2019-04-10 04:24:50 -04:00
|
|
|
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
#include <string.h>
|
|
|
|
#include "sdkconfig.h"
|
|
|
|
#include "esp_attr.h"
|
|
|
|
#include "soc/gpio_periph.h"
|
|
|
|
#include "soc/rtc.h"
|
|
|
|
#include "hal/emac.h"
|
|
|
|
|
|
|
|
#define ETH_CRC_LENGTH (4)
|
|
|
|
|
2019-07-11 14:01:28 -04:00
|
|
|
#if CONFIG_ETH_RMII_CLK_OUTPUT
|
|
|
|
static void emac_config_apll_clock(void)
|
|
|
|
{
|
|
|
|
/* apll_freq = xtal_freq * (4 + sdm2 + sdm1/256 + sdm0/65536)/((o_div + 2) * 2) */
|
|
|
|
rtc_xtal_freq_t rtc_xtal_freq = rtc_clk_xtal_freq_get();
|
|
|
|
switch (rtc_xtal_freq) {
|
|
|
|
case RTC_XTAL_FREQ_40M: // Recommended
|
|
|
|
/* 50 MHz = 40MHz * (4 + 6) / (2 * (2 + 2) = 50.000 */
|
|
|
|
/* sdm0 = 0, sdm1 = 0, sdm2 = 6, o_div = 2 */
|
|
|
|
rtc_clk_apll_enable(true, 0, 0, 6, 2);
|
|
|
|
break;
|
|
|
|
case RTC_XTAL_FREQ_26M:
|
|
|
|
/* 50 MHz = 26MHz * (4 + 15 + 118 / 256 + 39/65536) / ((3 + 2) * 2) = 49.999992 */
|
|
|
|
/* sdm0 = 39, sdm1 = 118, sdm2 = 15, o_div = 3 */
|
|
|
|
rtc_clk_apll_enable(true, 39, 118, 15, 3);
|
|
|
|
break;
|
|
|
|
case RTC_XTAL_FREQ_24M:
|
|
|
|
/* 50 MHz = 24MHz * (4 + 12 + 255 / 256 + 255/65536) / ((2 + 2) * 2) = 49.499977 */
|
|
|
|
/* sdm0 = 255, sdm1 = 255, sdm2 = 12, o_div = 2 */
|
|
|
|
rtc_clk_apll_enable(true, 255, 255, 12, 2);
|
|
|
|
break;
|
|
|
|
default: // Assume we have a 40M xtal
|
|
|
|
rtc_clk_apll_enable(true, 0, 0, 6, 2);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2019-04-10 04:24:50 -04:00
|
|
|
void emac_hal_init(emac_hal_context_t *hal, void *descriptors,
|
|
|
|
uint8_t **rx_buf, uint8_t **tx_buf)
|
|
|
|
{
|
|
|
|
hal->dma_regs = &EMAC_DMA;
|
|
|
|
hal->mac_regs = &EMAC_MAC;
|
|
|
|
hal->ext_regs = &EMAC_EXT;
|
|
|
|
hal->descriptors = descriptors;
|
|
|
|
hal->rx_buf = rx_buf;
|
|
|
|
hal->tx_buf = tx_buf;
|
|
|
|
}
|
|
|
|
|
|
|
|
void emac_hal_lowlevel_init(emac_hal_context_t *hal)
|
|
|
|
{
|
|
|
|
/* GPIO configuration */
|
|
|
|
/* TX_EN to GPIO21 */
|
|
|
|
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO21_U, FUNC_GPIO21_EMAC_TX_EN);
|
|
|
|
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[21]);
|
|
|
|
/* TXD0 to GPIO19 */
|
|
|
|
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO19_U, FUNC_GPIO19_EMAC_TXD0);
|
|
|
|
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[19]);
|
|
|
|
/* TXD1 to GPIO22 */
|
|
|
|
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO22_U, FUNC_GPIO22_EMAC_TXD1);
|
|
|
|
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[22]);
|
|
|
|
/* RXD0 to GPIO25 */
|
|
|
|
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO25_U, FUNC_GPIO25_EMAC_RXD0);
|
|
|
|
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[25]);
|
|
|
|
/* RXD1 to GPIO26 */
|
|
|
|
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO26_U, FUNC_GPIO26_EMAC_RXD1);
|
|
|
|
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[26]);
|
|
|
|
/* CRS_DV to GPIO27 */
|
|
|
|
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO27_U, FUNC_GPIO27_EMAC_RX_DV);
|
|
|
|
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[27]);
|
|
|
|
#if CONFIG_ETH_RMII_CLK_INPUT
|
|
|
|
#if CONFIG_ETH_RMII_CLK_IN_GPIO == 0
|
|
|
|
/* RMII clock (50MHz) input to GPIO0 */
|
|
|
|
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO0_U, FUNC_GPIO0_EMAC_TX_CLK);
|
|
|
|
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[0]);
|
|
|
|
#else
|
|
|
|
#error "ESP32 EMAC only support input RMII clock to GPIO0"
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#if CONFIG_ETH_RMII_CLK_OUTPUT
|
|
|
|
#if CONFIG_ETH_RMII_CLK_OUTPUT_GPIO0
|
|
|
