_mode == HOST_CONNECTION_MODE_RCP_UART,
ESP_FAIL, OT_PLAT_LOG_TAG, "unsupport host connect mode");
s_uart_port = config->host_config.host_uart_config.port;
ESP_RETURN_ON_ERROR(esp_openthread_uart_init_port(&config->host_config.host_uart_config), OT_PLAT_LOG_TAG,
"esp_openthread_uart_init_port failed");
if (config->host_config.host_connection_mode == HOST_CONNECTION_MODE_RCP_UART) {
esp_vfs_dev_uart_port_set_rx_line_endings(s_uart_port, ESP_LINE_ENDINGS_LF);
esp_vfs_dev_uart_port_set_tx_line_endings(s_uart_port, ESP_LINE_ENDINGS_LF);
snprintf(uart_path, sizeof(uart_path), "/dev/uart/%d", s_uart_port);
s_uart_fd = open(uart_path, O_RDWR | O_NONBLOCK);
ESP_RETURN_ON_FALSE(s_uart_fd >= 0, ESP_FAIL, OT_PLAT_LOG_TAG, "open uart_path failed");
ret = esp_openthread_platform_workflow_register(&esp_openthread_uart_update, &esp_openthread_uart_process,
uart_workflow);
}
return ret;
}
void esp_openthread_uart_deinit()
{
if (s_uart_fd != -1) {
close(s_uart_fd);
s_uart_fd = -1;
}
uart_driver_delete(s_uart_port);
esp_openthread_platform_workflow_unregister(uart_workflow);
}
void esp_openthread_uart_update(esp_openthread_mainloop_context_t *mainloop)
{
FD_SET(s_uart_fd, &mainloop->read_fds);
if (s_uart_fd > mainloop->max_fd) {
mainloop->max_fd = s_uart_fd;
}
}
esp_err_t esp_openthread_uart_process(otInstance *instance, const esp_openthread_mainloop_context_t *mainloop)
{
int rval = read(s_uart_fd, s_uart_buffer, sizeof(s_uart_buffer));
if (rval > 0) {
otPlatUartReceived(s_uart_buffer, (uint16_t)rval);
} else if (rval < 0) {
if (errno != EAGAIN) {
ESP_LOGW(OT_PLAT_LOG_TAG, "read uart failed: %d", errno);
return ESP_FAIL;
}
}
return ESP_OK;
}

