esp-idf/docs/zh_CN/api-reference/provisioning/protocomm.rst

309 lines
14 KiB
ReStructuredText
Raw Normal View History

协议通信
======================
:link_to_translation:`en:[English]`
概述
----------
协议通信 (protocomm) 组件用于管理安全会话并为多种传输提供框架。应用程序还可以直接使用 protocomm 层来增加特定扩展,用于配网或非配网使用场景。
以下功能可用于配网:
* 应用程序层面的通信安全
* ``protocomm_security0`` (无安全功能)
* ``protocomm_security1`` Curve25519 密钥交换 + AES-CTR 加密/解密)
* ``protocomm_security2`` (基于 SRP6a 的密钥交换 + AES-GCM 加密/解密)
* 所有权验证 (Proof-of-possession)(仅 ``protocomm_security1`` 支持该功能)
* 盐值和验证器 (Salt and Verifier)(仅 ``protocomm_security2`` 支持该功能)
在 protocomm 内部protobuf协议缓冲区用于建立安全会话。用户可以自行选择即使在不使用 Protobuf 的情况下)实现安全性,也可以在没有任何安全层的情况下使用协议。
Protocomm 为以下各种传输提供框架:
.. list::
:SOC_BLE_SUPPORTED: - 低功耗蓝牙
:SOC_WIFI_SUPPORTED: - Wi-Fi (SoftAP + HTTPD)
- 控制台:使用该传输方案时,设备端会自动调用处理程序。相关代码片段,请参见下文传输示例。
请注意,对于 ``protocomm_security1````protocomm_security2``,客户端仍需要执行双向握手来建立会话。
.. only:: SOC_WIFI_SUPPORTED
关于安全握手逻辑的详情,请参阅 :doc:`provisioning`
.. _enabling-protocomm-security-version:
启用 protocomm 安全版本
-----------------------------------
关于启用/禁用相应的安全版本,请参阅 protocomm 组件的项目配置菜单。相应配置选项如下:
* 支持 ``protocomm_security0``,该版本无安全功能::ref:`CONFIG_ESP_PROTOCOMM_SUPPORT_SECURITY_VERSION_0`,该选项默认启用。
* 支持 ``protocomm_security1``,使用 Curve25519 密钥交换和 AES-CTR 加密/解密::ref:`CONFIG_ESP_PROTOCOMM_SUPPORT_SECURITY_VERSION_1`,该选项默认启用。
* 支持 ``protocomm_security2``,使用基于 SRP6a 的密钥交换和 AES-GCM 加密/解密::ref:`CONFIG_ESP_PROTOCOMM_SUPPORT_SECURITY_VERSION_2`
.. note::
启用多个安全版本后可以动态控制安全版本,但也会增加固件大小。
.. only:: SOC_WIFI_SUPPORTED
使用 Security 2 的 SoftAP + HTTP 传输方案示例
--------------------------------------------------
示例用法请参阅 :component_file:`wifi_provisioning/src/scheme_softap.c`
.. highlight:: c
::
/* 此为将通过 protocomm 注册的端点处理程序,会直接回显接收到的数据 */
esp_err_t echo_req_handler (uint32_t session_id,
const uint8_t *inbuf, ssize_t inlen,
uint8_t **outbuf, ssize_t *outlen,
void *priv_data)
{
/* Session ID 可以用于持久化 */
printf("Session ID : %d", session_id);
/* 回显接收到的数据 */
*outlen = inlen; /* 输出更新后的数据长度 */
*outbuf = malloc(inlen); /* 将在外部释放 */
memcpy(*outbuf, inbuf, inlen);
/* 端点创建时传递的私有数据 */
uint32_t *priv = (uint32_t *) priv_data;
if (priv) {
printf("Private data : %d", *priv);
}
return ESP_OK;
}
static const char sec2_salt[] = {0xf7, 0x5f, 0xe2, 0xbe, 0xba, 0x7c, 0x81, 0xcd};
static const char sec2_verifier[] = {0xbf, 0x86, 0xce, 0x63, 0x8a, 0xbb, 0x7e, 0x2f, 0x38, 0xa8, 0x19, 0x1b, 0x35,
