esp-idf/components/driver/esp32s2/adc.c

479 lines
15 KiB
C
Raw Normal View History

2021-05-23 20:02:15 -04:00
/*
* SPDX-FileCopyrightText: 2016-2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdlib.h>
#include <ctype.h>
#include "sdkconfig.h"
#include "esp_types.h"
#include "esp_log.h"
#include "sys/lock.h"
#include "freertos/FreeRTOS.h"
#include "freertos/xtensa_api.h"
#include "freertos/semphr.h"
#include "freertos/timers.h"
#include "esp_pm.h"
#include "esp_intr_alloc.h"
#include "esp_private/periph_ctrl.h"
#include "driver/rtc_io.h"
#include "driver/rtc_cntl.h"
#include "driver/gpio.h"
#include "driver/adc.h"
#include "esp_efuse_rtc_table.h"
#include "hal/adc_types.h"
#include "hal/adc_hal.h"
#define ADC_CHECK_RET(fun_ret) ({ \
if (fun_ret != ESP_OK) { \
ESP_LOGE(ADC_TAG,"%s:%d\n",__FUNCTION__,__LINE__); \
return ESP_FAIL; \
} \
})
static const char *ADC_TAG = "ADC";
#define ADC_CHECK(a, str, ret_val) ({ \
if (!(a)) { \
ESP_LOGE(ADC_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
return (ret_val); \
} \
})
#define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel])
#define ADC_CHANNEL_CHECK(periph, channel) ADC_CHECK(channel < SOC_ADC_CHANNEL_NUM(periph), "ADC"#periph" channel error", ESP_ERR_INVALID_ARG)
extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished.
#define ADC_ENTER_CRITICAL() portENTER_CRITICAL(&rtc_spinlock)
#define ADC_EXIT_CRITICAL() portEXIT_CRITICAL(&rtc_spinlock)
#ifdef CONFIG_PM_ENABLE
static esp_pm_lock_handle_t s_adc_digi_arbiter_lock = NULL;
#endif //CONFIG_PM_ENABLE
esp_err_t adc_cal_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten);
/*---------------------------------------------------------------
Digital controller setting
---------------------------------------------------------------*/
esp_err_t adc_digi_init(void)
{
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
ADC_ENTER_CRITICAL();
adc_hal_init();
adc_hal_arbiter_config(&config);
ADC_EXIT_CRITICAL();
adc_hal_calibration_init(ADC_NUM_1);
adc_hal_calibration_init(ADC_NUM_2);
return ESP_OK;
}
esp_err_t adc_digi_deinit(void)
{
#ifdef CONFIG_PM_ENABLE
if (s_adc_digi_arbiter_lock) {
esp_pm_lock_delete(s_adc_digi_arbiter_lock);
s_adc_digi_arbiter_lock = NULL;
}
#endif
adc_power_release();
ADC_ENTER_CRITICAL();
adc_hal_digi_deinit();
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_controller_config(const adc_digi_config_t *config)
{
#ifdef CONFIG_PM_ENABLE
esp_err_t err;
if (s_adc_digi_arbiter_lock == NULL) {
if (config->dig_clk.use_apll) {
err = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "adc_dma", &s_adc_digi_arbiter_lock);
} else {
err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "adc_dma", &s_adc_digi_arbiter_lock);
}
if (err != ESP_OK) {
s_adc_digi_arbiter_lock = NULL;
ESP_LOGE(ADC_TAG, "ADC-DMA pm lock error");
return err;
}
}
#endif //CONFIG_PM_ENABLE
if (config->conv_mode & ADC_CONV_SINGLE_UNIT_1) {
for (int i = 0; i < config->adc1_pattern_len; i++) {
adc_cal_offset(ADC_NUM_1, config->adc1_pattern[i].channel, config->adc1_pattern[i].atten);
}
}
if (config->conv_mode & ADC_CONV_SINGLE_UNIT_2) {
for (int i = 0; i < config->adc2_pattern_len; i++) {
adc_cal_offset(ADC_NUM_2, config->adc2_pattern[i].channel, config->adc2_pattern[i].atten);
}
}
/* If enable digtal controller, adc xpd should always on. */
adc_power_acquire();
ADC_ENTER_CRITICAL();
adc_hal_digi_controller_config(config);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_arbiter_config(adc_unit_t adc_unit, adc_arbiter_t *config)
{
if (adc_unit & ADC_UNIT_1) {
return ESP_ERR_NOT_SUPPORTED;
}
ADC_ENTER_CRITICAL();
adc_hal_arbiter_config(config);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
/**
* @brief Set ADC module controller.