View File

@ -0,0 +1,424 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <string.h>
#include "esp_check.h"
#include "esp_err.h"
#include "esp_netif.h"
#include "esp_openthread.h"
#include "esp_openthread_border_router.h"
#include "esp_openthread_common_macro.h"
#include "esp_openthread_lock.h"
#include "esp_openthread_netif_glue.h"
#include "esp_openthread_task_queue.h"
#include "common/code_utils.hpp"
#include "common/logging.hpp"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "lwip/ip6.h"
#include "lwip/ip6_addr.h"
#include "lwip/ip_addr.h"
#include "lwip/mld6.h"
#include "lwip/pbuf.h"
#include "lwip/tcpip.h"
#include "lwip/udp.h"
#include "openthread/error.h"
#include "openthread/platform/udp.h"
typedef struct {
otUdpSocket *socket;
struct pbuf *recv_buf;
ip_addr_t addr;
uint16_t port;
uint8_t hop_limit;
bool is_host_interface;
} udp_recv_task_t;
typedef struct {
TaskHandle_t source_task;
otUdpSocket *socket;
struct udp_pcb *pcb_ret;
} udp_new_task_t;
typedef struct {
TaskHandle_t source_task;
struct udp_pcb *pcb;
ip_addr_t addr;
uint16_t port;
err_t ret;
} udp_bind_connect_task_t;
typedef struct {
TaskHandle_t source_task;
struct udp_pcb *pcb;
uint8_t netif_index;
} udp_bind_netif_task_t;
typedef struct {
struct udp_pcb *pcb;
otMessage *message;
ip_addr_t source_addr;
uint16_t source_port;
ip_addr_t peer_addr;
uint16_t peer_port;
bool multicast_loop;
uint8_t hop_limit;
uint8_t netif_index;
} udp_send_task_t;
typedef struct {
bool is_join;
uint8_t netif_index;
ip6_addr_t addr;
} udp_multicast_join_leave_task_t;
static void wait_for_task_notification(void)
{
esp_openthread_task_switching_lock_release();
ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
esp_openthread_task_switching_lock_acquire(portMAX_DELAY);
}
static ip_addr_t map_openthread_addr_to_lwip_addr(const otIp6Address *address)
{
ip_addr_t addr;
memcpy(ip_2_ip6(&addr)->addr, address->mFields.m8, sizeof(ip_2_ip6(&addr)->addr));
if (ip6_addr_isipv4mappedipv6(ip_2_ip6(&addr))) {
unmap_ipv4_mapped_ipv6(ip_2_ip4(&addr), ip_2_ip6(&addr));
addr.type = IPADDR_TYPE_V4;
} else {
addr.type = IPADDR_TYPE_V6;
#if LWIP_IPV6_SCOPES
addr.u_addr.ip6.zone = IP6_NO_ZONE;
#endif
}
return addr;
}
static void udp_recv_task(void *ctx)
{
udp_recv_task_t *task = (udp_recv_task_t *)ctx;
otMessageInfo message_info;
otMessage *message = NULL;
otMessageSettings msg_settings = {.mLinkSecurityEnabled = false, .mPriority = OT_MESSAGE_PRIORITY_NORMAL};
struct pbuf *recv_buf = task->recv_buf;
uint8_t *data_buf = (uint8_t *)recv_buf->payload;
uint8_t *data_buf_to_free = NULL;
message_info.mSockPort = 0;
memset(&message_info.mSockAddr, 0, sizeof(message_info.mSockAddr));
message_info.mHopLimit = task->hop_limit;
message_info.mPeerPort = task->port;
if (task->addr.type == IPADDR_TYPE_V4) {
ip4_2_ipv4_mapped_ipv6(ip_2_ip6(&task->addr), ip_2_ip4(&task->addr));
}
memcpy(&message_info.mPeerAddr, ip_2_ip6(&task->addr)->addr, sizeof(message_info.mPeerAddr));
if (recv_buf->next != NULL) {
data_buf = (uint8_t *)malloc(recv_buf->tot_len);
if (data_buf != NULL) {
data_buf_to_free = data_buf;
pbuf_copy_partial(recv_buf, data_buf, recv_buf->tot_len, 0);
}
}
VerifyOrExit(data_buf != NULL,
ESP_LOGE(OT_PLAT_LOG_TAG, "Failed to allocate data buf when receiving OpenThread plat UDP"));
message = otUdpNewMessage(esp_openthread_get_instance(), &msg_settings);
VerifyOrExit(message != NULL,
ESP_LOGE(OT_PLAT_LOG_TAG, "Failed to allocate OpenThread message when receiving OpenThread plat UDP"));
VerifyOrExit(otMessageAppend(message, data_buf, recv_buf->tot_len) == OT_ERROR_NONE,
ESP_LOGE(OT_PLAT_LOG_TAG, "Failed to copy OpenThread message when receiving OpenThread plat UDP"));
task->socket->mHandler(task->socket->mContext, message, &message_info);
otMessageFree(message);
exit:
free(task);
if (data_buf_to_free) {
free(data_buf_to_free);
}
pbuf_free(recv_buf);
return;
}
static void handle_udp_recv(void *ctx, struct udp_pcb *pcb, struct pbuf *p, const ip_addr_t *addr, uint16_t port)
{
udp_recv_task_t *task = (udp_recv_task_t *)malloc(sizeof(udp_recv_task_t));
