esp-idf/components/bootloader_support/src/bootloader_utility.c

499 lines
18 KiB
C
Raw Normal View History

// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <stdint.h>
#include <limits.h>
#include <sys/param.h>
#include "esp_attr.h"
#include "esp_log.h"
#include "rom/cache.h"
#include "rom/efuse.h"
#include "rom/ets_sys.h"
#include "rom/spi_flash.h"
#include "rom/crc.h"
#include "rom/rtc.h"
#include "rom/uart.h"
#include "rom/gpio.h"
#include "rom/secure_boot.h"
#include "soc/soc.h"
#include "soc/cpu.h"
#include "soc/rtc.h"
#include "soc/dport_reg.h"
#include "soc/io_mux_reg.h"
#include "soc/efuse_reg.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/timer_group_reg.h"
#include "soc/gpio_reg.h"
#include "soc/gpio_sig_map.h"
#include "sdkconfig.h"
#include "esp_image_format.h"
#include "esp_secure_boot.h"
#include "esp_flash_encrypt.h"
#include "esp_flash_partitions.h"
#include "bootloader_flash.h"
#include "bootloader_random.h"
#include "bootloader_config.h"
#include "bootloader_common.h"
#include "bootloader_utility.h"
#include "bootloader_sha.h"
static const char* TAG = "boot";
/* Reduce literal size for some generic string literals */
#define MAP_ERR_MSG "Image contains multiple %s segments. Only the last one will be mapped."
static void load_image(const esp_image_metadata_t* image_data);
static void unpack_load_app(const esp_image_metadata_t *data);
static void set_cache_and_start_app(uint32_t drom_addr,
uint32_t drom_load_addr,
uint32_t drom_size,
uint32_t irom_addr,
uint32_t irom_load_addr,
uint32_t irom_size,
uint32_t entry_addr);
bool bootloader_utility_load_partition_table(bootloader_state_t* bs)
{
const esp_partition_info_t *partitions;
const char *partition_usage;
esp_err_t err;
int num_partitions;
partitions = bootloader_mmap(ESP_PARTITION_TABLE_OFFSET, ESP_PARTITION_TABLE_MAX_LEN);
if (!partitions) {
ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", ESP_PARTITION_TABLE_OFFSET, ESP_PARTITION_TABLE_MAX_LEN);
return false;
}
ESP_LOGD(TAG, "mapped partition table 0x%x at 0x%x", ESP_PARTITION_TABLE_OFFSET, (intptr_t)partitions);
err = esp_partition_table_verify(partitions, true, &num_partitions);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to verify partition table");
return false;
}
ESP_LOGI(TAG, "Partition Table:");
ESP_LOGI(TAG, "## Label Usage Type ST Offset Length");
for(int i = 0; i < num_partitions; i++) {
const esp_partition_info_t *partition = &partitions[i];
ESP_LOGD(TAG, "load partition table entry 0x%x", (intptr_t)partition);
ESP_LOGD(TAG, "type=%x subtype=%x", partition->type, partition->subtype);
partition_usage = "unknown";
/* valid partition table */
switch(partition->type) {
case PART_TYPE_APP: /* app partition */
switch(partition->subtype) {
case PART_SUBTYPE_FACTORY: /* factory binary */
bs->factory = partition->pos;
partition_usage = "factory app";
break;
case PART_SUBTYPE_TEST: /* test binary */
bs->test = partition->pos;
partition_usage = "test app";
break;
default:
/* OTA binary */
if ((partition->subtype & ~PART_SUBTYPE_OTA_MASK) == PART_SUBTYPE_OTA_FLAG) {
bs->ota[partition->subtype & PART_SUBTYPE_OTA_MASK] = partition->pos;
++bs->app_count;
partition_usage = "OTA app";
}
else {
partition_usage = "Unknown app";
}
break;
}
break; /* PART_TYPE_APP */
case PART_TYPE_DATA: /* data partition */
switch(partition->subtype) {
case PART_SUBTYPE_DATA_OTA: /* ota data */
bs->ota_info = partition->pos;
partition_usage = "OTA data";
break;
case PART_SUBTYPE_DATA_RF:
partition_usage = "RF data";
break;
case PART_SUBTYPE_DATA_WIFI:
partition_usage = "WiFi data";
break;
case PART_SUBTYPE_DATA_NVS_KEYS:
partition_usage = "NVS keys";
break;
default:
partition_usage = "Unknown data";
break;
}
break; /* PARTITION_USAGE_DATA */
default: /* other partition type */
break;
}
/* print partition type info */
ESP_LOGI(TAG, "%2d %-16s %-16s %02x %02x %08x %08x", i, partition->label, partition_usage,
partition->type, partition->subtype,
partition->pos.offset, partition->pos.size);
}
bootloader_munmap(partitions);
ESP_LOGI(TAG,"End of partition table");
return true;
}
/* Given a partition index, return the partition position data from the bootloader_state_t structure */