0xc9, 0xe3, 0xbe, 0xc3, 0x2b, 0x45, 0xee, 0x10, 0x74, 0x22, 0x1a, 0x95, 0xbe, 0x62, 0xf7, 0x0c, 0x65, 0x83, 0x50,
0x08, 0xef, 0xaf, 0xa5, 0x94, 0x4b, 0xcb, 0xe1, 0xce, 0x59, 0x2a, 0xe8, 0x7b, 0x27, 0xc8, 0x72, 0x26, 0x71, 0xde,
0xb2, 0xf2, 0x80, 0x02, 0xdd, 0x11, 0xf0, 0x38, 0x0e, 0x95, 0x25, 0x00, 0xcf, 0xb3, 0x3f, 0xf0, 0x73, 0x2a, 0x25,
0x03, 0xe8, 0x51, 0x72, 0xef, 0x6d, 0x3e, 0x14, 0xb9, 0x2e, 0x9f, 0x2a, 0x90, 0x9e, 0x26, 0xb6, 0x3e, 0xc7, 0xe4,
0x9f, 0xe3, 0x20, 0xce, 0x28, 0x7c, 0xbf, 0x89, 0x50, 0xc9, 0xb6, 0xec, 0xdd, 0x81, 0x18, 0xf1, 0x1a, 0xd9, 0x7a,
0x21, 0x99, 0xf1, 0xee, 0x71, 0x2f, 0xcc, 0x93, 0x16, 0x34, 0x0c, 0x79, 0x46, 0x23, 0xe4, 0x32, 0xec, 0x2d, 0x9e,
0x18, 0xa6, 0xb9, 0xbb, 0x0a, 0xcf, 0xc4, 0xa8, 0x32, 0xc0, 0x1c, 0x32, 0xa3, 0x97, 0x66, 0xf8, 0x30, 0xb2, 0xda,
0xf9, 0x8d, 0xc3, 0x72, 0x72, 0x5f, 0xe5, 0xee, 0xc3, 0x5c, 0x24, 0xc8, 0xdd, 0x54, 0x49, 0xfc, 0x12, 0x91, 0x81,
0x9c, 0xc3, 0xac, 0x64, 0x5e, 0xd6, 0x41, 0x88, 0x2f, 0x23, 0x66, 0xc8, 0xac, 0xb0, 0x35, 0x0b, 0xf6, 0x9c, 0x88,
0x6f, 0xac, 0xe1, 0xf4, 0xca, 0xc9, 0x07, 0x04, 0x11, 0xda, 0x90, 0x42, 0xa9, 0xf1, 0x97, 0x3d, 0x94, 0x65, 0xe4,
0xfb, 0x52, 0x22, 0x3b, 0x7a, 0x7b, 0x9e, 0xe9, 0xee, 0x1c, 0x44, 0xd0, 0x73, 0x72, 0x2a, 0xca, 0x85, 0x19, 0x4a,
0x60, 0xce, 0x0a, 0xc8, 0x7d, 0x57, 0xa4, 0xf8, 0x77, 0x22, 0xc1, 0xa5, 0xfa, 0xfb, 0x7b, 0x91, 0x3b, 0xfe, 0x87,
0x5f, 0xfe, 0x05, 0xd2, 0xd6, 0xd3, 0x74, 0xe5, 0x2e, 0x68, 0x79, 0x34, 0x70, 0x40, 0x12, 0xa8, 0xe1, 0xb4, 0x6c,
0xaa, 0x46, 0x73, 0xcd, 0x8d, 0x17, 0x72, 0x67, 0x32, 0x42, 0xdc, 0x10, 0xd3, 0x71, 0x7e, 0x8b, 0x00, 0x46, 0x9b,
0x0a, 0xe9, 0xb4, 0x0f, 0xeb, 0x70, 0x52, 0xdd, 0x0a, 0x1c, 0x7e, 0x2e, 0xb0, 0x61, 0xa6, 0xe1, 0xa3, 0x34, 0x4b,
0x2a, 0x3c, 0xc4, 0x5d, 0x42, 0x05, 0x58, 0x25, 0xd3, 0xca, 0x96, 0x5c, 0xb9, 0x52, 0xf9, 0xe9, 0x80, 0x75, 0x3d,
0xc8, 0x9f, 0xc7, 0xb2, 0xaa, 0x95, 0x2e, 0x76, 0xb3, 0xe1, 0x48, 0xc1, 0x0a, 0xa1, 0x0a, 0xe8, 0xaf, 0x41, 0x28,
0xd2, 0x16, 0xe1, 0xa6, 0xd0, 0x73, 0x51, 0x73, 0x79, 0x98, 0xd9, 0xb9, 0x00, 0x50, 0xa2, 0x4d, 0x99, 0x18, 0x90,
0x70, 0x27, 0xe7, 0x8d, 0x56, 0x45, 0x34, 0x1f, 0xb9, 0x30, 0xda, 0xec, 0x4a, 0x08, 0x27, 0x9f, 0xfa, 0x59, 0x2e,
0x36, 0x77, 0x00, 0xe2, 0xb6, 0xeb, 0xd1, 0x56, 0x50, 0x8e};
/* 通过 HTTP 启动 protocomm 实例的示例函数 */
protocomm_t *start_pc()
{
protocomm_t *pc = protocomm_new();
/* 配置 protocomm_httpd_start() */
protocomm_httpd_config_t pc_config = {
.data = {
.config = PROTOCOMM_HTTPD_DEFAULT_CONFIG()
}
};
/* 启动基于 HTTP 的 protocomm 服务器 */