const struct ip6_hdr *ip6_hdr = ip6_current_header();
const struct ip_hdr *ip4_hdr = ip4_current_header();
struct netif *source_netif = ip_current_netif();
if (task == NULL) {
ESP_LOGE(OT_PLAT_LOG_TAG, "Failed to allocate recv task when receiving OpenThread plat UDP");
}
task->socket = (otUdpSocket *)ctx;
task->recv_buf = p;
task->addr = *addr;
task->port = port;
task->hop_limit = (addr->type == IPADDR_TYPE_V6) ? IP6H_HOPLIM(ip6_hdr) : IPH_TTL(ip4_hdr);
task->is_host_interface =
(netif_get_index(source_netif) == esp_netif_get_netif_impl_index(esp_openthread_get_backbone_netif()));
if (esp_openthread_task_queue_post(udp_recv_task, task) != ESP_OK) {
free(task);
}
}
static void udp_new_task(void *ctx)
{
udp_new_task_t *task = (udp_new_task_t *)ctx;
task->pcb_ret = udp_new();
udp_recv(task->pcb_ret, handle_udp_recv, task->socket);
xTaskNotifyGive(task->source_task);
}
otError otPlatUdpSocket(otUdpSocket *udp_socket)
{
otError error = OT_ERROR_NONE;
udp_new_task_t task = {.source_task = xTaskGetCurrentTaskHandle(), .socket = udp_socket};
tcpip_callback(udp_new_task, &task);
wait_for_task_notification();
VerifyOrExit(task.pcb_ret != NULL, error = OT_ERROR_FAILED);
udp_socket->mHandle = task.pcb_ret;
exit:
return error;
}
static void udp_close_task(void *ctx)
{
struct udp_pcb *pcb = (struct udp_pcb *)ctx;
udp_remove(pcb);
}
otError otPlatUdpClose(otUdpSocket *udp_socket)
{
struct udp_pcb *pcb = (struct udp_pcb *)udp_socket->mHandle;
if (pcb) {
tcpip_callback(udp_close_task, pcb);
}
return OT_ERROR_NONE;
}
static void udp_bind_task(void *ctx)
{
udp_bind_connect_task_t *task = (udp_bind_connect_task_t *)ctx;
task->ret = udp_bind(task->pcb, &task->addr, task->port);
xTaskNotifyGive(task->source_task);
}
otError otPlatUdpBind(otUdpSocket *udp_socket)
{
udp_bind_connect_task_t task = {
.source_task = xTaskGetCurrentTaskHandle(),
.pcb = (struct udp_pcb *)udp_socket->mHandle,
.port = udp_socket->mSockName.mPort,
};
ESP_LOGI(OT_PLAT_LOG_TAG, "Platform UDP bound to port %d", udp_socket->mSockName.mPort);
task.addr.type = IPADDR_TYPE_ANY;
memcpy(ip_2_ip6(&task.addr)->addr, udp_socket->mSockName.mAddress.mFields.m8, sizeof(ip_2_ip6(&task.addr)->addr));
tcpip_callback(udp_bind_task, &task);
wait_for_task_notification();
return task.ret == ERR_OK ? OT_ERROR_NONE : OT_ERROR_FAILED;
}
static void udp_bind_netif_task(void *ctx)
{
udp_bind_netif_task_t *task = (udp_bind_netif_task_t *)ctx;
udp_bind_netif(task->pcb, netif_get_by_index(task->netif_index));
xTaskNotifyGive(task->source_task);
}
static uint8_t get_netif_index(otNetifIdentifier netif_identifier)
{
switch (netif_identifier) {
case OT_NETIF_UNSPECIFIED:
return NETIF_NO_INDEX;
case OT_NETIF_THREAD:
return esp_netif_get_netif_impl_index(esp_openthread_get_netif());
case OT_NETIF_BACKBONE:
return esp_netif_get_netif_impl_index(esp_openthread_get_backbone_netif());
default:
return NETIF_NO_INDEX;
}
}
otError otPlatUdpBindToNetif(otUdpSocket *udp_socket, otNetifIdentifier netif_identifier)
{
udp_bind_netif_task_t task = {
.source_task = xTaskGetCurrentTaskHandle(),
.pcb = (struct udp_pcb *)udp_socket->mHandle,
.netif_index = get_netif_index(netif_identifier),
};
tcpip_callback(udp_bind_netif_task, &task);
wait_for_task_notification();
return OT_ERROR_NONE;
}
static void udp_connect_task(void *ctx)
{
udp_bind_connect_task_t *task = (udp_bind_connect_task_t *)ctx;
task->ret = udp_connect(task->pcb, &task->addr, task->port);
xTaskNotifyGive(task->source_task);
}
otError otPlatUdpConnect(otUdpSocket *udp_socket)
{
udp_bind_connect_task_t task = {
.source_task = xTaskGetCurrentTaskHandle(),
.pcb = (struct udp_pcb *)udp_socket->mHandle,
.port = udp_socket->mPeerName.mPort,
};
task.addr = map_openthread_addr_to_lwip_addr(&udp_socket->mPeerName.mAddress);
tcpip_callback(udp_connect_task, &task);
wait_for_task_notification();
return task.ret == ERR_OK ? OT_ERROR_NONE : OT_ERROR_FAILED;
}
static bool is_link_local(const otIp6Address *address)
{
return address->mFields.m8[0] == 0xfe && address->mFields.m8[1] == 0x80;
}
static bool is_multicast(const otIp6Address *address)
{
