The async memcpy API wraps all DMA configurations and operations, the signature of :cpp:func:`esp_async_memcpy` is almost the same to the standard libc one.
Thanks to the benefit of the DMA, we don't have to wait for each memory copy to be done before we issue another memcpy request. By the way, it's still possible to know when memcpy is finished by listening in the memcpy callback function.
Memory copy from/to external PSRAM is not supported on ESP32-S2, :cpp:func:`esp_async_memcpy` will abort returning an error if buffer address is not in SRAM.
:cpp:func:`esp_async_memcpy_install` is used to install the driver with user's configuration. Please note that async memcpy has to be called with the handle returned from :cpp:func:`esp_async_memcpy_install`.
*:cpp:member:`backlog`: This is used to configure the maximum number of DMA operations being processed at the same time.
*:cpp:member:`sram_trans_align`: Declare SRAM alignment for both data address and copy size, set to zero if the data has no restriction in alignment. If set to a quadruple value (i.e. 4X), the driver will enable the burst mode internally, which is helpful for some performance related application.
*:cpp:member:`psram_trans_align`: Declare PSRAM alignment for both data address and copy size. User has to give it a valid value (only 16, 32, 64 are supported) if the destination of memcpy is located in PSRAM. The default alignment (i.e. 16) will be applied if it's set to zero. Internally, the driver configures the size of block used by DMA to access PSRAM, according to the alignment.
*:cpp:member:`flags`: This is used to enable some special driver features.
:cpp:func:`esp_async_memcpy` is the API to send memory copy request to DMA engine. It must be called after driver is installed successfully. This API is thread safe, so it can be called from different tasks.
Different from the libc version of `memcpy`, user should also pass a callback to :cpp:func:`esp_async_memcpy`, if it's necessary to be notified when the memory copy is done. The callback is executed in the ISR context, make sure you won't violate the the restriction applied to ISR handler.
Besides that, the callback function should reside in IRAM space by applying `IRAM_ATTR` attribute. The prototype of the callback function is :cpp:type:`async_memcpy_isr_cb_t`, please note that, the callback function should return true if it wakes up a high priority task by some API like :cpp:func:`xSemaphoreGiveFromISR`.
:cpp:func:`esp_async_memcpy_uninstall` is used to uninstall asynchronous memcpy driver. It's not necessary to uninstall the driver after each memcpy operation. If you know your application won't use this driver anymore, then this API can recycle the memory for you.