|
/* APLL clock output to GPIO0 (must be configured to 50MHz!) */
|
|
|
|
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO0_U, FUNC_GPIO0_CLK_OUT1);
|
|
|
|
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[0]);
|
|
|
|
#elif CONFIG_ETH_RMII_CLK_OUT_GPIO == 16
|
|
|
|
/* RMII CLK (50MHz) output to GPIO16 */
|
|
|
|
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO16_U, FUNC_GPIO16_EMAC_CLK_OUT);
|
|
|
|
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[16]);
|
|
|
|
#elif CONFIG_ETH_RMII_CLK_OUT_GPIO == 17
|
|
|
|
/* RMII CLK (50MHz) output to GPIO17 */
|
|
|
|
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO17_U, FUNC_GPIO17_EMAC_CLK_OUT_180);
|
|
|
|
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[17]);
|
|
|
|
#endif
|
|
|
|
#endif // CONFIG_ETH_RMII_CLK_OUTPUT
|
|
|
|
/* Clock configuration */
|
|
|
|
#if CONFIG_ETH_PHY_INTERFACE_MII
|
|
|
|
hal->ext_regs->ex_phyinf_conf.phy_intf_sel = 0;
|
|
|
|
hal->ext_regs->ex_clk_ctrl.mii_clk_rx_en = 1;
|
|
|
|
hal->ext_regs->ex_clk_ctrl.mii_clk_tx_en = 1;
|
|
|
|
#elif CONFIG_ETH_PHY_INTERFACE_RMII
|
|
|
|
hal->ext_regs->ex_phyinf_conf.phy_intf_sel = 4;
|
|
|
|
#if CONFIG_ETH_RMII_CLK_INPUT
|
|
|
|
hal->ext_regs->ex_clk_ctrl.ext_en = 1;
|
|
|
|
hal->ext_regs->ex_clk_ctrl.int_en = 0;
|
|
|
|
hal->ext_regs->ex_oscclk_conf.clk_sel = 1;
|
|
|
|
#elif CONFIG_ETH_RMII_CLK_OUTPUT
|
|
|
|
hal->ext_regs->ex_clk_ctrl.ext_en = 0;
|
|
|
|
hal->ext_regs->ex_clk_ctrl.int_en = 1;
|
|
|
|
hal->ext_regs->ex_oscclk_conf.clk_sel = 0;
|
2019-07-11 14:01:28 -04:00
|
|
|
emac_config_apll_clock();
|
2019-04-10 04:24:50 -04:00
|
|
|
hal->ext_regs->ex_clkout_conf.div_num = 0;
|
|
|
|
hal->ext_regs->ex_clkout_conf.h_div_num = 0;
|
|
|
|
#if CONFIG_ETH_RMII_CLK_OUTPUT_GPIO0
|
|
|
|
/* Choose the APLL clock to output on GPIO */
|
|
|
|
REG_WRITE(PIN_CTRL, 6);
|
|
|
|
#endif // CONFIG_RMII_CLK_OUTPUT_GPIO0
|
|
|
|
#endif // CONFIG_ETH_RMII_CLK_INPUT
|
|
|
|
#endif // CONFIG_ETH_PHY_INTERFACE_MII
|
|
|
|
}
|
|
|
|
|
|
|
|
void emac_hal_reset(emac_hal_context_t *hal)
|
|
|
|
{
|
|
|
|
hal->dma_regs->dmabusmode.sw_rst = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool emac_hal_is_reset_done(emac_hal_context_t *hal)
|
|
|
|
{
|
|
|
|
return hal->dma_regs->dmabusmode.sw_rst ? false : true;
|
|
|
|
}
|
|
|
|
|
|
|
|
void emac_hal_set_csr_clock_range(emac_hal_context_t *hal)
|
|
|
|
{
|
|
|
|
/* Tell MAC system clock Frequency, which will determin the frequency range of MDC(1MHz~2.5MHz) */
|
|
|
|
if (CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ >= 20 && CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ < 35) {
|
|
|
|
hal->mac_regs->emacgmiiaddr.miicsrclk = 2;
|
|
|
|
} else if (CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ >= 35 && CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ < 60) {
|
|
|
|
hal->mac_regs->emacgmiiaddr.miicsrclk = 3;
|
|
|
|
} else if (CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ >= 60 && CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ < 100) {
|
|
|
|
hal->mac_regs->emacgmiiaddr.miicsrclk = 0;
|
|
|
|
} else if (CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ >= 100 && CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ < 150) {
|
|
|
|
hal->mac_regs->emacgmiiaddr.miicsrclk = 1;
|
|
|
|
} else if (CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ > 150 && CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ < 250) {
|
|
|
|
hal->mac_regs->emacgmiiaddr.miicsrclk = 4;
|
|
|
|
} else {
|
|
|
|
hal->mac_regs->emacgmiiaddr.miicsrclk = 5;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void emac_hal_reset_desc_chain(emac_hal_context_t *hal)