return address->mFields.m8[0] == 0xff;
}
static void udp_send_task(void *ctx)
{
udp_send_task_t *task = (udp_send_task_t *)ctx;
struct pbuf *send_buf = NULL;
uint16_t len = otMessageGetLength(task->message);
task->pcb->ttl = task->hop_limit;
task->pcb->netif_idx = task->netif_index;
#if LWIP_IPV6_SCOPES
if (task->peer_addr.type == IPADDR_TYPE_V6) {
ip_2_ip6(&task->peer_addr)->zone = task->netif_index;
}
if (task->source_addr.type == IPADDR_TYPE_V6) {
ip_2_ip6(&task->source_addr)->zone = task->netif_index;
}
#endif
task->pcb->flags = (task->pcb->flags & (~UDP_FLAGS_MULTICAST_LOOP));
task->pcb->local_ip = task->source_addr;
task->pcb->local_port = task->source_port;
if (task->multicast_loop) {
task->pcb->flags |= UDP_FLAGS_MULTICAST_LOOP;
}
send_buf = pbuf_alloc(PBUF_TRANSPORT, len, PBUF_RAM);
otMessageRead(task->message, 0, send_buf->payload, len);
VerifyOrExit(send_buf != NULL);
udp_sendto(task->pcb, send_buf, &task->peer_addr, task->peer_port);
exit:
if (send_buf) {
pbuf_free(send_buf);
}
esp_openthread_task_switching_lock_acquire(portMAX_DELAY);
otMessageFree(task->message);
esp_openthread_task_switching_lock_release();
free(task);
}
static inline bool is_addr_ip6_any(const ip_addr_t *addr)
{
return addr->type == IPADDR_TYPE_V6 && addr->u_addr.ip6.addr[0] == 0 && addr->u_addr.ip6.addr[1] == 0 &&
addr->u_addr.ip6.addr[2] == 0 && addr->u_addr.ip6.addr[3] == 0;
}
otError otPlatUdpSend(otUdpSocket *udp_socket, otMessage *message, const otMessageInfo *message_info)
{
udp_send_task_t *task = (udp_send_task_t *)malloc(sizeof(udp_send_task_t));
otError error = OT_ERROR_NONE;
VerifyOrExit(task != NULL, error = OT_ERROR_NO_BUFS);
task->pcb = (struct udp_pcb *)udp_socket->mHandle;
task->message = message;
task->source_port = message_info->mSockPort;
task->peer_port = message_info->mPeerPort;
task->multicast_loop = message_info->mMulticastLoop;
task->hop_limit = message_info->mHopLimit ? message_info->mHopLimit : UDP_TTL;
task->netif_index = NETIF_NO_INDEX;
task->source_addr = map_openthread_addr_to_lwip_addr(&message_info->mSockAddr);
task->peer_addr = map_openthread_addr_to_lwip_addr(&message_info->mPeerAddr);
if (task->peer_addr.type == IPADDR_TYPE_V4 && is_addr_ip6_any(&task->source_addr)) {
task->source_addr.type = IPADDR_TYPE_ANY;
}
if (is_link_local(&message_info->mPeerAddr) || is_multicast(&message_info->mPeerAddr)) {
task->netif_index = get_netif_index(message_info->mIsHostInterface ? OT_NETIF_BACKBONE : OT_NETIF_THREAD);
}
tcpip_callback(udp_send_task, task);
exit:
return error;
}
static void udp_multicast_join_leave_task(void *ctx)
{
udp_multicast_join_leave_task_t *task = (udp_multicast_join_leave_task_t *)ctx;
if (task->is_join) {
if (mld6_joingroup_netif(netif_get_by_index(task->netif_index), &task->addr) != ERR_OK) {
ESP_LOGE(OT_PLAT_LOG_TAG, "Failed to join multicast group");
}
} else {
if (mld6_leavegroup_netif(netif_get_by_index(task->netif_index), &task->addr) != ERR_OK) {
ESP_LOGE(OT_PLAT_LOG_TAG, "Failed to leave multicast group");
}
}
free(task);
}
otError otPlatUdpJoinMulticastGroup(otUdpSocket *socket, otNetifIdentifier netif_id, const otIp6Address *addr)
{
udp_multicast_join_leave_task_t *task =
(udp_multicast_join_leave_task_t *)malloc(sizeof(udp_multicast_join_leave_task_t));
otError error = OT_ERROR_NONE;
VerifyOrExit(task != NULL, error = OT_ERROR_NO_BUFS);
memcpy(task->addr.addr, addr->mFields.m8, sizeof(task->addr.addr));
task->is_join = true;
task->netif_index = get_netif_index(netif_id);
tcpip_callback(udp_multicast_join_leave_task, task);
exit:
return error;
}
otError otPlatUdpLeaveMulticastGroup(otUdpSocket *socket, otNetifIdentifier netif_id, const otIp6Address *addr)
{
udp_multicast_join_leave_task_t *task =
(udp_multicast_join_leave_task_t *)malloc(sizeof(udp_multicast_join_leave_task_t));
otError error = OT_ERROR_NONE;
VerifyOrExit(task != NULL, error = OT_ERROR_NO_BUFS);
memcpy(task->addr.addr, addr->mFields.m8, sizeof(task->addr.addr));
task->is_join = false;
task->netif_index = get_netif_index(netif_id);
tcpip_callback(udp_multicast_join_leave_task, task);
exit:
return error;
}

