658 lines
23 KiB
C
Raw Normal View History

// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
Tests for the adc device driver
*/
#include "esp_system.h"
#include "esp_intr_alloc.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "driver/adc.h"
#include "driver/dac.h"
#include "driver/rtc_io.h"
#include "driver/gpio.h"
#include "unity.h"
#include "esp_system.h"
#include "esp_event.h"
#include "esp_wifi.h"
#include "esp_log.h"
#include "nvs_flash.h"
#include "test_utils.h"
#include "soc/spi_reg.h"
#include "soc/adc_periph.h"
#include "test/test_common_adc.h"
#include "esp_rom_sys.h"
#if !DISABLED_FOR_TARGETS(ESP8266, ESP32) // This testcase for ESP32S2
#include "soc/system_reg.h"
#include "soc/lldesc.h"
static const char *TAG = "test_adc";
#define PLATFORM_SELECT (1) //0: pxp; 1: chip
#if (PLATFORM_SELECT == 0) //PXP platform
#include "soc/apb_ctrl_reg.h"
#define SET_BREAK_POINT(flag) REG_WRITE(APB_CTRL_DATE_REG, flag)
//PXP clk is slower.
#define SYS_DELAY_TIME_MOM (1/40)
#define RTC_SLOW_CLK_FLAG 1 // Slow clock is 32KHz.
static void test_pxp_deinit_io(void)
{
for (int i = 0; i < 22; i++) {
rtc_gpio_init(i);
}
}
#else
//PXP clk is slower.
#define SET_BREAK_POINT(flag)
#define SYS_DELAY_TIME_MOM (1)
#define RTC_SLOW_CLK_FLAG 0 // Slow clock is 32KHz.
#endif
#define ADC_REG_BASE_TEST() ({ \
TEST_ASSERT_EQUAL_UINT32(REG_GET_FIELD(APB_SARADC_APB_CTRL_DATE_REG, APB_SARADC_APB_CTRL_DATE), APB_SARADC.apb_ctrl_date); \
TEST_ASSERT_EQUAL_UINT32(REG_GET_FIELD(SENS_SARDATE_REG, SENS_SAR_DATE), SENS.sardate.sar_date); \
TEST_ASSERT_EQUAL_UINT32(REG_GET_FIELD(RTC_IO_DATE_REG, RTC_IO_IO_DATE), RTCIO.date.date); \
})
/** Sample rate = APB_CLK(80 MHz) / (CLK_DIV + 1) / TRIGGER_INTERVAL / 2. */
#define TEST_ADC_TRIGGER_INTERVAL_DEFAULT (40)
#define TEST_ADC_DIGI_CLK_DIV_DEFAULT (9)
static uint8_t adc_test_num = 9;
static adc_channel_t adc_list[SOC_ADC_PATT_LEN_MAX] = {
ADC_CHANNEL_0,
ADC_CHANNEL_1,
ADC_CHANNEL_2,
ADC_CHANNEL_3,
ADC_CHANNEL_4,
ADC_CHANNEL_5,
ADC_CHANNEL_6,
// ADC_CHANNEL_7, // Workaround: IO18 is pullup outside in ESP32S2-Saola Runner.
ADC_CHANNEL_8,
ADC_CHANNEL_9,
};
/* For ESP32S2, it should use same atten, or, it will have error. */
#define TEST_ADC_ATTEN_DEFAULT (ADC_ATTEN_11db)
/*******************************************/
/** SPI DMA INIT CODE */
/*******************************************/
extern esp_err_t adc_digi_reset(void);
/* Work mode.
* single: eof_num;
* double: SAR_EOF_NUMBER/2;
* alter: eof_num;
* */
#define SAR_SIMPLE_NUM 512 // Set sample number of enabled unit.