protocomm_httpd_start(pc, &pc_config);
/* 从盐值和验证器创建 security2 参数对象。该对象必须在 protocomm 端点作用域内有效,且无需为静态对象,即可以在删除端点时动态分配和释放。*/
const static protocomm_security2_params_t sec2_params = {
.salt = (const uint8_t *) salt,
.salt_len = sizeof(salt),
.verifier = (const uint8_t *) verifier,
.verifier_len = sizeof(verifier),
};
/* 在应用程序层面为通信设置安全方案。与请求处理程序类似,设置安全方案会创建一个端点,并注册 protocomm_security1 提供的处理程序。也可以使用 protocomm_security0 进行类似操作。单个 protocomm 实例中一次只能设置一种类型的安全方案。*/
protocomm_set_security(pc, "security_endpoint", &protocomm_security2, &sec2_params);
/* 传递给端点的私有数据必须在 protocomm 端点作用域内有效。该数据无需为静态数据,即可以在删除端点时动态分配和释放。*/
static uint32_t priv_data = 1234;
/* 为 protocomm 实例添加一个新端点,该端点由唯一名称标识,再注册一个处理函数,在执行函数时传递私有数据。只要端点由唯一名称标识,即可添加多个端点。*/
protocomm_add_endpoint(pc, "echo_req_endpoint",
echo_req_handler, (void *) &priv_data);
return pc;
}
/* 停止 protocomm 实例的示例函数 */
void stop_pc(protocomm_t *pc)
{
/* 移除由其唯一名称标识的端点 */
protocomm_remove_endpoint(pc, "echo_req_endpoint");
/* 移除由其名称标识的安全端点 */
protocomm_unset_security(pc, "security_endpoint");
/* 停止 HTTP 服务器 */
protocomm_httpd_stop(pc);
/* 删除即释放protocomm 实例 */
protocomm_delete(pc);
}
使用 Security 1 的 SoftAP + HTTP 传输方案示例
-------------------------------------------------
示例用法请参阅 :component_file:`wifi_provisioning/src/scheme_softap.c`
.. highlight:: c
::
/* 此为将通过 protocomm 注册的端点处理程序,会直接回显接收到的数据 */
esp_err_t echo_req_handler (uint32_t session_id,
const uint8_t *inbuf, ssize_t inlen,
uint8_t **outbuf, ssize_t *outlen,
void *priv_data)
{
/* Session ID 可以用于持久化 */
printf("Session ID : %d", session_id);
/* 回显接收到的数据 */
*outlen = inlen; /* 输出更新后的数据长度 */
*outbuf = malloc(inlen); /* 将在外部释放 */
memcpy(*outbuf, inbuf, inlen);
/* 端点创建时传递的私有数据 */
uint32_t *priv = (uint32_t *) priv_data;
if (priv) {
printf("Private data : %d", *priv);
}
return ESP_OK;
}
/* 通过 HTTP 启动 protocomm 实例的示例函数 */
protocomm_t *start_pc(const char *pop_string)
{
protocomm_t *pc = protocomm_new();
/* 配置 protocomm_httpd_start() */
protocomm_httpd_config_t pc_config = {
.data = {
.config = PROTOCOMM_HTTPD_DEFAULT_CONFIG()
}
};
/* 启动基于 HTTP 的 protocomm 服务器 */
protocomm_httpd_start(pc, &pc_config);
/* 从 pop_string 创建 security1 参数对象。该对象必须在 protocomm 端点作用域内有效,且无需为静态对象,即可以在删除端点时动态分配和释放。*/
const static protocomm_security1_params_t sec1_params = {
.data = (const uint8_t *) strdup(pop_string),
.len = strlen(pop_string)
};
/* 在应用程序层面为通信设置安全方案。与请求处理程序类似,设置安全方案会创建一个端点,并注册 protocomm_security1 提供的处理程序。也可以使用 protocomm_security0 进行类似操作。单个 protocomm 实例中一次只能设置一种类型的安全方案*/