View File

@ -0,0 +1,286 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "esp_uart_spinel_interface.hpp"
#include <errno.h>
#include <fcntl.h>
#include <sys/select.h>
#include <sys/unistd.h>
#include "esp_check.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp_openthread_common_macro.h"
#include "esp_openthread_types.h"
#include "esp_openthread_uart.h"
#include "esp_vfs_dev.h"
#include "core/common/code_utils.hpp"
#include "core/common/logging.hpp"
#include "driver/uart.h"
#include "lib/platform/exit_code.h"
#include "openthread/platform/time.h"
namespace esp {
namespace openthread {
UartSpinelInterface::UartSpinelInterface(ot::Spinel::SpinelInterface::ReceiveFrameCallback callback,
void *callback_context,
ot::Spinel::SpinelInterface::RxFrameBuffer &frame_buffer)
: m_receiver_frame_callback(callback)
, m_receiver_frame_context(callback_context)
, m_receive_frame_buffer(frame_buffer)
, m_hdlc_decoder(frame_buffer, HandleHdlcFrame, this)
, m_uart_fd(-1)
, mRcpFailureHandler(nullptr)
{
}
UartSpinelInterface::~UartSpinelInterface(void)
{
}
esp_err_t UartSpinelInterface::Init(const esp_openthread_uart_config_t &radio_uart_config)
{
m_uart_rx_buffer = static_cast<uint8_t *>(heap_caps_malloc(kMaxFrameSize, MALLOC_CAP_8BIT));
if (m_uart_rx_buffer == NULL) {
return ESP_ERR_NO_MEM;
}
return InitUart(radio_uart_config);
}
esp_err_t UartSpinelInterface::Deinit(void)
{
if (m_uart_rx_buffer) {
heap_caps_free(m_uart_rx_buffer);
}
m_uart_rx_buffer = NULL;
return DeinitUart();
}
otError UartSpinelInterface::SendFrame(const uint8_t *frame, uint16_t length)
{
otError error = OT_ERROR_NONE;
ot::Hdlc::FrameBuffer<kMaxFrameSize> encoder_buffer;
ot::Hdlc::Encoder hdlc_encoder(encoder_buffer);
SuccessOrExit(error = hdlc_encoder.BeginFrame());
SuccessOrExit(error = hdlc_encoder.Encode(frame, length));
SuccessOrExit(error = hdlc_encoder.EndFrame());
SuccessOrExit(error = Write(encoder_buffer.GetFrame(), encoder_buffer.GetLength()));
exit:
if (error != OT_ERROR_NONE) {
ESP_LOGE(OT_PLAT_LOG_TAG, "send radio frame failed");
} else {
ESP_LOGD(OT_PLAT_LOG_TAG, "sent radio frame");
}
return error;
}
void UartSpinelInterface::Process(const esp_openthread_mainloop_context_t &mainloop)
{
if (FD_ISSET(m_uart_fd, &mainloop.read_fds)) {
ESP_LOGD(OT_PLAT_LOG_TAG, "radio uart read event");
TryReadAndDecode();
}
}
void UartSpinelInterface::Update(esp_openthread_mainloop_context_t &mainloop)
{
// Register only READ events for radio UART and always wait
// for a radio WRITE to complete.
FD_SET(m_uart_fd, &mainloop.read_fds);
if (m_uart_fd > mainloop.max_fd) {
mainloop.max_fd = m_uart_fd;
}
}
int UartSpinelInterface::TryReadAndDecode(void)
{
uint8_t buffer[UART_FIFO_LEN];
ssize_t rval;
do {
rval = read(m_uart_fd, buffer, sizeof(buffer));
if (rval > 0) {
m_hdlc_decoder.Decode(buffer, static_cast<uint16_t>(rval));
}
} while (rval > 0);
if ((rval < 0) && (errno != EAGAIN) && (errno != EWOULDBLOCK)) {
ESP_ERROR_CHECK(TryRecoverUart());
}
return rval;
}
otError UartSpinelInterface::WaitForWritable(void)
{
otError error = OT_ERROR_NONE;
struct timeval timeout = {kMaxWaitTime / MS_PER_S, (kMaxWaitTime % MS_PER_S) * US_PER_MS};
uint64_t now = otPlatTimeGet();
uint64_t end = now + kMaxWaitTime * US_PER_MS;
fd_set write_fds;
fd_set error_fds;
int rval;
while (true) {
FD_ZERO(&write_fds);
FD_ZERO(&error_fds);
FD_SET(m_uart_fd, &write_fds);
FD_SET(m_uart_fd, &error_fds);
rval = select(m_uart_fd + 1, NULL, &write_fds, &error_fds, &timeout);
if (rval > 0) {
if (FD_ISSET(m_uart_fd, &write_fds)) {
ExitNow();
} else if (FD_ISSET(m_uart_fd, &error_fds)) {
ExitNow(error = OT_ERROR_FAILED);
}
} else if ((rval < 0) && (errno != EINTR)) {
ESP_ERROR_CHECK(TryRecoverUart());
ExitNow(error = OT_ERROR_FAILED);
}
now = otPlatTimeGet();
if (end > now) {
uint64_t remain = end - now;
timeout.tv_sec = static_cast<time_t>(remain / 1000000);
timeout.tv_usec = static_cast<suseconds_t>(remain % 1000000);
} else {
break;
}
}
error = OT_ERROR_FAILED;
exit:
return error;
}
otError UartSpinelInterface::Write(const uint8_t *aFrame, uint16_t length)
{
otError error = OT_ERROR_NONE;
while (length) {
ssize_t rval;
rval = write(m_uart_fd, aFrame, length);
if (rval > 0) {
assert(rval <= length);
length -= static_cast<uint16_t>(rval);
aFrame += static_cast<uint16_t>(rval);
continue;
} else if (rval < 0) {
ESP_ERROR_CHECK(TryRecoverUart());
ExitNow(error = OT_ERROR_FAILED);
}
SuccessOrExit(error = WaitForWritable());
}
exit:
return error;
}
otError UartSpinelInterface::WaitForFrame(uint64_t timeout_us)
{
otError error = OT_ERROR_NONE;
struct timeval timeout;
fd_set read_fds;
fd_set error_fds;
int rval;
FD_ZERO(&read_fds);
FD_ZERO(&error_fds);
FD_SET(m_uart_fd, &read_fds);
FD_SET(m_uart_fd, &error_fds);
timeout.tv_sec = static_cast<time_t>(timeout_us / US_PER_S);
timeout.tv_usec = static_cast<suseconds_t>(timeout_us % US_PER_S);
rval = select(m_uart_fd + 1, &read_fds, NULL, &error_fds, &timeout);
if (rval > 0) {
if (FD_ISSET(m_uart_fd, &read_fds)) {
TryReadAndDecode();
} else if (FD_ISSET(m_uart_fd, &error_fds)) {
ESP_ERROR_CHECK(TryRecoverUart());
ExitNow(error = OT_ERROR_FAILED);
}
} else if (rval == 0) {
ExitNow(error = OT_ERROR_RESPONSE_TIMEOUT);
} else {
ESP_ERROR_CHECK(TryRecoverUart());
ExitNow(error = OT_ERROR_FAILED);
}
exit:
return error;
}
void UartSpinelInterface::HandleHdlcFrame(void *context, otError error)
{
static_cast<UartSpinelInterface *>(context)->HandleHdlcFrame(error);
}
void UartSpinelInterface::HandleHdlcFrame(otError error)
{
if (error == OT_ERROR_NONE) {
ESP_LOGD(OT_PLAT_LOG_TAG, "received hdlc radio frame");
m_receiver_frame_callback(m_receiver_frame_context);
} else {
ESP_LOGE(OT_PLAT_LOG_TAG, "dropping radio frame: %s", otThreadErrorToString(error));
m_receive_frame_buffer.DiscardFrame();
}
}
esp_err_t UartSpinelInterface::InitUart(const esp_openthread_uart_config_t &radio_uart_config)
{
char uart_path[16];
m_uart_config = radio_uart_config;
ESP_RETURN_ON_ERROR(esp_openthread_uart_init_port(&radio_uart_config), OT_PLAT_LOG_TAG,
"esp_openthread_uart_init_port failed");
// We have a driver now installed so set up the read/write functions to use driver also.
esp_vfs_dev_uart_port_set_tx_line_endings(m_uart_config.port, ESP_LINE_ENDINGS_LF);
esp_vfs_dev_uart_port_set_rx_line_endings(m_uart_config.port, ESP_LINE_ENDINGS_LF);
snprintf(uart_path, sizeof(uart_path), "/dev/uart/%d", radio_uart_config.port);
m_uart_fd = open(uart_path, O_RDWR | O_NONBLOCK);
return m_uart_fd >= 0 ? ESP_OK : ESP_FAIL;
}
esp_err_t UartSpinelInterface::DeinitUart(void)
{
if (m_uart_fd != -1) {
close(m_uart_fd);
m_uart_fd = -1;
return uart_driver_delete(m_uart_config.port);
} else {
return ESP_ERR_INVALID_STATE;
}
}
esp_err_t UartSpinelInterface::TryRecoverUart(void)
{
ESP_RETURN_ON_ERROR(DeinitUart(), OT_PLAT_LOG_TAG, "DeInitUart failed");
ESP_RETURN_ON_ERROR(InitUart(m_uart_config), OT_PLAT_LOG_TAG, "InitUart failed");
return ESP_OK;
}
} // namespace openthread
} // namespace esp