/* Use two DMA linker to save ADC data. ADC sample 1 times -> 2 byte data -> 2 DMA link buf. */
#define SAR_DMA_DATA_SIZE(unit, sample_num) (SAR_EOF_NUMBER(unit, sample_num)) //
#define SAR_EOF_NUMBER(unit, sample_num) ((sample_num) * (unit))
#define SAR_MEAS_LIMIT_NUM(unit, sample_num) (SAR_SIMPLE_NUM)
#define SAR_SIMPLE_TIMEOUT_MS 1000
typedef struct dma_msg {
uint32_t int_msk;
uint8_t *data;
uint32_t data_len;
} adc_dma_event_t;
static uint8_t link_buf[2][SAR_DMA_DATA_SIZE(2, SAR_SIMPLE_NUM)] = {0};
static lldesc_t dma1 = {0};
static lldesc_t dma2 = {0};
static bool adc_dma_flag = false;
static QueueHandle_t que_adc = NULL;
static adc_dma_event_t adc_evt;
/** ADC-DMA ISR handler. */
static IRAM_ATTR void adc_dma_isr(void *arg)
{
uint32_t int_st = REG_READ(SPI_DMA_INT_ST_REG(3));
int task_awoken = pdFALSE;
REG_WRITE(SPI_DMA_INT_CLR_REG(3), int_st);
if (int_st & SPI_IN_SUC_EOF_INT_ST_M) {
adc_evt.int_msk = int_st;
xQueueSendFromISR(que_adc, &adc_evt, &task_awoken);
}
if (int_st & SPI_IN_DONE_INT_ST) {
adc_evt.int_msk = int_st;
xQueueSendFromISR(que_adc, &adc_evt, &task_awoken);
}
ESP_EARLY_LOGV(TAG, "int msk%x\n", int_st);
if (task_awoken == pdTRUE) {
portYIELD_FROM_ISR();
}
}
/** Register ADC-DMA handler. */
static esp_err_t adc_dma_isr_register(void (*fun)(void *), void *arg)
{
esp_err_t ret = ESP_FAIL;
ret = esp_intr_alloc(ETS_SPI3_DMA_INTR_SOURCE, 0, fun, arg, NULL);
return ret;
}
/** Reset DMA linker pointer and start DMA. */
static void dma_linker_restart(void)
{
REG_SET_BIT(SPI_DMA_IN_LINK_REG(3), SPI_INLINK_STOP);
REG_CLR_BIT(SPI_DMA_IN_LINK_REG(3), SPI_INLINK_START);
SET_PERI_REG_BITS(SPI_DMA_IN_LINK_REG(3), SPI_INLINK_ADDR, (uint32_t)&dma1, 0);
REG_SET_BIT(SPI_DMA_CONF_REG(3), SPI_IN_RST);
REG_CLR_BIT(SPI_DMA_CONF_REG(3), SPI_IN_RST);
REG_CLR_BIT(SPI_DMA_IN_LINK_REG(3), SPI_INLINK_STOP);
REG_SET_BIT(SPI_DMA_IN_LINK_REG(3), SPI_INLINK_START);
}
/**
* DMA liner initialization and start.
* @param is_loop
* - true: The two dma linked lists are connected end to end, with no end mark (eof).
* - false: The two dma linked lists are connected end to end, with end mark (eof).
* @param int_mask DMA interrupt types.
*/
static void dma_linker_init(adc_unit_t adc, bool is_loop, uint32_t int_mask)
{
dma1 = (lldesc_t) {
.size = SAR_DMA_DATA_SIZE((adc > 2) ? 2 : 1, SAR_SIMPLE_NUM),
.owner = 1,
.buf = &link_buf[0][0],
.qe.stqe_next = &dma2,
};
dma2 = (lldesc_t) {
.size = SAR_DMA_DATA_SIZE((adc > 2) ? 2 : 1, SAR_SIMPLE_NUM),
.owner = 1,
.buf = &link_buf[1][0],
};
if (is_loop) {
dma2.qe.stqe_next = &dma1;
} else {
dma2.qe.stqe_next = NULL;
}
REG_SET_BIT(DPORT_PERIP_CLK_EN_REG, DPORT_APB_SARADC_CLK_EN_M);
REG_SET_BIT(DPORT_PERIP_CLK_EN_REG, DPORT_SPI3_DMA_CLK_EN_M);
REG_SET_BIT(DPORT_PERIP_CLK_EN_REG, DPORT_SPI3_CLK_EN);
REG_CLR_BIT(DPORT_PERIP_RST_EN_REG, DPORT_SPI3_DMA_RST_M);
REG_CLR_BIT(DPORT_PERIP_RST_EN_REG, DPORT_SPI3_RST_M);
if (!adc_dma_flag) {
que_adc = xQueueCreate(5, sizeof(adc_dma_event_t));
adc_dma_isr_register(adc_dma_isr, NULL);
adc_dma_flag = true;
}
REG_WRITE(SPI_DMA_INT_CLR_REG(3), 0xFFFFFFFF);
REG_WRITE(SPI_DMA_INT_ENA_REG(3), int_mask);
dma_linker_restart();
printf("reg addr 0x%08x 0x%08x \n", SPI_DMA_IN_LINK_REG(3), (uint32_t)&dma1);
}
/*******************************************/
/** SPI DMA INIT CODE END */
/*******************************************/
#define DEBUG_CHECK_ENABLE 1
#define DEBUG_PRINT_ENABLE 1
#define DEBUG_CHECK_ERROR 10
/**
* Check the ADC-DMA data in linker buffer by input level.