* There are five SAR ADC controllers:
* Two digital controller: Continuous conversion mode (DMA). High performance with multiple channel scan modes;
* Two RTC controller: Single conversion modes (Polling). For low power purpose working during deep sleep;
* the other is dedicated for Power detect (PWDET / PKDET), Only support ADC2.
*
* @note Only ADC2 support arbiter to switch controllers automatically. Access to the ADC is based on the priority of the controller.
* @note For ADC1, Controller access is mutually exclusive.
*
* @param adc_unit ADC unit.
* @param ctrl ADC controller, Refer to `adc_ll_controller_t`.
*
* @return
* - ESP_OK Success
*/
esp_err_t adc_set_controller(adc_unit_t adc_unit, adc_ll_controller_t ctrl)
{
adc_arbiter_t config = {0};
adc_arbiter_t cfg = ADC_ARBITER_CONFIG_DEFAULT();
if (adc_unit & ADC_UNIT_1) {
adc_hal_set_controller(ADC_NUM_1, ctrl);
}
if (adc_unit & ADC_UNIT_2) {
adc_hal_set_controller(ADC_NUM_2, ctrl);
switch (ctrl) {
case ADC2_CTRL_FORCE_PWDET:
config.pwdet_pri = 2;
config.mode = ADC_ARB_MODE_SHIELD;
adc_hal_arbiter_config(&config);
adc_hal_set_controller(ADC_NUM_2, ADC2_CTRL_PWDET);
break;
case ADC2_CTRL_FORCE_RTC:
config.rtc_pri = 2;
config.mode = ADC_ARB_MODE_SHIELD;
adc_hal_arbiter_config(&config);
adc_hal_set_controller(ADC_NUM_2, ADC_CTRL_RTC);
break;
case ADC2_CTRL_FORCE_ULP:
config.rtc_pri = 2;
config.mode = ADC_ARB_MODE_SHIELD;
adc_hal_arbiter_config(&config);
adc_hal_set_controller(ADC_NUM_2, ADC_CTRL_ULP);
break;
case ADC2_CTRL_FORCE_DIG:
config.dig_pri = 2;
config.mode = ADC_ARB_MODE_SHIELD;
adc_hal_arbiter_config(&config);
adc_hal_set_controller(ADC_NUM_2, ADC_CTRL_DIG);
break;
default:
adc_hal_arbiter_config(&cfg);
break;
}
}
return ESP_OK;
}
esp_err_t adc_digi_start(void)
{
#ifdef CONFIG_PM_ENABLE
ADC_CHECK((s_adc_digi_arbiter_lock), "Should start after call `adc_digi_controller_config`", ESP_FAIL);
esp_pm_lock_acquire(s_adc_digi_arbiter_lock);
#endif
ADC_ENTER_CRITICAL();
adc_hal_digi_enable();
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_stop(void)
{
#ifdef CONFIG_PM_ENABLE
if (s_adc_digi_arbiter_lock) {
esp_pm_lock_release(s_adc_digi_arbiter_lock);
}
#endif
ADC_ENTER_CRITICAL();
adc_hal_digi_disable();
ADC_EXIT_CRITICAL();
return ESP_OK;
}
/**
* @brief Reset FSM of adc digital controller.