View File

@ -0,0 +1,56 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include "esp_err.h"
#include "esp_openthread_types.h"
#include "openthread/instance.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Initializes the OpenThread alarm.
*
* @return
* -ESP_OK on success
* -ESP_ERR_NO_MEM on allocation failure
* -ESP_FAIL on other failures
*
*/
esp_err_t esp_openthread_alarm_init(void);
/**
* @brief This function deinitializes the OpenThread alarm.
*/
void esp_openthread_alarm_deinit(void);
/**
* @brief Updates the file descriptor with the OpenThread alarm timeout.
*
* @param[inout] mainloop The main loop context.
*
*/
void esp_openthread_alarm_update(esp_openthread_mainloop_context_t *mainloop);
/**
* @brief Performs the alarm process and triggers the fired timers for OpenThread.
*
* @param[in] instance The OpenThread instance.
* @param[in] mainloop The main loop context.
*
* return
* - ESP_OK on success
* - ESP_ERROR on other failures
*
*/
esp_err_t esp_openthread_alarm_process(otInstance *instance, const esp_openthread_mainloop_context_t *mainloop);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,23 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#define OT_PLAT_LOG_TAG "OPENTHREAD"
#ifndef MS_PER_S
#define MS_PER_S 1000
#endif
#ifndef US_PER_MS
#define US_PER_MS 1000
#endif
#ifndef US_PER_S
#define US_PER_S (MS_PER_S * US_PER_MS)
#endif
#define ESP_OPENTHREAD_UART_BUFFER_SIZE (UART_FIFO_LEN * 2)

View File

@ -0,0 +1,25 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include "esp_partition.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Set the partition to store OpenThread dataset.
*
* @param[in] partition The storage partition.
*
*/
void esp_openthread_flash_set_partition(const esp_partition_t *partition);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,49 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include "esp_openthread.h"
#include "openthread/instance.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief The state handler to be called when OpenThread state changes
*
* @param[in] changed_flags The changed Openthread states
* @param[in] ctx A pointer to application-specific context
*
*/
void esp_openthread_netif_glue_state_callback(otChangedFlags changed_flags, void *ctx);
/**
* @brief This function updates the netif fds and timeouts to the main loop.
*
* @param[inout] mainloop The main loop context.
*
*/
void esp_openthread_netif_glue_update(esp_openthread_mainloop_context_t *mainloop);
/**
* @brief This function performs the netif process.
*
* @param[in] instance The OpenThread instance.
* @param[in] mainloop The main loop context.
*
* @return
* - ESP_OK on success
* - ESP_FAIL on OpenThread failure
* - ESP_ERR_NO_MEM on memory allocation failure
*
*/
esp_err_t esp_openthread_netif_glue_process(otInstance *instance, const esp_openthread_mainloop_context_t *mainloop);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,144 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include "esp_err.h"
#include "esp_openthread_types.h"
#include "openthread/error.h"
#include "openthread/instance.h"
#ifdef __cplusplus
extern "C" {
#endif
#define WORKFLOW_MAX_NAMELEN 16
/**
* @brief update function declaration
*
* @param[inout] mainloop The main loop context.
*
*/
typedef void (*esp_openthread_update_func)(esp_openthread_mainloop_context_t *mainloop);
/**
* @brief process function declaration
*
* @param[in] instance The OpenThread instance.
* @param[in] mainloop The main loop context.
*
* @return
* - ESP_OK
* - ESP_FAIL
*
*/
typedef esp_err_t (*esp_openthread_process_func)(otInstance *instance,
const esp_openthread_mainloop_context_t *mainloop);
/**
* @brief This struct contains a platform update function, a platform process function
* and the workflow name
*
* @note The structs will form a list, and the update functions and process functions in the list
* will be called in esp_openthread_platform_update and esp_openthread_platform_process.
*
*/
typedef struct esp_openthread_platform_workflow {
char name[WORKFLOW_MAX_NAMELEN];
esp_openthread_update_func update_func;
esp_openthread_process_func process_func;
struct esp_openthread_platform_workflow *next;
} esp_openthread_platform_workflow_t;
/**
* @brief This function adds a esp_openthread_platform_workflow to the workflow list
*
*
* @param[in] updatefcn The update function of the workflow added to the list.
* @param[in] processfcn The process function of the workflow added to the list.
* @param[in] name The name of the added workflow
*
* @return
* - ESP_OK on success
* - ESP_ERR_NO_MEM on allocation failure
* - ESP_FAIL on other failures
*
*/
esp_err_t esp_openthread_platform_workflow_register(esp_openthread_update_func update_func,
esp_openthread_process_func process_func, const char *name);
/**
* @brief This function removes a esp_openthread_platform_workflow according the input name
* from the workflow list
*
* @param[in] name The name of the removed workflow
*
*/
void esp_openthread_platform_workflow_unregister(const char *name);
/**
* @brief Initializes the platform-specific support for the OpenThread stack.
*
* @note This function is not called by and will not call the OpenThread library.
* The user needs to call otInstanceInitSingle to intialize the OpenThread
* stack after calling this function.
*
* @param[in] init_config The initialization configuration.
*
* @return
* - ESP_OK on success
* - ESP_ERR_NO_MEM if allocation has failed
* - ESP_ERR_INVALID_ARG if radio or host connection mode not supported
* - ESP_ERR_INVALID_STATE if already initialized
*
*/
esp_err_t esp_openthread_platform_init(const esp_openthread_platform_config_t *init_config);
/**
* This function performs all platform-specific deinitialization for OpenThread's drivers.
*
* @note This function is not called by the OpenThread library. Instead, the user should
* call this function when deinitialization of OpenThread's drivers is most appropriate.
*
* @return
* - ESP_OK on success
* - ESP_ERR_INVALID_STATE if not initialized
*
*/
esp_err_t esp_openthread_platform_deinit(void);
/**
* @brief This function updates the platform fds and timeouts
*
* @note This function will not update the OpenThread core stack pending events.
* The users need to call `otTaskletsArePending` to check whether there being
* pending OpenThread tasks.
*
* @param[inout] mainloop The main loop context.
*
*/
void esp_openthread_platform_update(esp_openthread_mainloop_context_t *mainloop);
/**
* @brief This function performs the OpenThread related platform process (radio, uart, alarm etc.)
*
* @note This function will call the OpenThread core stack process functions.
* The users need to call `otTaskletsProcess` by self.
*
* @param[in] instance The OpenThread instance.
* @param[in] mainloop The main loop context.
*
* @return
* - ESP_OK on success
* - ESP_FAIL on failure
*
*/
esp_err_t esp_openthread_platform_process(otInstance *instance, const esp_openthread_mainloop_context_t *mainloop);
#ifdef __cplusplus
} // end of extern "C"
#endif