* ideal_level
* - -1: Don't check data.
* - 0: ADC channel voltage is 0v.
* - 1: ADC channel voltage is 3.3v.
* - 2: ADC channel voltage is 1.4v.
*/
static esp_err_t adc_dma_data_check(adc_unit_t adc, int ideal_level)
{
int unit_old = 1;
int ch_cnt = 0;
for (int cnt = 0; cnt < 2; cnt++) {
esp_rom_printf("\n[%s] link_buf[%d]: \n", __func__, cnt % 2);
for (int i = 0; i < SAR_DMA_DATA_SIZE((adc > 2) ? 2 : 1, SAR_SIMPLE_NUM); i += 2) {
uint8_t h = link_buf[cnt % 2][i + 1], l = link_buf[cnt % 2][i];
uint16_t temp = (h << 8 | l);
adc_digi_output_data_t *data = (adc_digi_output_data_t *)&temp;
if (adc > ADC_UNIT_2) { //ADC_ENCODE_11BIT
#if DEBUG_PRINT_ENABLE
if (i % 16 == 0) {
esp_rom_printf("\n");
}
esp_rom_printf("[%d_%d_%04x] ", data->type2.unit, data->type2.channel, data->type2.data);
#endif
#if DEBUG_CHECK_ENABLE
if (ideal_level >= 0) {
TEST_ASSERT_NOT_EQUAL(unit_old, data->type2.unit);
unit_old = data->type2.unit;
if (data->type2.channel > ADC_CHANNEL_MAX) {
printf("Data invalid [%d]\n", data->type2.channel);
continue;
}
int cur_ch = ((ch_cnt++ / 2) % adc_test_num);
TEST_ASSERT_EQUAL( data->type2.channel, adc_list[cur_ch] );
}
if (ideal_level == 1) { // high level 3.3v
TEST_ASSERT_EQUAL( 0x7FF, data->type2.data );
} else if (ideal_level == 0) { // low level 0v
TEST_ASSERT_LESS_THAN( 10, data->type2.data );
} else if (ideal_level == 2) { // middle level 1.4v
TEST_ASSERT_INT_WITHIN( 128, 1100, data->type2.data );
} else if (ideal_level == 3) { // normal level
} else { // no check
}
#endif
} else { //ADC_ENCODE_12BIT
#if DEBUG_PRINT_ENABLE
if (i % 16 == 0) {
esp_rom_printf("\n");
}
esp_rom_printf("[%d_%04x] ", data->type1.channel, data->type1.data);
#endif
#if DEBUG_CHECK_ENABLE
if (ideal_level >= 0) {
int cur_ch = ((ch_cnt++) % adc_test_num);
TEST_ASSERT_EQUAL( adc_list[cur_ch], data->type1.channel );
}
if (ideal_level == 1) { // high level 3.3v
TEST_ASSERT_EQUAL( 0XFFF, data->type1.data );
} else if (ideal_level == 0) { // low level 0v
TEST_ASSERT_LESS_THAN( 10, data->type1.data );
} else if (ideal_level == 2) { // middle level 1.4v
TEST_ASSERT_INT_WITHIN( 256, 2200, data->type1.data );
} else if (ideal_level == 3) { // normal level
} else { // no check
}
#endif
}
link_buf[cnt % 2][i] = 0;
link_buf[cnt % 2][i + 1] = 0;
}
esp_rom_printf("\n");
}
return ESP_OK;
}
static esp_err_t adc_dma_data_multi_st_check(adc_unit_t adc)
{
adc_dma_event_t evt;
ESP_LOGI(TAG, "adc IO normal, test ...");
for (int i = 0; i < adc_test_num; i++) {
adc_io_normal(adc, adc_list[i]);
}
TEST_ESP_OK( adc_digi_start() );
while (1) {
TEST_ASSERT_EQUAL( xQueueReceive(que_adc, &evt, SAR_SIMPLE_TIMEOUT_MS / portTICK_RATE_MS), pdTRUE );
if (evt.int_msk & SPI_IN_SUC_EOF_INT_ENA) {
break;
}
}
TEST_ESP_OK( adc_digi_stop() );
dma_linker_restart();
adc_digi_reset();
TEST_ESP_OK( adc_dma_data_check(adc, -1) ); // Don't check data.