|
|
|
|
{
|
|
|
|
/* reset DMA descriptors */
|
|
|
|
hal->rx_desc = (eth_dma_rx_descriptor_t *)(hal->descriptors);
|
|
|
|
hal->tx_desc = (eth_dma_tx_descriptor_t *)(hal->descriptors +
|
|
|
|
sizeof(eth_dma_rx_descriptor_t) * CONFIG_ETH_DMA_RX_BUFFER_NUM);
|
|
|
|
/* init rx chain */
|
|
|
|
for (int i = 0; i < CONFIG_ETH_DMA_RX_BUFFER_NUM; i++) {
|
|
|
|
/* Set Own bit of the Rx descriptor Status: DMA */
|
|
|
|
hal->rx_desc[i].RDES0.Own = 1;
|
|
|
|
/* Set Buffer1 size and Second Address Chained bit */
|
|
|
|
hal->rx_desc[i].RDES1.SecondAddressChained = 1;
|
|
|
|
hal->rx_desc[i].RDES1.ReceiveBuffer1Size = CONFIG_ETH_DMA_BUFFER_SIZE;
|
|
|
|
/* Enable Ethernet DMA Rx Descriptor interrupt */
|
|
|
|
hal->rx_desc[i].RDES1.DisableInterruptOnComplete = 0;
|
|
|
|
/* point to the buffer */
|
|
|
|
hal->rx_desc[i].Buffer1Addr = (uint32_t)(hal->rx_buf[i]);
|
|
|
|
/* point to next descriptor */
|
|
|
|
hal->rx_desc[i].Buffer2NextDescAddr = (uint32_t)(hal->rx_desc + i + 1);
|
|
|
|
}
|
|
|
|
/* For last descriptor, set next descriptor address register equal to the first descriptor base address */
|
|
|
|
hal->rx_desc[CONFIG_ETH_DMA_RX_BUFFER_NUM - 1].Buffer2NextDescAddr = (uint32_t)(hal->rx_desc);
|
|
|
|
|
|
|
|
/* init tx chain */
|
|
|
|
for (int i = 0; i < CONFIG_ETH_DMA_TX_BUFFER_NUM; i++) {
|
|
|
|
/* Set Second Address Chained bit */
|
|
|
|
hal->tx_desc[i].TDES0.SecondAddressChained = 1;
|
|
|
|
hal->tx_desc[i].TDES1.TransmitBuffer1Size = CONFIG_ETH_DMA_BUFFER_SIZE;
|
|
|
|
/* Enable Ethernet DMA Tx Descriptor interrupt */
|
|
|
|
hal->tx_desc[1].TDES0.InterruptOnComplete = 1;
|
|
|
|
/* Enable Transmit Timestamp */
|
|
|
|
hal->tx_desc[i].TDES0.TransmitTimestampEnable = 1;
|
|
|
|
/* point to the buffer */
|
|
|
|
hal->tx_desc[i].Buffer1Addr = (uint32_t)(hal->tx_buf[i]);
|
|
|
|
/* point to next descriptor */
|
|
|
|
hal->tx_desc[i].Buffer2NextDescAddr = (uint32_t)(hal->tx_desc + i + 1);
|
|
|
|
}
|
|
|
|
/* For last descriptor, set next descriptor address register equal to the first descriptor base address */
|
|
|
|
hal->tx_desc[CONFIG_ETH_DMA_TX_BUFFER_NUM - 1].Buffer2NextDescAddr = (uint32_t)(hal->tx_desc);
|
|
|
|
|
|
|
|
/* set base address of the first descriptor */
|
|
|
|
hal->dma_regs->dmarxbaseaddr = (uint32_t)hal->rx_desc;
|
|
|
|
hal->dma_regs->dmatxbaseaddr = (uint32_t)hal->tx_desc;
|
|
|
|
}
|
|
|
|
|
|
|
|
void emac_hal_init_mac_default(emac_hal_context_t *hal)
|
|
|
|
{
|
|
|
|
/* MACCR Configuration */
|
|
|
|
typeof(hal->mac_regs->gmacconfig) maccr = hal->mac_regs->gmacconfig;
|
|
|
|
/* Enable the watchdog on the receiver, frame longer than 2048 Bytes is not allowed */
|
|
|
|
maccr.watchdog = EMAC_WATCHDOG_ENABLE;
|
|
|
|
/* Enable the jabber timer on the transmitter, frame longer than 2048 Bytes is not allowed */
|
|
|
|
maccr.jabber = EMAC_JABBER_ENABLE;
|
|
|
|
/* minimum IFG between frames during transmission is 96 bit times */
|
|
|
|
maccr.interframegap = EMAC_INTERFRAME_GAP_96BIT;
|
|
|
|
/* Enable Carrier Sense During Transmission */
|
|
|
|
maccr.disablecrs = EMAC_CARRIERSENSE_ENABLE;
|
|
|
|
/* Select port: 10/100 Mbps */
|
|
|
|
maccr.mii = EMAC_PORT_10_100MBPS;
|
|
|
|
/* Select speed: here set default 100M, afterwards, will reset by auto-negotiation */
|
|
|
|
maccr.fespeed = EMAC_SPEED_100M;
|
|
|
|
/* Allow the reception of frames when the TX_EN signal is asserted in Half-Duplex mode */
|
|
|
|
maccr.rxown = EMAC_RECEIVE_OWN_ENABLE;
|
|
|
|
/* Disable internal loopback mode */
|
|
|
|
maccr.loopback = EMAC_LOOPBACK_DISABLE;
|
|
|
|
/* Select duplex mode: here set default full duplex, afterwards, will reset by auto-negotiation */