View File

@ -0,0 +1,58 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdbool.h>
#include "esp_err.h"
#include "esp_openthread_types.h"
#include "openthread/instance.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief This function initializes the OpenThread radio.
*
* @return
* - ESP_OK on success
* - ESP_ERR_NO_MEM if allocation has failed
*
*/
esp_err_t esp_openthread_radio_init(const esp_openthread_platform_config_t *config);
/**
* @brief This function deinitializes the OpenThread radio.
*
*/
void esp_openthread_radio_deinit(void);
/**
* @brief This function updates the radio fds and timeouts to the main loop.
*
* @param[inout] mainloop The main loop context.
*
*/
void esp_openthread_radio_update(esp_openthread_mainloop_context_t *mainloop);
/**
* @brief This function performs the OpenThread radio process.
*
* @param[in] instance The OpenThread instance.
* @param[in] mainloop The main loop context.
*
* @return
* - ESP_OK on success
* - ESP_FAIL on failure
*
*/
esp_err_t esp_openthread_radio_process(otInstance *instance, const esp_openthread_mainloop_context_t *mainloop);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,82 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include "esp_err.h"
#include "esp_openthread.h"
#include "esp_openthread_types.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief OpenThread task declaration
*
*/
typedef void (*esp_openthread_task_t)(void *);
/**
* @brief This function allocs and initializes the OpenThread task queue.
*
* @param[in] config The platform configuration
*
* @return
* - ESP_OK on success
* - ESP_ERR_NO_MEM on queue allocation failure
* - ESP_FAIL on other failures
*
*/
esp_err_t esp_openthread_task_queue_init(const esp_openthread_platform_config_t *config);
/**
* @brief This function posts a task to the OpenThread task queue.
*
* @param[in] task The task to execute.
* @param[in] arg The context argument to be passed to the task.
*
* @return
* - ESP_OK
* - ESP_FAIL
*
*/
esp_err_t esp_openthread_task_queue_post(esp_openthread_task_t task, void *arg);
/**
* @brief This function updates the task queue inner fd to the main loop.
*
* @param[inout] mainloop The main loop context.
*
*/
void esp_openthread_task_queue_update(esp_openthread_mainloop_context_t *mainloop);
/**
* @brief This function drives the execution of the task queue.
*
* @param[in] instance The OpenThread instance.
* @param[in] mainloop The main loop context.
*
* @return
* - ESP_OK
* - ESP_FAIL
*
*/
esp_err_t esp_openthread_task_queue_process(otInstance *instance, const esp_openthread_mainloop_context_t *mainloop);
/**
* @brief This function deinitializes the task queue.
*
* @return
* - ESP_OK
* - ESP_FAIL
*
*/
esp_err_t esp_openthread_task_queue_deinit(void);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,72 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include "esp_err.h"
#include "esp_openthread_types.h"
#include "openthread/instance.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Initializes an uart port with the given config.
*
* @note The user still needs to open the file descriptor by self.
*
* @param[in] config The uart configuration.
*
* @return
* - ESP_OK on success
* - ESP_ERROR on failure
*
*/
esp_err_t esp_openthread_uart_init_port(const esp_openthread_uart_config_t *config);
/**
* @brief Initializes the uart for OpenThread host connection.
*
* @param[in] config The uart configuration.
*
* @return
* - ESP_OK on success
* - ESP_ERROR on failure
*
*/
esp_err_t esp_openthread_uart_init(const esp_openthread_platform_config_t *config);
/**
* @brief Deintializes the uart for OpenThread host connection.
*
*/
void esp_openthread_uart_deinit(void);
/**
* @brief Deintializes the uart for OpenThread host connection.
*
* @param[inout] mainloop The main loop context.
*
*/
void esp_openthread_uart_update(esp_openthread_mainloop_context_t *context);
/**
* @brief Performs the uart I/O for OpenThread.
*
* @param[in] instance The Openthread instance.
* @param[in] mainloop The main loop context.
*
* @return
* - ESP_OK on success
* - ESP_ERROR on failure
*
*/
esp_err_t esp_openthread_uart_process(otInstance *instance, const esp_openthread_mainloop_context_t *mainloop);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,168 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include "esp_err.h"
#include "esp_openthread.h"
#include "esp_openthread_types.h"
#include "hal/uart_types.h"
#include "lib/spinel/spinel_interface.hpp"
#include "openthread/error.h"
namespace esp {
namespace openthread {
/**
* This class defines an UART interface to the Radio Co-processor (RCP).
*
*/
class UartSpinelInterface {
public:
/**
* @brief This constructor of object.
*
* @param[in] callback Callback on frame received
* @param[in] callback_context Callback context
* @param[in] frame_buffer A reference to a `RxFrameBuffer` object.
*
*/
UartSpinelInterface(ot::Spinel::SpinelInterface::ReceiveFrameCallback callback, void *callback_context,
ot::Spinel::SpinelInterface::RxFrameBuffer &frame_buffer);
/**
* @brief This destructor of the object.
*
*/
~UartSpinelInterface(void);
/**
* @brief This method initializes the HDLC interface.
*
* @return
* - ESP_OK on success
* - ESP_ERR_NO_MEM if allocation has failed
* - ESP_ERROR on failure
*/
esp_err_t Init(const esp_openthread_uart_config_t &radio_uart_config);
/**
* @brief This method deinitializes the HDLC interface.
*
*/
esp_err_t Deinit(void);
/**
* @brief This method encodes and sends a spinel frame to Radio Co-processor (RCP) over the socket.
*
* @note This is blocking call, i.e., if the socket is not writable, this method waits for it to become writable
* for up to `kMaxWaitTime` interval.
*
* @param[in] frame A pointer to buffer containing the spinel frame to send.
* @param[in] length The length (number of bytes) in the frame.
*
* @return
* -OT_ERROR_NONE Successfully encoded and sent the spinel frame.
* -OT_ERROR_NO_BUFS Insufficient buffer space available to encode the frame.
* -OT_ERROR_FAILED Failed to send due to socket not becoming writable within `kMaxWaitTime`.
*
*/
otError SendFrame(const uint8_t *frame, uint16_t length);
/**
* This method waits for receiving part or all of spinel frame within specified timeout.
*
* @param[in] timeout_us The timeout value in microseconds.
*
* @return
* -OT_ERROR_NONE Part or all of spinel frame is received.
* -OT_ERROR_RESPONSE_TIMEOUT No spinel frame is received within @p timeout_us.
*
*/
otError WaitForFrame(uint64_t timeout_us);
/**
* This method performs uart processing to the RCP.
*
* @param[in] mainloop The mainloop context
*
*/
void Process(const esp_openthread_mainloop_context_t &mainloop);
/**
* This methods updates the mainloop context.
*
* @param[inout] mainloop The mainloop context.
*
*/
void Update(esp_openthread_mainloop_context_t &mainloop);
/**
* This methods registers the callback for RCP failure.
*
* @param[in] handler The RCP failure handler.
*
*/
void RegisterRcpFailureHandler(esp_openthread_rcp_failure_handler handler) { mRcpFailureHandler = handler; }
void OnRcpReset(void)
{
if (mRcpFailureHandler) {
mRcpFailureHandler();
}
}
otError ResetConnection(void) { return OT_ERROR_NONE; }
private:
enum {
/**
* Maximum spinel frame size.
*
*/
kMaxFrameSize = ot::Spinel::SpinelInterface::kMaxFrameSize,
/**
* Maximum wait time in Milliseconds for socket to become writable (see `SendFrame`).
*
*/
kMaxWaitTime = 2000,
};
esp_err_t InitUart(const esp_openthread_uart_config_t &radio_uart_config);
esp_err_t DeinitUart(void);
int TryReadAndDecode(void);
otError WaitForWritable(void);
otError Write(const uint8_t *frame, uint16_t length);
esp_err_t TryRecoverUart(void);
static void HandleHdlcFrame(void *context, otError error);
void HandleHdlcFrame(otError error);
ot::Spinel::SpinelInterface::ReceiveFrameCallback m_receiver_frame_callback;
void *m_receiver_frame_context;
ot::Spinel::SpinelInterface::RxFrameBuffer &m_receive_frame_buffer;
ot::Hdlc::Decoder m_hdlc_decoder;
uint8_t *m_uart_rx_buffer;
esp_openthread_uart_config_t m_uart_config;
int m_uart_fd;
// Non-copyable, intentionally not implemented.
UartSpinelInterface(const UartSpinelInterface &);
UartSpinelInterface &operator=(const UartSpinelInterface &);
esp_openthread_rcp_failure_handler mRcpFailureHandler;
};
} // namespace openthread
} // namespace esp