ESP_LOGI(TAG, "adc IO fake tie high, test ...");
for (int i = 0; i < adc_test_num; i++) {
adc_fake_tie_high(adc, adc_list[i]);
}
TEST_ESP_OK( adc_digi_start() );
while (1) {
TEST_ASSERT_EQUAL( xQueueReceive(que_adc, &evt, SAR_SIMPLE_TIMEOUT_MS / portTICK_RATE_MS), pdTRUE );
if (evt.int_msk & SPI_IN_SUC_EOF_INT_ENA) {
break;
}
}
TEST_ESP_OK( adc_digi_stop() );
dma_linker_restart();
adc_digi_reset();
TEST_ESP_OK( adc_dma_data_check(adc, 1) );
ESP_LOGI(TAG, "adc IO fake tie low, test ...");
for (int i = 0; i < adc_test_num; i++) {
adc_fake_tie_low(adc, adc_list[i]);
}
TEST_ESP_OK( adc_digi_start() );
while (1) {
TEST_ASSERT_EQUAL( xQueueReceive(que_adc, &evt, SAR_SIMPLE_TIMEOUT_MS / portTICK_RATE_MS), pdTRUE );
if (evt.int_msk & SPI_IN_SUC_EOF_INT_ENA) {
break;
}
}
TEST_ESP_OK( adc_digi_stop() );
dma_linker_restart();
adc_digi_reset();
TEST_ESP_OK( adc_dma_data_check(adc, 0) );
ESP_LOGI(TAG, "adc IO fake tie middle, test ...");
for (int i = 0; i < adc_test_num; i++) {
adc_fake_tie_middle(adc, adc_list[i]);
}
TEST_ESP_OK( adc_digi_start() );
while (1) {
TEST_ASSERT_EQUAL( xQueueReceive(que_adc, &evt, SAR_SIMPLE_TIMEOUT_MS / portTICK_RATE_MS), pdTRUE );
if (evt.int_msk & SPI_IN_SUC_EOF_INT_ENA) {
break;
}
}
TEST_ESP_OK( adc_digi_stop() );
dma_linker_restart();
adc_digi_reset();
TEST_ESP_OK( adc_dma_data_check(adc, 2) );
return ESP_OK;
}
#include "soc/apb_saradc_struct.h"
/**
* Test the partten table setting. It's easy wrong.
*
* @param adc_n ADC unit.
* @param in_partten_len The length of partten be set.
* @param in_last_ch The channel number of the last message.