|
|
|
|
maccr.duplex = EMAC_DUPLEX_FULL;
|
|
|
|
/* Select the checksum mode for received frame payload's TCP/UDP/ICMP headers */
|
|
|
|
maccr.rxipcoffload = EMAC_CHECKSUM_HW;
|
|
|
|
/* Enable MAC retry transmission when a colision occurs in half duplex mode */
|
|
|
|
maccr.retry = EMAC_RETRY_TRANSMISSION_ENABLE;
|
|
|
|
/* MAC passes all incoming frames to host, without modifying them */
|
|
|
|
maccr.padcrcstrip = EMAC_AUTO_PAD_CRC_STRIP_DISABLE;
|
|
|
|
/* Set Back-Off limit time before retry a transmittion after a collision */
|
|
|
|
maccr.backofflimit = EMAC_BACKOFF_LIMIT_10;
|
|
|
|
/* Disable deferral check, MAC defers until the CRS signal goes inactive */
|
|
|
|
maccr.deferralcheck = EMAC_DEFERRAL_CHECK_DISABLE;
|
|
|
|
/* Set preamble length 7 Bytes */
|
|
|
|
maccr.pltf = EMAC_PREAMBLE_LENGTH_7;
|
|
|
|
hal->mac_regs->gmacconfig = maccr;
|
|
|
|
|
|
|
|
/* MACFFR Configuration */
|
|
|
|
typeof(hal->mac_regs->gmacff) macffr = hal->mac_regs->gmacff;
|
|
|
|
/* Receiver module passes only those frames to the Application that pass the SA or DA address filter */
|
|
|
|
macffr.receive_all = EMAC_RECEIVE_ALL_DISABLE;
|
|
|
|
/* Disable source address filter */
|
|
|
|
macffr.safe = EMAC_SOURCE_ADDR_FILTER_DISABLE;
|
|
|
|
macffr.saif = 0;
|
|
|
|
/* MAC blocks all control frames */
|
|
|
|
macffr.pcf = EMAC_CONTROL_FRAME_BLOCKALL;
|
|
|
|
/* AFM module passes all received broadcast frames and multicast frames */
|
|
|
|
macffr.dbf = EMAC_RECEPT_BROADCAST_ENABLE;
|
|
|
|
macffr.pam = 1;
|
|
|
|
/* Address Check block operates in normal filtering mode for the DA address */
|
|
|
|
macffr.daif = EMAC_DEST_ADDR_FILTER_NORMAL;
|
|
|
|
/* Disable Promiscuous Mode */
|
|
|
|
macffr.pmode = EMAC_PROMISCUOUS_DISABLE;
|
|
|
|
hal->mac_regs->gmacff = macffr;
|
|
|
|
|
|
|
|
/* MACFCR Configuration */
|
|
|
|
typeof(hal->mac_regs->gmacfc) macfcr = hal->mac_regs->gmacfc;
|
|
|
|
/* Pause time */
|
|
|
|
macfcr.pause_time = EMAC_PAUSE_TIME;
|
|
|
|
/* Enable generation of Zero-Quanta Pause Control frames */
|
|
|
|
macfcr.dzpq = EMAC_ZERO_QUANTA_PAUSE_ENABLE;
|
|
|
|
/* Threshold of the PAUSE to be checked for automatic retransmission of PAUSE Frame */
|
|
|
|
macfcr.plt = EMAC_PAUSE_LOW_THRESHOLD_MINUS_28;
|
|
|
|
/* Don't allow MAC detect Pause frames with MAC address0 unicast address and unique multicast address */
|
|
|
|
macfcr.upfd = EMAC_UNICAST_PAUSE_DETECT_DISABLE;
|
|
|
|
/* Enable MAC to decode the received Pause frame and disable its transmitter for a specific time */
|
|
|
|
macfcr.rfce = EMAC_RECEIVE_FLOW_CONTROL_ENABLE;
|
|
|
|
/* Enable MAC to transmit Pause frames in full duplex mode or the MAC back-pressure operation in half duplex mode */
|
|
|
|
macfcr.tfce = EMAC_TRANSMIT_FLOW_CONTROL_ENABLE;
|
|
|
|
hal->mac_regs->gmacfc = macfcr;
|
|
|
|
}
|
|
|
|
|
|
|
|
void emac_hal_init_dma_default(emac_hal_context_t *hal)
|
|
|
|
{
|
|
|
|
/* DMAOMR Configuration */
|
|
|
|
typeof(hal->dma_regs->dmaoperation_mode) dmaomr = hal->dma_regs->dmaoperation_mode;
|
|
|
|
/* Enable Dropping of TCP/IP Checksum Error Frames */
|
|
|
|
dmaomr.dis_drop_tcpip_err_fram = EMAC_DROP_TCPIP_CHECKSUM_ERROR_ENABLE;
|
|
|
|
/* Enable Receive Store Forward */
|
|
|
|
dmaomr.rx_store_forward = EMAC_RECEIVE_STORE_FORWARD_ENABLE;
|
|
|
|
/* Enable Flushing of Received Frames because of the unavailability of receive descriptors or buffers */
|
|
|
|
dmaomr.dis_flush_recv_frames = EMAC_FLUSH_RECEIVED_FRAME_ENABLE;
|
|
|
|
/* Enable Transmit Store Forward */
|
|
|
|
dmaomr.tx_str_fwd = EMAC_TRANSMIT_STORE_FORWARD_ENABLE;
|
|
|
|