*
* @return
* - ESP_OK Success
*/
esp_err_t adc_digi_reset(void)
{
ADC_ENTER_CRITICAL();
adc_hal_digi_reset();
adc_hal_digi_clear_pattern_table(ADC_NUM_1);
adc_hal_digi_clear_pattern_table(ADC_NUM_2);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
/*************************************/
/* Digital controller filter setting */
/*************************************/
esp_err_t adc_digi_filter_reset(adc_digi_filter_idx_t idx)
{
ADC_ENTER_CRITICAL();
if (idx == ADC_DIGI_FILTER_IDX0) {
adc_hal_digi_filter_reset(ADC_NUM_1);
} else if (idx == ADC_DIGI_FILTER_IDX1) {
adc_hal_digi_filter_reset(ADC_NUM_2);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_filter_set_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config)
{
ADC_ENTER_CRITICAL();
if (idx == ADC_DIGI_FILTER_IDX0) {
adc_hal_digi_filter_set_factor(ADC_NUM_1, config->mode);
} else if (idx == ADC_DIGI_FILTER_IDX1) {
adc_hal_digi_filter_set_factor(ADC_NUM_2, config->mode);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_filter_get_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config)
{
ADC_ENTER_CRITICAL();
if (idx == ADC_DIGI_FILTER_IDX0) {
config->adc_unit = ADC_UNIT_1;
config->channel = ADC_CHANNEL_MAX;
adc_hal_digi_filter_get_factor(ADC_NUM_1, &config->mode);
} else if (idx == ADC_DIGI_FILTER_IDX1) {
config->adc_unit = ADC_UNIT_2;
config->channel = ADC_CHANNEL_MAX;
adc_hal_digi_filter_get_factor(ADC_NUM_2, &config->mode);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_filter_enable(adc_digi_filter_idx_t idx, bool enable)
{
ADC_ENTER_CRITICAL();
if (idx == ADC_DIGI_FILTER_IDX0) {
adc_hal_digi_filter_enable(ADC_NUM_1, enable);
} else if (idx == ADC_DIGI_FILTER_IDX1) {
adc_hal_digi_filter_enable(ADC_NUM_2, enable);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
}
/**
* @brief Get the filtered data of adc digital controller filter. For debug.
* The data after each measurement and filtering is updated to the DMA by the digital controller. But it can also be obtained manually through this API.
*
* @note For ESP32S2, The filter will filter all the enabled channel data of the each ADC unit at the same time.
* @param idx Filter index.
* @return Filtered data. if <0, the read data invalid.
*/
int adc_digi_filter_read_data(adc_digi_filter_idx_t idx)
{
if (idx == ADC_DIGI_FILTER_IDX0) {
return adc_hal_digi_filter_read_data(ADC_NUM_1);
} else if (idx == ADC_DIGI_FILTER_IDX1) {
return adc_hal_digi_filter_read_data(ADC_NUM_2);
} else {
return -1;
}
}
/**************************************/
/* Digital controller monitor setting */
/**************************************/
esp_err_t adc_digi_monitor_set_config(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *config)
{
ADC_ENTER_CRITICAL();
if (idx == ADC_DIGI_MONITOR_IDX0) {
adc_hal_digi_monitor_config(ADC_NUM_1, config);
} else if (idx == ADC_DIGI_MONITOR_IDX1) {
adc_hal_digi_monitor_config(ADC_NUM_2, config);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_monitor_enable(adc_digi_monitor_idx_t idx, bool enable)
{
ADC_ENTER_CRITICAL();
if (idx == ADC_DIGI_MONITOR_IDX0) {
adc_hal_digi_monitor_enable(ADC_NUM_1, enable);
} else if (idx == ADC_DIGI_MONITOR_IDX1) {
adc_hal_digi_monitor_enable(ADC_NUM_2, enable);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
}
/**************************************/
/* Digital controller intr setting */
/**************************************/
esp_err_t adc_digi_intr_enable(adc_unit_t adc_unit, adc_digi_intr_t intr_mask)
{
ADC_ENTER_CRITICAL();
if (adc_unit & ADC_UNIT_1) {
adc_hal_digi_intr_enable(ADC_NUM_1, intr_mask);