static esp_partition_pos_t index_to_partition(const bootloader_state_t *bs, int index)
{
if (index == FACTORY_INDEX) {
return bs->factory;
}
if (index == TEST_APP_INDEX) {
return bs->test;
}
if (index >= 0 && index < MAX_OTA_SLOTS && index < bs->app_count) {
return bs->ota[index];
}
esp_partition_pos_t invalid = { 0 };
return invalid;
}
static void log_invalid_app_partition(int index)
{
const char *not_bootable = " is not bootable"; /* save a few string literal bytes */
switch(index) {
case FACTORY_INDEX:
ESP_LOGE(TAG, "Factory app partition%s", not_bootable);
break;
case TEST_APP_INDEX:
ESP_LOGE(TAG, "Factory test app partition%s", not_bootable);
break;
default:
ESP_LOGE(TAG, "OTA app partition slot %d%s", index, not_bootable);
break;
}
}
int bootloader_utility_get_selected_boot_partition(const bootloader_state_t *bs)
{
esp_ota_select_entry_t sa,sb;
const esp_ota_select_entry_t *ota_select_map;
if (bs->ota_info.offset != 0) {
// partition table has OTA data partition
if (bs->ota_info.size < 2 * SPI_SEC_SIZE) {
ESP_LOGE(TAG, "ota_info partition size %d is too small (minimum %d bytes)", bs->ota_info.size, sizeof(esp_ota_select_entry_t));
return INVALID_INDEX; // can't proceed
}
ESP_LOGD(TAG, "OTA data offset 0x%x", bs->ota_info.offset);
ota_select_map = bootloader_mmap(bs->ota_info.offset, bs->ota_info.size);
if (!ota_select_map) {
ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", bs->ota_info.offset, bs->ota_info.size);
return INVALID_INDEX; // can't proceed
}
memcpy(&sa, ota_select_map, sizeof(esp_ota_select_entry_t));
memcpy(&sb, (uint8_t *)ota_select_map + SPI_SEC_SIZE, sizeof(esp_ota_select_entry_t));
bootloader_munmap(ota_select_map);
ESP_LOGD(TAG, "OTA sequence values A 0x%08x B 0x%08x", sa.ota_seq, sb.ota_seq);
if ((sa.ota_seq == UINT32_MAX && sb.ota_seq == UINT32_MAX) || (bs->app_count == 0)) {
ESP_LOGD(TAG, "OTA sequence numbers both empty (all-0xFF) or partition table does not have bootable ota_apps (app_count=%d)", bs->app_count);
if (bs->factory.offset != 0) {
ESP_LOGI(TAG, "Defaulting to factory image");
return FACTORY_INDEX;
} else {
ESP_LOGI(TAG, "No factory image, trying OTA 0");
return 0;
}
} else {
bool ota_valid = false;
const char *ota_msg;
int ota_seq; // Raw OTA sequence number. May be more than # of OTA slots
if(bootloader_common_ota_select_valid(&sa) && bootloader_common_ota_select_valid(&sb)) {
ota_valid = true;
ota_msg = "Both OTA values";
ota_seq = MAX(sa.ota_seq, sb.ota_seq) - 1;
} else if(bootloader_common_ota_select_valid(&sa)) {
ota_valid = true;
ota_msg = "Only OTA sequence A is";
ota_seq = sa.ota_seq - 1;
} else if(bootloader_common_ota_select_valid(&sb)) {
ota_valid = true;
ota_msg = "Only OTA sequence B is";
ota_seq = sb.ota_seq - 1;
}
if (ota_valid) {
int ota_slot = ota_seq % bs->app_count; // Actual OTA partition selection
ESP_LOGD(TAG, "%s valid. Mapping seq %d -> OTA slot %d", ota_msg, ota_seq, ota_slot);
return ota_slot;
} else if (bs->factory.offset != 0) {
ESP_LOGE(TAG, "ota data partition invalid, falling back to factory");
return FACTORY_INDEX;
} else {
ESP_LOGE(TAG, "ota data partition invalid and no factory, will try all partitions");
return FACTORY_INDEX;
}
}
}
// otherwise, start from factory app partition and let the search logic
// proceed from there
return FACTORY_INDEX;
}
/* Return true if a partition has a valid app image that was successfully loaded */
static bool try_load_partition(const esp_partition_pos_t *partition, esp_image_metadata_t *data)
{
if (partition->size == 0) {
ESP_LOGD(TAG, "Can't boot from zero-length partition");
return false;
}
#ifdef BOOTLOADER_BUILD
if (bootloader_load_image(partition, data) == ESP_OK) {
ESP_LOGI(TAG, "Loaded app from partition at offset 0x%x",
partition->offset);
return true;
}
#endif
return false;
}
#define TRY_LOG_FORMAT "Trying partition index %d offs 0x%x size 0x%x"
void bootloader_utility_load_boot_image(const bootloader_state_t *bs, int start_index)
{
int index = start_index;
esp_partition_pos_t part;
esp_image_metadata_t image_data;
if(start_index == TEST_APP_INDEX) {
if (try_load_partition(&bs->test, &image_data)) {
load_image(&image_data);
} else {