*/
static esp_err_t adc_check_patt_table(adc_unit_t adc, uint32_t in_partten_len, adc_channel_t in_last_ch)
{
esp_err_t ret = ESP_FAIL;
uint8_t index = (in_partten_len - 1) / 4;
uint8_t offset = 24 - ((in_partten_len - 1) % 4) * 8;
uint32_t temp = 0, len;
if (adc & ADC_UNIT_1) {
len = APB_SARADC.ctrl.sar1_patt_len + 1;
temp = APB_SARADC.sar1_patt_tab[index];
printf("patt1 len %d\n", len);
printf("patt1 0x%08x\n", APB_SARADC.sar1_patt_tab[0]);
printf("patt1 0x%08x\n", APB_SARADC.sar1_patt_tab[1]);
printf("patt1 0x%08x\n", APB_SARADC.sar1_patt_tab[2]);
printf("patt1 0x%08x\n", APB_SARADC.sar1_patt_tab[3]);
if (in_partten_len == len) {
if (in_last_ch == (((temp >> (offset + 4))) & 0xf)) {
ret = ESP_OK;
}
}
}
if (adc & ADC_UNIT_2) {
len = APB_SARADC.ctrl.sar2_patt_len + 1;
temp = APB_SARADC.sar2_patt_tab[index];
printf("patt2 len %d\n", len);
printf("patt2 0x%08x\n", APB_SARADC.sar2_patt_tab[0]);
printf("patt2 0x%08x\n", APB_SARADC.sar2_patt_tab[1]);
printf("patt2 0x%08x\n", APB_SARADC.sar2_patt_tab[2]);
printf("patt2 0x%08x\n", APB_SARADC.sar2_patt_tab[3]);
if (in_partten_len == len) {
if (in_last_ch == (((temp >> (offset + 4))) & 0xf)) {
ret = ESP_OK;
}
}
}
return ret;
}
/**
* Testcase: Check the base function of ADC-DMA. Include:
* - Various conversion modes.
* - Whether the channel and data are lost.
* - Whether the data is the same as the channel voltage.
*/
int test_adc_dig_dma_single_unit(adc_unit_t adc)
{
ESP_LOGI(TAG, " >> %s << ", __func__);
ESP_LOGI(TAG, " >> adc unit: %x << ", adc);
TEST_ESP_OK( adc_digi_init() );
/* arbiter config */
adc_arbiter_t arb_cfg = {
.mode = ADC_ARB_MODE_FIX,
.dig_pri = 0,
.pwdet_pri = 2,
.rtc_pri = 1,
};
TEST_ESP_OK( adc_arbiter_config(ADC_UNIT_2, &arb_cfg) ); // If you want use force
adc_digi_config_t config = {
.conv_limit_en = false,
.conv_limit_num = 0,
.interval = TEST_ADC_TRIGGER_INTERVAL_DEFAULT,
.dig_clk.use_apll = 0, // APB clk
.dig_clk.div_num = TEST_ADC_DIGI_CLK_DIV_DEFAULT,
.dig_clk.div_b = 0,
.dig_clk.div_a = 0,
.dma_eof_num = SAR_EOF_NUMBER((adc > 2) ? 2 : 1, SAR_SIMPLE_NUM),
};
/* Config pattern table */
adc_digi_pattern_table_t adc1_patt[SOC_ADC_PATT_LEN_MAX] = {0};
adc_digi_pattern_table_t adc2_patt[SOC_ADC_PATT_LEN_MAX] = {0};
if (adc & ADC_UNIT_1) {
config.adc1_pattern_len = adc_test_num;
config.adc1_pattern = adc1_patt;
for (int i = 0; i < adc_test_num; i++) {
adc1_patt[i].atten = TEST_ADC_ATTEN_DEFAULT;
adc1_patt[i].channel = adc_list[i];
adc_gpio_init(ADC_UNIT_1, adc_list[i]);
}
}
if (adc & ADC_UNIT_2) {
config.adc2_pattern_len = adc_test_num;
config.adc2_pattern = adc2_patt;
for (int i = 0; i < adc_test_num; i++) {
adc2_patt[i].atten = TEST_ADC_ATTEN_DEFAULT;
adc2_patt[i].channel = adc_list[i];
adc_gpio_init(ADC_UNIT_2, adc_list[i]);
}
}
if (adc == ADC_UNIT_1) {
config.conv_mode = ADC_CONV_SINGLE_UNIT_1;
config.format = ADC_DIGI_FORMAT_12BIT;
} else if (adc == ADC_UNIT_2) {
config.conv_mode = ADC_CONV_SINGLE_UNIT_2;
config.format = ADC_DIGI_FORMAT_12BIT;
} else if (adc == ADC_UNIT_BOTH) {
config.conv_mode = ADC_CONV_BOTH_UNIT;
config.format = ADC_DIGI_FORMAT_11BIT;
} else if (adc == ADC_UNIT_ALTER) {
config.conv_mode = ADC_CONV_ALTER_UNIT;
config.format = ADC_DIGI_FORMAT_11BIT;
}
TEST_ESP_OK( adc_digi_controller_config(&config) );
dma_linker_init(adc, false, SPI_IN_SUC_EOF_INT_ENA);
TEST_ESP_OK( adc_check_patt_table(adc, adc_test_num, adc_list[adc_test_num - 1]) );
adc_dma_data_multi_st_check(adc);
TEST_ESP_OK( adc_digi_deinit() );
return 0;
}
TEST_CASE("ADC DMA single read", "[ADC]")
{
test_adc_dig_dma_single_unit(ADC_UNIT_BOTH);
test_adc_dig_dma_single_unit(ADC_UNIT_ALTER);
test_adc_dig_dma_single_unit(ADC_UNIT_1);
test_adc_dig_dma_single_unit(ADC_UNIT_2);
}
#include "touch_scope.h"
/**
* 0: ADC1 channels raw data debug.