/* Flush Transmit FIFO */
|
|
|
|
dmaomr.flush_tx_fifo = 1;
|
|
|
|
/* Transmit Threshold Control */
|
|
|
|
dmaomr.tx_thresh_ctrl = EMAC_TRANSMIT_THRESHOLD_CONTROL_64;
|
|
|
|
/* Disable Forward Error Frame */
|
|
|
|
dmaomr.fwd_err_frame = EMAC_FORWARD_ERROR_FRAME_DISABLE;
|
|
|
|
/* Disable forward undersized good frame */
|
|
|
|
dmaomr.fwd_under_gf = EMAC_FORWARD_UNDERSIZED_GOOD_FRAME_DISABLE;
|
|
|
|
/* Receive Threshold Control */
|
|
|
|
dmaomr.rx_thresh_ctrl = EMAC_RECEIVE_THRESHOLD_CONTROL_64;
|
|
|
|
/* Allow the DMA to process a second frame of Transmit data even before obtaining the status for the first frame */
|
|
|
|
dmaomr.opt_second_frame = EMAC_OPERATE_SECOND_FRAME_ENABLE;
|
|
|
|
hal->dma_regs->dmaoperation_mode = dmaomr;
|
|
|
|
|
|
|
|
/* DMABMR Configuration */
|
|
|
|
typeof(hal->dma_regs->dmabusmode) dmabmr = hal->dma_regs->dmabusmode;
|
|
|
|
/* Enable Mixed Burst */
|
|
|
|
dmabmr.dmamixedburst = EMAC_MIXED_BURST_ENABLE;
|
|
|
|
/* Enable Address Aligned Beates */
|
|
|
|
dmabmr.dmaaddralibea = EMAC_ADDR_ALIGN_BEATS_ENABLE;
|
|
|
|
/* Use Separate PBL */
|
|
|
|
dmabmr.use_sep_pbl = EMAC_USE_SEPARATE_PBL;
|
|
|
|
/* Set Rx/Tx DMA Burst Length */
|
|
|
|
dmabmr.rx_dma_pbl = EMAC_DMA_BURST_LENGTH_32BEAT;
|
|
|
|
dmabmr.prog_burst_len = EMAC_DMA_BURST_LENGTH_32BEAT;
|
|
|
|
/* Enable Enhanced Descriptor,8 Words(32 Bytes) */
|
|
|
|
dmabmr.alt_desc_size = EMAC_ENHANCED_DESCRIPTOR_ENABLE;
|
|
|
|
/* Specifies the number of word to skip between two unchained descriptors (Ring mode) */
|
|
|
|
dmabmr.desc_skip_len = 0;
|
|
|
|
/* DMA Arbitration Scheme */
|
|
|
|
dmabmr.dma_arb_sch = EMAC_DMA_ARBITRATION_SCHEME_ROUNDROBIN;
|
|
|
|
/* Set priority ratio in the weighted round-robin arbitration between Rx DMA and Tx DMA */
|
|
|
|
dmabmr.pri_ratio = EMAC_DMA_ARBITRATION_ROUNDROBIN_RXTX_1_1;
|
|
|
|
hal->dma_regs->dmabusmode = dmabmr;
|
|
|
|
}
|
|
|
|
|
|
|
|
void emac_hal_set_speed(emac_hal_context_t *hal, uint32_t speed)
|
|
|
|
{
|
|
|
|
hal->mac_regs->gmacconfig.fespeed = speed;
|
|
|
|
}
|
|
|
|
|
|
|
|
void emac_hal_set_duplex(emac_hal_context_t *hal, uint32_t duplex)
|
|
|
|
{
|
|
|
|
hal->mac_regs->gmacconfig.duplex = duplex;
|
|
|
|
}
|
|
|
|
|
|
|
|
void emac_hal_set_promiscuous(emac_hal_context_t *hal, bool enable)
|
|
|
|
{
|
|
|
|
if (enable) {
|
|
|
|
hal->mac_regs->gmacff.pmode = 1;
|
|
|
|
} else {
|
|
|
|
hal->mac_regs->gmacff.pmode = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool emac_hal_is_mii_busy(emac_hal_context_t *hal)
|
|
|
|
{
|
|
|
|
return hal->mac_regs->emacgmiiaddr.miibusy ? true : false;
|
|
|
|
}
|
|
|
|
|
|
|
|
void emac_hal_set_phy_cmd(emac_hal_context_t *hal, uint32_t phy_addr, uint32_t phy_reg, bool write)
|
|
|
|
{
|
|
|
|
typeof(hal->mac_regs->emacgmiiaddr) macmiiar = hal->mac_regs->emacgmiiaddr;
|
|
|
|
macmiiar.miidev = phy_addr;
|
|
|
|
/* Set the PHY register address */
|
|
|
|
macmiiar.miireg = phy_reg;
|
|
|
|
if (write) {
|
|
|
|
/* Set write mode */
|
|
|
|
macmiiar.miiwrite = 1;
|
|
|
|
} else {
|
|
|
|
/* Set read mode */
|
|
|
|
macmiiar.miiwrite = 0;
|
|
|
|
}
|
|
|
|
/* Set MII busy bit */
|
|
|
|
macmiiar.miibusy = 1;
|
|
|
|
/* Write the result value into the MII Address register */
|
|
|
|
hal->mac_regs->emacgmiiaddr = macmiiar;
|
|
|
|
}
|
|
|
|
|
|
|
|
void emac_hal_set_phy_data(emac_hal_context_t *hal, uint32_t reg_value)
|
|
|
|
{
|
|
|
|
hal->mac_regs->emacmiidata.mii_data = reg_value;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t emac_hal_get_phy_data(emac_hal_context_t *hal)
|
|
|
|
{
|
|
|
|
return hal->mac_regs->emacmiidata.mii_data;
|
|
|
|
}
|
|
|
|
|
|
|
|