ESP_LOGE(TAG, "No bootable test partition in the partition table");
bootloader_reset();
}
}
/* work backwards from start_index, down to the factory app */
for(index = start_index; index >= FACTORY_INDEX; index--) {
part = index_to_partition(bs, index);
if (part.size == 0) {
continue;
}
ESP_LOGD(TAG, TRY_LOG_FORMAT, index, part.offset, part.size);
if (try_load_partition(&part, &image_data)) {
load_image(&image_data);
}
log_invalid_app_partition(index);
}
/* failing that work forwards from start_index, try valid OTA slots */
for(index = start_index + 1; index < bs->app_count; index++) {
part = index_to_partition(bs, index);
if (part.size == 0) {
continue;
}
ESP_LOGD(TAG, TRY_LOG_FORMAT, index, part.offset, part.size);
if (try_load_partition(&part, &image_data)) {
load_image(&image_data);
}
log_invalid_app_partition(index);
}
if (try_load_partition(&bs->test, &image_data)) {
ESP_LOGW(TAG, "Falling back to test app as only bootable partition");
load_image(&image_data);
}
ESP_LOGE(TAG, "No bootable app partitions in the partition table");
bzero(&image_data, sizeof(esp_image_metadata_t));
bootloader_reset();
}
// Copy loaded segments to RAM, set up caches for mapped segments, and start application.
static void load_image(const esp_image_metadata_t* image_data)
{
#if defined(CONFIG_SECURE_BOOT_ENABLED) || defined(CONFIG_FLASH_ENCRYPTION_ENABLED)
esp_err_t err;
#endif
#ifdef CONFIG_SECURE_BOOT_ENABLED
/* Generate secure digest from this bootloader to protect future
modifications */
ESP_LOGI(TAG, "Checking secure boot...");
err = esp_secure_boot_permanently_enable();
if (err != ESP_OK) {
ESP_LOGE(TAG, "Bootloader digest generation failed (%d). SECURE BOOT IS NOT ENABLED.", err);
/* Allow booting to continue, as the failure is probably
due to user-configured EFUSEs for testing...
*/
}
#endif
#ifdef CONFIG_FLASH_ENCRYPTION_ENABLED
/* encrypt flash */
ESP_LOGI(TAG, "Checking flash encryption...");
bool flash_encryption_enabled = esp_flash_encryption_enabled();
err = esp_flash_encrypt_check_and_update();
if (err != ESP_OK) {
ESP_LOGE(TAG, "Flash encryption check failed (%d).", err);
return;
}
if (!flash_encryption_enabled && esp_flash_encryption_enabled()) {
/* Flash encryption was just enabled for the first time,
so issue a system reset to ensure flash encryption
cache resets properly */
ESP_LOGI(TAG, "Resetting with flash encryption enabled...");
bootloader_reset();
}
#endif
ESP_LOGI(TAG, "Disabling RNG early entropy source...");
bootloader_random_disable();
// copy loaded segments to RAM, set up caches for mapped segments, and start application
unpack_load_app(image_data);
}
static void unpack_load_app(const esp_image_metadata_t* data)
{
uint32_t drom_addr = 0;
uint32_t drom_load_addr = 0;
uint32_t drom_size = 0;
uint32_t irom_addr = 0;
uint32_t irom_load_addr = 0;
uint32_t irom_size = 0;
// Find DROM & IROM addresses, to configure cache mappings
for (int i = 0; i < data->image.segment_count; i++) {
const esp_image_segment_header_t *header = &data->segments[i];
if (header->load_addr >= SOC_DROM_LOW && header->load_addr < SOC_DROM_HIGH) {
if (drom_addr != 0) {
ESP_LOGE(TAG, MAP_ERR_MSG, "DROM");
} else {
ESP_LOGD(TAG, "Mapping segment %d as %s", i, "DROM");
}
drom_addr = data->segment_data[i];
drom_load_addr = header->load_addr;
drom_size = header->data_len;
}
if (header->load_addr >= SOC_IROM_LOW && header->load_addr < SOC_IROM_HIGH) {
if (irom_addr != 0) {
ESP_LOGE(TAG, MAP_ERR_MSG, "IROM");
} else {
ESP_LOGD(TAG, "Mapping segment %d as %s", i, "IROM");
}
irom_addr = data->segment_data[i];
irom_load_addr = header->load_addr;
irom_size = header->data_len;
}
}
ESP_LOGD(TAG, "calling set_cache_and_start_app");
set_cache_and_start_app(drom_addr,
drom_load_addr,
drom_size,
irom_addr,
irom_load_addr,
irom_size,
data->image.entry_addr);
}
static void set_cache_and_start_app(
uint32_t drom_addr,
uint32_t drom_load_addr,
uint32_t drom_size,
uint32_t irom_addr,
uint32_t irom_load_addr,
uint32_t irom_size,
uint32_t entry_addr)
{
int rc;
ESP_LOGD(TAG, "configure drom and irom and start");
Cache_Read_Disable( 0 );
Cache_Flush( 0 );
/* Clear the MMU entries that are already set up,
so the new app only has the mappings it creates.