* 1: ADC2 channels raw data debug.
* 2: ADC1 one channel raw data debug.
*/
#define SCOPE_DEBUG_TYPE 0
#define SCOPE_DEBUG_CHANNEL_MAX (10)
#define SCOPE_DEBUG_ENABLE (0)
#define SCOPE_UART_BUADRATE (256000)
#define SCOPE_DEBUG_FREQ_MS (50)
#define SCOPE_OUTPUT_UART (0)
static float scope_temp[SCOPE_DEBUG_CHANNEL_MAX] = {0}; // max scope channel is 10.
int test_adc_dig_scope_debug_unit(adc_unit_t adc)
{
ESP_LOGI(TAG, " >> %s << ", __func__);
ESP_LOGI(TAG, " >> adc unit: %x << ", adc);
TEST_ESP_OK( adc_digi_init() );
if (adc & ADC_UNIT_2) {
/* arbiter config */
adc_arbiter_t arb_cfg = {
.mode = ADC_ARB_MODE_FIX,
.dig_pri = 0,
.pwdet_pri = 2,
.rtc_pri = 1,
};
TEST_ESP_OK( adc_arbiter_config(ADC_UNIT_2, &arb_cfg) ); // If you want use force
}
adc_digi_config_t config = {
.conv_limit_en = false,
.conv_limit_num = 0,
.interval = TEST_ADC_TRIGGER_INTERVAL_DEFAULT,
.dig_clk.use_apll = 0, // APB clk
.dig_clk.div_num = TEST_ADC_DIGI_CLK_DIV_DEFAULT,
.dig_clk.div_a = 0,
.dig_clk.div_b = 0,
.dma_eof_num = SAR_EOF_NUMBER((adc > 2) ? 2 : 1, SAR_SIMPLE_NUM),
};
/* Config pattern table */
adc_digi_pattern_table_t adc1_patt[SOC_ADC_PATT_LEN_MAX] = {0};
adc_digi_pattern_table_t adc2_patt[SOC_ADC_PATT_LEN_MAX] = {0};
if (adc & ADC_UNIT_1) {
config.adc1_pattern_len = adc_test_num;
config.adc1_pattern = adc1_patt;
for (int i = 0; i < adc_test_num; i++) {
adc1_patt[i].atten = TEST_ADC_ATTEN_DEFAULT;
adc1_patt[i].channel = adc_list[i];
adc_gpio_init(ADC_UNIT_1, adc_list[i]);
}
}
if (adc & ADC_UNIT_2) {
config.adc2_pattern_len = adc_test_num;
config.adc2_pattern = adc2_patt;
for (int i = 0; i < adc_test_num; i++) {
adc2_patt[i].atten = TEST_ADC_ATTEN_DEFAULT;
adc2_patt[i].channel = adc_list[i];
adc_gpio_init(ADC_UNIT_2, adc_list[i]);
}
}
if (adc == ADC_UNIT_1) {
config.conv_mode = ADC_CONV_SINGLE_UNIT_1;
config.format = ADC_DIGI_FORMAT_12BIT;
} else if (adc == ADC_UNIT_2) {
config.conv_mode = ADC_CONV_SINGLE_UNIT_2;
config.format = ADC_DIGI_FORMAT_12BIT;
} else if (adc == ADC_UNIT_BOTH) {
config.conv_mode = ADC_CONV_BOTH_UNIT;
config.format = ADC_DIGI_FORMAT_11BIT;
} else if (adc == ADC_UNIT_ALTER) {
config.conv_mode = ADC_CONV_ALTER_UNIT;
config.format = ADC_DIGI_FORMAT_11BIT;
}
TEST_ESP_OK( adc_digi_controller_config(&config) );
dma_linker_init(adc, false, SPI_IN_DONE_INT_ENA & SPI_IN_SUC_EOF_INT_ENA);