void emac_hal_set_address(emac_hal_context_t *hal, uint8_t *mac_addr)
|
|
|
|
{
|
|
|
|
/* Make sure mac address is unicast type */
|
|
|
|
if (!(mac_addr[0] & 0x01)) {
|
|
|
|
hal->mac_regs->emacaddr0high.address0_hi = (mac_addr[5] << 8) | mac_addr[4];
|
|
|
|
hal->mac_regs->emacaddr0low = (mac_addr[3] << 24) | (mac_addr[2] << 16) | (mac_addr[1] << 8) | (mac_addr[0]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void emac_hal_start(emac_hal_context_t *hal)
|
|
|
|
{
|
|
|
|
typeof(hal->dma_regs->dmaoperation_mode) opm = hal->dma_regs->dmaoperation_mode;
|
|
|
|
typeof(hal->mac_regs->gmacconfig) cfg = hal->mac_regs->gmacconfig;
|
|
|
|
|
|
|
|
/* Enable Ethernet MAC and DMA Interrupt */
|
|
|
|
hal->dma_regs->dmain_en.val = 0xFFFFFFFF;
|
|
|
|
|
|
|
|
/* Flush Transmit FIFO */
|
|
|
|
opm.flush_tx_fifo = 1;
|
|
|
|
/* Start DMA transmission */
|
|
|
|
opm.start_stop_transmission_command = 1;
|
|
|
|
/* Start DMA reception */
|
|
|
|
opm.start_stop_rx = 1;
|
|
|
|
/* Enable transmit state machine of the MAC for transmission on the MII */
|
|
|
|
cfg.tx = 1;
|
|
|
|
/* Enable receive state machine of the MAC for reception from the MII */
|
|
|
|
cfg.rx = 1;
|
|
|
|
|
|
|
|
hal->dma_regs->dmaoperation_mode = opm;
|
|
|
|
hal->mac_regs->gmacconfig = cfg;
|
|
|
|
|
|
|
|
/* Clear all pending interrupts */
|
|
|
|
hal->dma_regs->dmastatus.val = 0xFFFFFFFF;
|
|
|
|
}
|
|
|
|
|
|
|
|
void emac_hal_stop(emac_hal_context_t *hal)
|
|
|
|
{
|
|
|
|
typeof(hal->dma_regs->dmaoperation_mode) opm = hal->dma_regs->dmaoperation_mode;
|
|
|
|
typeof(hal->mac_regs->gmacconfig) cfg = hal->mac_regs->gmacconfig;
|
|
|
|
|
|
|
|
/* Flush Transmit FIFO */
|
|
|
|
opm.flush_tx_fifo = 1;
|
|
|
|
/* Stop DMA transmission */
|
|
|
|
opm.start_stop_transmission_command = 0;
|
|
|
|
/* Stop DMA reception */
|
|
|
|
opm.start_stop_rx = 0;
|
|
|
|
/* Disable receive state machine of the MAC for reception from the MII */
|
|
|
|
cfg.rx = 0;
|
|
|
|
/* Disable transmit state machine of the MAC for transmission on the MII */
|
|
|
|
cfg.tx = 0;
|
|
|
|
|
|
|
|
hal->dma_regs->dmaoperation_mode = opm;
|
|
|
|
hal->mac_regs->gmacconfig = cfg;
|
|
|
|
|
|
|
|
/* Disable Ethernet MAC and DMA Interrupt */
|
|
|
|
hal->dma_regs->dmain_en.val = 0x0;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t emac_hal_get_tx_desc_owner(emac_hal_context_t *hal)
|
|
|
|
{
|
|
|
|
return hal->tx_desc->TDES0.Own;
|
|
|
|
}
|
|
|
|
|
|
|
|
void emac_hal_transmit_frame(emac_hal_context_t *hal, uint8_t *buf, uint32_t length)
|
|
|
|
{
|
|
|
|
/* Get the number of Tx buffers to use for the frame */
|
|
|
|
uint32_t bufcount = 0;
|
|
|
|
uint32_t lastlen = length;
|
|
|
|
while (lastlen > CONFIG_ETH_DMA_BUFFER_SIZE) {
|
|
|
|
lastlen -= CONFIG_ETH_DMA_BUFFER_SIZE;
|
|
|
|
bufcount++;
|
|
|
|
}
|
|
|
|
if (lastlen) {
|
|
|
|
bufcount++;
|
|
|
|
}
|
|
|
|
/* A frame is transmitted in multiple descriptor */
|
|
|
|
for (uint32_t i = 0; i < bufcount; i++) {
|
|
|
|
/* Clear FIRST and LAST segment bits */
|
|
|
|
hal->tx_desc->TDES0.FirstSegment = 0;
|
|
|
|
hal->tx_desc->TDES0.LastSegment = 0;
|
|
|
|
if (i == 0) {
|
|
|
|
/* Setting the first segment bit */
|
|
|
|
hal->tx_desc->TDES0.FirstSegment = 1;
|
|
|
|
}
|
|
|
|
if (i == (bufcount - 1)) {
|
|
|
|
/* Setting the last segment bit */
|
|
|
|
hal->tx_desc->TDES0.LastSegment = 1;
|
|
|
|
/* Enable transmit interrupt */
|
|
|
|
hal->tx_desc->TDES0.InterruptOnComplete = 1;
|
|
|
|
/* Program size */
|
|
|
|
hal->tx_desc->TDES1.TransmitBuffer1Size = lastlen;
|
|
|
|
/* copy data from uplayer stack buffer */
|
|
|
|
memcpy((void *)(hal->tx_desc->Buffer1Addr), buf + i * CONFIG_ETH_DMA_BUFFER_SIZE, lastlen);