protocomm_set_security(pc, "security_endpoint", &protocomm_security1, &sec1_params);
/* 传递给端点的私有数据必须在 protocomm 端点作用域内有效。该数据无需为静态数据,即可以在删除端点时动态分配和释放。*/
static uint32_t priv_data = 1234;
/* 为 protocomm 实例添加一个新端点,该端点由唯一名称标识,再注册一个处理函数,在执行函数时传递私有数据。只要端点由唯一名称标识,即可添加多个端点。*/
protocomm_add_endpoint(pc, "echo_req_endpoint",
echo_req_handler, (void *) &priv_data);
return pc;
}
/* 停止 protocomm 实例的示例函数 */
void stop_pc(protocomm_t *pc)
{
/* 移除由其唯一名称标识的端点 */
protocomm_remove_endpoint(pc, "echo_req_endpoint");
/* 移除由其名称标识的安全端点 */
protocomm_unset_security(pc, "security_endpoint");
/* 停止 HTTP 服务器 */
protocomm_httpd_stop(pc);
/* 删除即释放protocomm 实例 */
protocomm_delete(pc);
}
.. only:: SOC_BLE_SUPPORTED
使用 Security 0 的低功耗蓝牙传输方案示例
-------------------------------------------
示例用法请参阅 :component_file:`wifi_provisioning/src/scheme_ble.c`
.. highlight:: c
::
/* 通过低功耗蓝牙启动安全 protocomm 实例的示例函数 */
protocomm_t *start_pc()
{
protocomm_t *pc = protocomm_new();
/* 端点 UUID */
protocomm_ble_name_uuid_t nu_lookup_table[] = {
{"security_endpoint", 0xFF51},
{"echo_req_endpoint", 0xFF52}
};
/* 配置 protocomm_ble_start() */
protocomm_ble_config_t config = {
.service_uuid = {
/* 最低有效位 <---------------------------------------
* ---------------------------------------> 最高有效位 */
0xfb, 0x34, 0x9b, 0x5f, 0x80, 0x00, 0x00, 0x80,
0x00, 0x10, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00,
},
.nu_lookup_count = sizeof(nu_lookup_table)/sizeof(nu_lookup_table[0]),
.nu_lookup = nu_lookup_table
};
/* 启动基于低功耗蓝牙的 protocomm 层 */
protocomm_ble_start(pc, &config);
/* protocomm_security0 方案不使用所有权证明,因此可以将其保持为 NULL */
protocomm_set_security(pc, "security_endpoint", &protocomm_security0, NULL);
protocomm_add_endpoint(pc, "echo_req_endpoint", echo_req_handler, NULL);
return pc;
}
/* 停止 protocomm 实例的示例函数 */
void stop_pc(protocomm_t *pc)
{
protocomm_remove_endpoint(pc, "echo_req_endpoint");
protocomm_unset_security(pc, "security_endpoint");
/* 停止低功耗蓝牙 protocomm 服务 */
protocomm_ble_stop(pc);
protocomm_delete(pc);
}
API 参考
--------
.. include-build-file:: inc/protocomm.inc
.. include-build-file:: inc/protocomm_security.inc
.. include-build-file:: inc/protocomm_security0.inc
.. include-build-file:: inc/protocomm_security1.inc
.. include-build-file:: inc/protocomm_security2.inc
.. include-build-file:: inc/esp_srp.inc
.. include-build-file:: inc/protocomm_httpd.inc
.. include-build-file:: inc/protocomm_ble.inc