ESP_LOGI(TAG, "adc IO fake tie middle, test ...");
for (int i = 0; i < adc_test_num; i++) {
adc_fake_tie_middle(adc, adc_list[i]);
}
return 0;
}
static void scope_output(int adc_num, int channel, int data)
{
/** can replace by uart log.*/
#if SCOPE_OUTPUT_UART
static int icnt = 0;
if (icnt++ % 8 == 0) {
esp_rom_printf("\n");
}
esp_rom_printf("[%d_%d_%04x] ", adc_num, channel, data);
return;
#endif
#if SCOPE_DEBUG_TYPE == 0
if (adc_num != 0) {
return;
}
#elif SCOPE_DEBUG_TYPE == 1
if (adc_num != 1) {
return;
}
#endif
int i;
/* adc Read */
for (i = 0; i < adc_test_num; i++) {
if (adc_list[i] == channel && scope_temp[i] == 0) {
scope_temp[i] = data;
break;
}
}
if (i == adc_test_num) {
test_tp_print_to_scope(scope_temp, adc_test_num);
vTaskDelay(SCOPE_DEBUG_FREQ_MS / portTICK_RATE_MS);
for (int i = 0; i < adc_test_num; i++) {
scope_temp[i] = 0;
}
}
}
/**
* Manual test: Capture ADC-DMA data and display it on the serial oscilloscope. Used to observe the stability of the data.
* Use step:
* 1. Run this test from the unit test app.
* 2. Use `ESP-Tuning Tool`(download from `www.espressif.com`) to capture.
* 3. The readings of multiple channels will be displayed on the tool.
*/
TEST_CASE("test_adc_digi_slope_debug", "[adc_dma][ignore]")
{
adc_dma_event_t evt;
test_tp_scope_debug_init(0, -1, -1, SCOPE_UART_BUADRATE);
adc_unit_t adc = ADC_CONV_BOTH_UNIT;
test_adc_dig_scope_debug_unit(adc);
while (1) {
TEST_ESP_OK( adc_digi_start() );
TEST_ASSERT_EQUAL( xQueueReceive(que_adc, &evt, portMAX_DELAY), pdTRUE );
if (evt.int_msk & SPI_IN_SUC_EOF_INT_ST) {
TEST_ESP_OK( adc_digi_stop() );
dma_linker_restart();
adc_digi_reset();
for (int cnt = 0; cnt < 2; cnt++) {
esp_rom_printf("cnt%d\n", cnt);
for (int i = 0; i < SAR_DMA_DATA_SIZE((adc > 2) ? 2 : 1, SAR_SIMPLE_NUM); i += 2) {
uint8_t h = link_buf[cnt % 2][i + 1], l = link_buf[cnt % 2][i];
uint16_t temp = (h << 8 | l);
adc_digi_output_data_t *data = (adc_digi_output_data_t *)&temp;
if (adc > ADC_UNIT_2) { //ADC_ENCODE_11BIT
scope_output(data->type2.unit, data->type2.channel, data->type2.data);
} else { //ADC_ENCODE_12BIT
if (adc == ADC_UNIT_1) {
scope_output(0, data->type1.channel, data->type1.data);
} else if (adc == ADC_UNIT_2) {
scope_output(1, data->type1.channel, data->type1.data);
}
}
link_buf[cnt % 2][i] = 0;
link_buf[cnt % 2][i + 1] = 0;
}
}
}
}
}
#endif // !DISABLED_FOR_TARGETS(ESP8266, ESP32)