*/
for (int i = 0; i < DPORT_FLASH_MMU_TABLE_SIZE; i++) {
DPORT_PRO_FLASH_MMU_TABLE[i] = DPORT_FLASH_MMU_TABLE_INVALID_VAL;
}
uint32_t drom_load_addr_aligned = drom_load_addr & MMU_FLASH_MASK;
uint32_t drom_page_count = bootloader_cache_pages_to_map(drom_size, drom_load_addr);
ESP_LOGV(TAG, "d mmu set paddr=%08x vaddr=%08x size=%d n=%d",
drom_addr & MMU_FLASH_MASK, drom_load_addr_aligned, drom_size, drom_page_count);
rc = cache_flash_mmu_set(0, 0, drom_load_addr_aligned, drom_addr & MMU_FLASH_MASK, 64, drom_page_count);
ESP_LOGV(TAG, "rc=%d", rc);
rc = cache_flash_mmu_set(1, 0, drom_load_addr_aligned, drom_addr & MMU_FLASH_MASK, 64, drom_page_count);
ESP_LOGV(TAG, "rc=%d", rc);
uint32_t irom_load_addr_aligned = irom_load_addr & MMU_FLASH_MASK;
uint32_t irom_page_count = bootloader_cache_pages_to_map(irom_size, irom_load_addr);
ESP_LOGV(TAG, "i mmu set paddr=%08x vaddr=%08x size=%d n=%d",
irom_addr & MMU_FLASH_MASK, irom_load_addr_aligned, irom_size, irom_page_count);
rc = cache_flash_mmu_set(0, 0, irom_load_addr_aligned, irom_addr & MMU_FLASH_MASK, 64, irom_page_count);
ESP_LOGV(TAG, "rc=%d", rc);
rc = cache_flash_mmu_set(1, 0, irom_load_addr_aligned, irom_addr & MMU_FLASH_MASK, 64, irom_page_count);
ESP_LOGV(TAG, "rc=%d", rc);
DPORT_REG_CLR_BIT( DPORT_PRO_CACHE_CTRL1_REG,
(DPORT_PRO_CACHE_MASK_IRAM0) | (DPORT_PRO_CACHE_MASK_IRAM1 & 0) |
(DPORT_PRO_CACHE_MASK_IROM0 & 0) | DPORT_PRO_CACHE_MASK_DROM0 |
DPORT_PRO_CACHE_MASK_DRAM1 );
DPORT_REG_CLR_BIT( DPORT_APP_CACHE_CTRL1_REG,
(DPORT_APP_CACHE_MASK_IRAM0) | (DPORT_APP_CACHE_MASK_IRAM1 & 0) |
(DPORT_APP_CACHE_MASK_IROM0 & 0) | DPORT_APP_CACHE_MASK_DROM0 |
DPORT_APP_CACHE_MASK_DRAM1 );
Cache_Read_Enable( 0 );
// Application will need to do Cache_Flush(1) and Cache_Read_Enable(1)
ESP_LOGD(TAG, "start: 0x%08x", entry_addr);
typedef void (*entry_t)(void) __attribute__((noreturn));
entry_t entry = ((entry_t) entry_addr);
// TODO: we have used quite a bit of stack at this point.
// use "movsp" instruction to reset stack back to where ROM stack starts.
(*entry)();
}
void bootloader_reset(void)
{
#ifdef BOOTLOADER_BUILD
uart_tx_flush(0); /* Ensure any buffered log output is displayed */
uart_tx_flush(1);
ets_delay_us(1000); /* Allow last byte to leave FIFO */
REG_WRITE(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_SYS_RST);
while (1) { } /* This line will never be reached, used to keep gcc happy */
#else
abort(); /* This function should really not be called from application code */
#endif
}