|
|
|
|
} else {
|
|
|
|
/* Program size */
|
|
|
|
hal->tx_desc->TDES1.TransmitBuffer1Size = CONFIG_ETH_DMA_BUFFER_SIZE;
|
|
|
|
/* copy data from uplayer stack buffer */
|
|
|
|
memcpy((void *)(hal->tx_desc->Buffer1Addr), buf + i * CONFIG_ETH_DMA_BUFFER_SIZE, CONFIG_ETH_DMA_BUFFER_SIZE);
|
|
|
|
}
|
|
|
|
/* Set Own bit of the Tx descriptor Status: gives the buffer back to ETHERNET DMA */
|
|
|
|
hal->tx_desc->TDES0.Own = EMAC_DMADESC_OWNER_DMA;
|
|
|
|
/* Point to next descriptor */
|
|
|
|
hal->tx_desc = (eth_dma_tx_descriptor_t *)(hal->tx_desc->Buffer2NextDescAddr);
|
|
|
|
}
|
|
|
|
hal->dma_regs->dmatxpolldemand = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t emac_hal_receive_frame(emac_hal_context_t *hal, uint8_t *buf, uint32_t *frames_remain)
|
|
|
|
{
|
|
|
|
eth_dma_rx_descriptor_t *desc_iter = NULL;
|
|
|
|
eth_dma_rx_descriptor_t *first_desc = NULL;
|
|
|
|
uint32_t iter = 0;
|
|
|
|
uint32_t seg_count = 0;
|
|
|
|
uint32_t len = 0;
|
|
|
|
uint32_t frame_count = 0;
|
|
|
|
|
|
|
|
first_desc = hal->rx_desc;
|
|
|
|
desc_iter = hal->rx_desc;
|
|
|
|
/* Traverse descriptors owned by CPU */
|
|
|
|
while ((desc_iter->RDES0.Own != EMAC_DMADESC_OWNER_DMA) && (iter < CONFIG_ETH_DMA_RX_BUFFER_NUM) && !frame_count) {
|
|
|
|
iter++;
|
|
|
|
seg_count++;
|
|
|
|
/* Last segment in frame */
|
|
|
|
if (desc_iter->RDES0.LastDescriptor) {
|
|
|
|
/* Get the Frame Length of the received packet: substruct 4 bytes of the CRC */
|
|
|
|
len = desc_iter->RDES0.FrameLength - ETH_CRC_LENGTH;
|
|
|
|
/* update unhandled frame count */
|
|
|
|
frame_count++;
|
|
|
|
}
|
|
|
|
/* First segment in frame */
|
|
|
|
if (desc_iter->RDES0.FirstDescriptor) {
|
|
|
|
first_desc = desc_iter;
|
|
|
|
}
|
|
|
|
/* point to next descriptor */
|
|
|
|
desc_iter = (eth_dma_rx_descriptor_t *)(desc_iter->Buffer2NextDescAddr);
|
|
|
|
}
|
|
|
|
/* there's at least one frame to process */
|
|
|
|
if (frame_count) {
|
|
|
|
/* check how many frames left to handle */
|
|
|
|
while ((desc_iter->RDES0.Own != EMAC_DMADESC_OWNER_DMA) && (iter < CONFIG_ETH_DMA_RX_BUFFER_NUM)) {
|
|
|
|
iter++;
|
|
|
|
if (desc_iter->RDES0.LastDescriptor) {
|
|
|
|
frame_count++;
|
|
|
|
}
|
|
|
|
/* point to next descriptor */
|
|
|
|
desc_iter = (eth_dma_rx_descriptor_t *)(desc_iter->Buffer2NextDescAddr);
|
|
|
|
}
|
|
|
|
desc_iter = first_desc;
|
|
|
|
for (iter = 0; iter < seg_count - 1; iter++) {
|
|
|
|
/* copy data to buffer */
|
|
|
|
memcpy(buf + iter * CONFIG_ETH_DMA_BUFFER_SIZE,
|
|
|
|
(void *)(desc_iter->Buffer1Addr), CONFIG_ETH_DMA_BUFFER_SIZE);
|
|
|
|
/* Set Own bit in Rx descriptors: gives the buffers back to DMA */
|
|
|
|
desc_iter->RDES0.Own = EMAC_DMADESC_OWNER_DMA;
|
|
|
|
desc_iter = (eth_dma_rx_descriptor_t *)(desc_iter->Buffer2NextDescAddr);
|
|
|
|
}
|
|
|
|
memcpy(buf + iter * CONFIG_ETH_DMA_BUFFER_SIZE,
|
|
|
|
(void *)(desc_iter->Buffer1Addr), len % CONFIG_ETH_DMA_BUFFER_SIZE);
|
|
|
|
desc_iter->RDES0.Own = EMAC_DMADESC_OWNER_DMA;
|
|
|
|
/* update rxdesc */
|
|
|
|
hal->rx_desc = (eth_dma_rx_descriptor_t *)(desc_iter->Buffer2NextDescAddr);
|
|
|
|
/* poll rx demand */
|
|
|
|
hal->dma_regs->dmarxpolldemand = 0;
|
|
|
|
frame_count--;
|
|
|
|
}
|
|
|
|
*frames_remain = frame_count;
|
|
|
|
return len;
|
|
|
|
}
|
|
|
|
|
|
|
|
void emac_hal_isr(void *arg)
|
|
|
|
{
|
2019-07-10 22:47:17 -04:00
|
|
|
emac_hal_context_t *hal = (emac_hal_context_t *)arg;
|
2019-04-10 04:24:50 -04:00
|
|
|
typeof(hal->dma_regs->dmastatus) dma_status = hal->dma_regs->dmastatus;
|
|
|
|
/* DMA Normal Interrupt */
|
|
|
|
if (dma_status.norm_int_summ) {