View File

@ -431,6 +431,4 @@
#endif
#endif
#define OPENTHREAD_ENABLE_NCP_VENDOR_HOOK 1
#define OPENTHREAD_FTD 1

View File

@ -230,6 +230,4 @@
#endif
#endif
#define OPENTHREAD_ENABLE_NCP_VENDOR_HOOK 1
#define OPENTHREAD_MTD 1

View File

@ -190,8 +190,6 @@
*/
#define OPENTHREAD_CONFIG_MAC_SOFTWARE_TX_TIMING_ENABLE 1
#define OPENTHREAD_ENABLE_NCP_VENDOR_HOOK 1
/**
* The configurable definitions via Kconfig
*/

View File

@ -1,31 +0,0 @@
/*
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <esp_openthread.h>
#include <openthread/platform/radio.h>
#include <openthread/platform/toolchain.h>
#include <stdint.h>
#include <utils/uart.h>
OT_TOOL_WEAK void otPlatUartReceived(const uint8_t *, uint16_t)
{
}
OT_TOOL_WEAK void otPlatUartSendDone(void)
{
}
OT_TOOL_WEAK void otPlatDiagRadioTransmitDone(otInstance *, otRadioFrame *, otError)
{
}
OT_TOOL_WEAK void otPlatDiagRadioReceiveDone(otInstance *, otRadioFrame *, otError)
{
}
OT_TOOL_WEAK void otPlatDiagAlarmFired(otInstance *)
{
}

View File

@ -34,7 +34,6 @@ CONFIG_MBEDTLS_ECJPAKE_C=y
#
CONFIG_OPENTHREAD_ENABLED=y
CONFIG_OPENTHREAD_BORDER_ROUTER=n
CONFIG_OPENTHREAD_SRP_CLIENT=y
CONFIG_OPENTHREAD_DNS64_CLIENT=y
# end of OpenThread