}
if (adc_unit & ADC_UNIT_2) {
adc_hal_digi_intr_enable(ADC_NUM_2, intr_mask);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_intr_disable(adc_unit_t adc_unit, adc_digi_intr_t intr_mask)
{
ADC_ENTER_CRITICAL();
if (adc_unit & ADC_UNIT_1) {
adc_hal_digi_intr_disable(ADC_NUM_1, intr_mask);
}
if (adc_unit & ADC_UNIT_2) {
adc_hal_digi_intr_disable(ADC_NUM_2, intr_mask);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_intr_clear(adc_unit_t adc_unit, adc_digi_intr_t intr_mask)
{
ADC_ENTER_CRITICAL();
if (adc_unit & ADC_UNIT_1) {
adc_hal_digi_intr_clear(ADC_NUM_1, intr_mask);
}
if (adc_unit & ADC_UNIT_2) {
adc_hal_digi_intr_clear(ADC_NUM_2, intr_mask);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
}
uint32_t adc_digi_intr_get_status(adc_unit_t adc_unit)
{
uint32_t ret = 0;
ADC_ENTER_CRITICAL();
if (adc_unit & ADC_UNIT_1) {
ret = adc_hal_digi_get_intr_status(ADC_NUM_1);
}
if (adc_unit & ADC_UNIT_2) {
ret = adc_hal_digi_get_intr_status(ADC_NUM_2);
}
ADC_EXIT_CRITICAL();
return ret;
}
static uint8_t s_isr_registered = 0;
static intr_handle_t s_adc_isr_handle = NULL;
esp_err_t adc_digi_isr_register(void (*fn)(void *), void *arg, int intr_alloc_flags)
{
ADC_CHECK((fn != NULL), "Parameter error", ESP_ERR_INVALID_ARG);
ADC_CHECK(s_isr_registered == 0, "ADC ISR have installed, can not install again", ESP_FAIL);
esp_err_t ret = esp_intr_alloc(ETS_APB_ADC_INTR_SOURCE, intr_alloc_flags, fn, arg, &s_adc_isr_handle);
if (ret == ESP_OK) {
s_isr_registered = 1;
}
return ret;
}
esp_err_t adc_digi_isr_deregister(void)
{
esp_err_t ret = ESP_FAIL;
if (s_isr_registered) {
ret = esp_intr_free(s_adc_isr_handle);
if (ret == ESP_OK) {
s_isr_registered = 0;
}
}
return ret;
}
/*---------------------------------------------------------------
RTC controller setting
---------------------------------------------------------------*/
/*---------------------------------------------------------------
Calibration
---------------------------------------------------------------*/
static uint16_t s_adc_cali_param[ADC_NUM_MAX][ADC_ATTEN_MAX] = { {0}, {0} };
//NOTE: according to calibration version, different types of lock may be taken during the process:
// 1. Semaphore when reading efuse
// 2. Spinlock when actually doing ADC calibration
//This function shoudn't be called inside critical section or ISR
uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
#ifdef CONFIG_IDF_ENV_FPGA
return 0;
#endif
if (s_adc_cali_param[adc_n][atten]) {
ESP_LOGV(ADC_TAG, "Use calibrated val ADC%d atten=%d: %04X", adc_n, atten, s_adc_cali_param[adc_n][atten]);
return (uint32_t)s_adc_cali_param[adc_n][atten];
}
uint32_t dout = 0;
// check if we can fetch the values from eFuse.
int version = esp_efuse_rtc_table_read_calib_version();
if (version == 2) {
int tag = esp_efuse_rtc_table_get_tag(version, adc_n + 1, atten, RTCCALIB_V2_PARAM_VINIT);
dout = esp_efuse_rtc_table_get_parsed_efuse_value(tag, false);
} else {
adc_power_acquire();
ADC_ENTER_CRITICAL();
const bool internal_gnd = true;
dout = adc_hal_self_calibration(adc_n, channel, atten, internal_gnd);
ADC_EXIT_CRITICAL();
adc_power_release();
}
ESP_LOGD(ADC_TAG, "Calib(V%d) ADC%d atten=%d: %04X", version, adc_n, atten, dout);
s_adc_cali_param[adc_n][atten] = (uint16_t)dout;
return dout;
}
esp_err_t adc_cal_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
adc_hal_calibration_init(adc_n);
uint32_t cal_val = adc_get_calibration_offset(adc_n, channel, atten);
ADC_ENTER_CRITICAL();
adc_hal_set_calibration_param(adc_n, cal_val);
ADC_EXIT_CRITICAL();
return ESP_OK;
}