|
|
|
|
/* Transmit Interrupt */
|
|
|
|
if (dma_status.trans_int) {
|
|
|
|
emac_hal_tx_complete_cb(arg);
|
|
|
|
hal->dma_regs->dmastatus.trans_int = 1;
|
|
|
|
}
|
|
|
|
/* Transmit Buffer Unavailable */
|
|
|
|
if (dma_status.trans_buf_unavail) {
|
|
|
|
emac_hal_tx_unavail_cb(arg);
|
|
|
|
hal->dma_regs->dmastatus.trans_buf_unavail = 1;
|
|
|
|
}
|
|
|
|
/* Receive Interrupt */
|
|
|
|
if (dma_status.recv_int) {
|
|
|
|
emac_hal_rx_complete_cb(arg);
|
|
|
|
hal->dma_regs->dmastatus.recv_int = 1;
|
|
|
|
}
|
|
|
|
/* Early Receive Interrupt */
|
|
|
|
if (dma_status.early_recv_int) {
|
|
|
|
emac_hal_rx_early_cb(arg);
|
|
|
|
hal->dma_regs->dmastatus.early_recv_int = 1;
|
|
|
|
}
|
|
|
|
hal->dma_regs->dmastatus.norm_int_summ = 1;
|
|
|
|
}
|
|
|
|
/* DMA Abnormal Interrupt */
|
|
|
|
if (dma_status.abn_int_summ) {
|
|
|
|
/* Transmit Process Stopped */
|
|
|
|
if (dma_status.trans_proc_stop) {
|
|
|
|
hal->dma_regs->dmastatus.trans_proc_stop = 1;
|
|
|
|
}
|
|
|
|
/* Transmit Jabber Timeout */
|
|
|
|
if (dma_status.trans_jabber_to) {
|
|
|
|
hal->dma_regs->dmastatus.trans_jabber_to = 1;
|
|
|
|
}
|
|
|
|
/* Receive FIFO Overflow */
|
|
|
|
if (dma_status.recv_ovflow) {
|
|
|
|
hal->dma_regs->dmastatus.recv_ovflow = 1;
|
|
|
|
}
|
|
|
|
/* Transmit Underflow */
|
|
|
|
if (dma_status.trans_undflow) {
|
|
|
|
hal->dma_regs->dmastatus.trans_undflow = 1;
|
|
|
|
}
|
|
|
|
/* Receive Buffer Unavailable */
|
|
|
|
if (dma_status.recv_buf_unavail) {
|
|
|
|
emac_hal_rx_unavail_cb(arg);
|
|
|
|
hal->dma_regs->dmastatus.recv_buf_unavail = 1;
|
|
|
|
}
|
|
|
|
/* Receive Process Stopped */
|
|
|
|
if (dma_status.recv_proc_stop) {
|
|
|
|
hal->dma_regs->dmastatus.recv_proc_stop = 1;
|
|
|
|
}
|
|
|
|
/* Receive Watchdog Timeout */
|
|
|
|
if (dma_status.recv_wdt_to) {
|
|
|
|
hal->dma_regs->dmastatus.recv_wdt_to = 1;
|
|
|
|
}
|
|
|
|
/* Early Transmit Interrupt */
|
|
|
|
if (dma_status.early_trans_int) {
|
|
|
|
hal->dma_regs->dmastatus.early_trans_int = 1;
|
|
|
|
}
|
|
|
|
/* Fatal Bus Error */
|
|
|
|
if (dma_status.fatal_bus_err_int) {
|
|
|
|
hal->dma_regs->dmastatus.fatal_bus_err_int = 1;
|
|
|
|
}
|
|
|
|
hal->dma_regs->dmastatus.abn_int_summ = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
__attribute__((weak)) void emac_hal_tx_complete_cb(void *arg)
|
|
|
|
{
|
|
|
|
// This is a weak function, do nothing by default
|
|
|
|
// Upper code can rewrite this function
|
|
|
|
// Note: you're in the interrupt context
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
__attribute__((weak)) void emac_hal_tx_unavail_cb(void *arg)
|
|
|
|
{
|
|
|
|
// This is a weak function, do nothing by default
|
|
|
|
// Upper code can rewrite this function
|
|
|
|
// Note: you're in the interrupt context
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
__attribute__((weak)) void emac_hal_rx_complete_cb(void *arg)
|
|
|
|
{
|
|
|
|
// This is a weak function, do nothing by default
|
|
|
|
// Upper code can rewrite this function
|
|
|
|
// Note: you're in the interrupt context
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
__attribute__((weak)) void emac_hal_rx_early_cb(void *arg)
|
|
|
|
{
|
|
|
|
// This is a weak function, do nothing by default
|
|
|
|
// Upper code can rewrite this function
|
|
|
|
// Note: you're in the interrupt context
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
__attribute__((weak)) void emac_hal_rx_unavail_cb(void *arg)
|
|
|
|
{
|
|
|
|
// This is a weak function, do nothing by default
|
|
|
|
// Upper code can rewrite this function
|
|
|
|
// Note: you're in the interrupt context
|
|
|
|
return;
|
|
|
|
}
|