Although it is possible to connect an SD card breakout adapter, keep in mind that connections using breakout cables are often unreliable and have poor signal integrity. You may need to use lower clock frequency when working with SD card breakout adapters.
This example doesn't utilize card detect (CD) and write protect (WP) signals from SD card slot.
### Pin assignments for ESP32
On ESP32, SDMMC peripheral is connected to specific GPIO pins using the IO MUX. GPIO pins cannot be customized. Please see the table below for the pin connections.
When using an ESP-WROVER-KIT board, this example runs without any extra modifications required. Only an SD card needs to be inserted into the slot.
On ESP32-S3, SDMMC peripheral is connected to GPIO pins using GPIO matrix. This allows arbitrary GPIOs to be used to connect an SD card. In this example, GPIOs can be configured in two ways:
1. Using menuconfig: Run `idf.py menuconfig` in the project directory and open "SD/MMC Example Configuration" menu.
2. In the source code: See the initialization of ``sdmmc_slot_config_t slot_config`` structure in the example code.
The table below lists the default pin assignments.
When using an ESP32-S3-USB-OTG board, this example runs without any extra modifications required. Only an SD card needs to be inserted into the slot.
ESP32-S3 pin | SD card pin | Notes
--------------|-------------|------------
GPIO36 | CLK | 10k pullup
GPIO35 | CMD | 10k pullup
GPIO37 | D0 | 10k pullup
GPIO38 | D1 | not used in 1-line SD mode; 10k pullup in 4-line mode
GPIO33 | D2 | not used in 1-line SD mode; 10k pullup in 4-line mode
GPIO34 | D3 | not used in 1-line SD mode, but card's D3 pin must have a 10k pullup
### 4-line and 1-line SD modes
By default, this example uses 4 line SD mode, utilizing 6 pins: CLK, CMD, D0 - D3. It is possible to use 1-line mode (CLK, CMD, D0) by changing "SD/MMC bus width" in the example configuration menu (see `CONFIG_EXAMPLE_SDMMC_BUS_WIDTH_1`).
Note that even if card's D3 line is not connected to the ESP chip, it still has to be pulled up, otherwise the card will go into SPI protocol mode.
GPIO2 pin is used as a bootstrapping pin, and should be low to enter UART download mode. One way to do this is to connect GPIO0 and GPIO2 using a jumper, and then the auto-reset circuit on most development boards will pull GPIO2 low along with GPIO0, when entering download mode.
- Some boards have pulldown and/or LED on GPIO2. LED is usually ok, but pulldown will interfere with D0 signals and must be removed. Check the schematic of your development board for anything connected to GPIO2.
GPIO12 is used as a bootstrapping pin to select output voltage of an internal regulator which powers the flash chip (VDD_SDIO). This pin has an internal pulldown so if left unconnected it will read low at reset (selecting default 3.3V operation). When adding a pullup to this pin for SD card operation, consider the following:
- For boards which don't use the internal regulator (VDD_SDIO) to power the flash, GPIO12 can be pulled high.
- For boards which use 1.8V flash chip, GPIO12 needs to be pulled high at reset. This is fully compatible with SD card operation.
- On boards which use the internal regulator and a 3.3V flash chip, GPIO12 must be low at reset. This is incompatible with SD card operation.
* In most cases, external pullup can be omitted and an internal pullup can be enabled using a `gpio_pullup_en(GPIO_NUM_12);` call. Most SD cards work fine when an internal pullup on GPIO12 line is enabled. Note that if ESP32 experiences a power-on reset while the SD card is sending data, high level on GPIO12 can be latched into the bootstrapping register, and ESP32 will enter a boot loop until external reset with correct GPIO12 level is applied.
* Another option is to burn the flash voltage selection efuses. This will permanently select 3.3V output voltage for the internal regulator, and GPIO12 will not be used as a bootstrapping pin. Then it is safe to connect a pullup resistor to GPIO12. This option is suggested for production use.
This command will burn the `XPD_SDIO_TIEH`, `XPD_SDIO_FORCE`, and `XPD_SDIO_REG` efuses. With all three burned to value 1, the internal VDD_SDIO flash voltage regulator is permanently enabled at 3.3V. See the technical reference manual for more details.
`espefuse.py` has a `--do-not-confirm` option if running from an automated flashing script.
See [the document about pullup requirements](https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/peripherals/sd_pullup_requirements.html) for more details about pullup support and compatibility of modules and development boards.
Here is an example console output. In this case a 128MB SDSC card was connected, and `EXAMPLE_FORMAT_IF_MOUNT_FAILED` menuconfig option enabled. Card was unformatted, so the initial mount has failed. Card was then partitioned, formatted, and mounted again.
Disconnect the SD card D0/MISO line from GPIO2 and try uploading again. Read "Note about GPIO2" above.
### Card fails to initialize with `sdmmc_init_sd_scr: send_scr (1) returned 0x107` error
Check connections between the card and the ESP32. For example, if you have disconnected GPIO2 to work around the flashing issue, connect it back and reset the ESP32 (using a button on the development board, or by pressing Ctrl-T Ctrl-R in IDF Monitor).
### Card fails to initialize with `sdmmc_check_scr: send_scr returned 0xffffffff` error
Connections between the card and the ESP32 are too long for the frequency used. Try using shorter connections, or try reducing the clock speed of SD interface.
The example will be able to mount only cards formatted using FAT32 filesystem. If the card is formatted as exFAT or some other filesystem, you have an option to format it in the example code. Enable the `EXAMPLE_FORMAT_IF_MOUNT_FAILED` menuconfig option, then build and flash the example.