esp-idf/components/vfs/test_apps/main/test_vfs_select.c

735 lines
21 KiB
C
Raw Normal View History

/*
* SPDX-FileCopyrightText: 2018-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
2018-05-03 10:41:10 +02:00
#include <stdio.h>
#include <unistd.h>
#include <sys/fcntl.h>
#include <sys/param.h>
#include "unity.h"
#include "freertos/FreeRTOS.h"
#include "driver/uart.h"
#include "esp_vfs.h"
#include "driver/uart_vfs.h"
#include "esp_vfs_fat.h"
2018-05-03 10:41:10 +02:00
#include "lwip/sockets.h"
#include "lwip/netdb.h"
#include "test_utils.h"
2018-05-03 10:41:10 +02:00
typedef struct {
int fd;
int delay_ms;
SemaphoreHandle_t sem;
2018-05-03 10:41:10 +02:00
} test_task_param_t;
typedef struct {
fd_set *rdfds;
fd_set *wrfds;
fd_set *errfds;
int maxfds;
struct timeval *tv;
int select_ret;
SemaphoreHandle_t sem;
} test_select_task_param_t;
2018-05-03 10:41:10 +02:00
static const char message[] = "Hello world!";
static int open_dummy_socket(void)
{
const struct addrinfo hints = {
.ai_family = AF_INET,
.ai_socktype = SOCK_DGRAM,
};
struct addrinfo *res = NULL;
const int err = getaddrinfo("localhost", "80", &hints, &res);
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_NOT_NULL(res);
const int dummy_socket_fd = socket(res->ai_family, res->ai_socktype, 0);
TEST_ASSERT(dummy_socket_fd >= 0);
return dummy_socket_fd;
}
static int socket_init(void)
2018-05-03 10:41:10 +02:00
{
const struct addrinfo hints = {
.ai_family = AF_INET,
.ai_socktype = SOCK_DGRAM,
};
struct addrinfo *res;
int err;
struct sockaddr_in saddr = { 0 };
int socket_fd = -1;
err = getaddrinfo("localhost", "80", &hints, &res);
TEST_ASSERT_EQUAL(err, 0);
TEST_ASSERT_NOT_NULL(res);
socket_fd = socket(res->ai_family, res->ai_socktype, 0);
TEST_ASSERT(socket_fd >= 0);
saddr.sin_family = PF_INET;
saddr.sin_port = htons(80);
saddr.sin_addr.s_addr = htonl(INADDR_ANY);
err = bind(socket_fd, (struct sockaddr *) &saddr, sizeof(struct sockaddr_in));
TEST_ASSERT(err >= 0);
err = connect(socket_fd, res->ai_addr, res->ai_addrlen);
TEST_ASSERT_EQUAL_MESSAGE(err, 0, "Socket connection failed");
freeaddrinfo(res);
return socket_fd;
}
static void uart1_init(void)
2018-05-03 10:41:10 +02:00
{
uart_config_t uart_config = {
.baud_rate = 115200,
.data_bits = UART_DATA_8_BITS,
.parity = UART_PARITY_DISABLE,
.stop_bits = UART_STOP_BITS_1,
2019-04-17 20:19:44 +08:00
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
.source_clk = UART_SCLK_DEFAULT,
2018-05-03 10:41:10 +02:00
};
uart_driver_install(UART_NUM_1, 256, 256, 0, NULL, 0);
2019-04-17 20:19:44 +08:00
uart_param_config(UART_NUM_1, &uart_config);
2018-05-03 10:41:10 +02:00
}
static void read_task(void *param)
{
char recv_message[sizeof(message)];
const test_task_param_t *test_task_param = param;
vTaskDelay(test_task_param->delay_ms / portTICK_PERIOD_MS);
read(test_task_param->fd, recv_message, sizeof(message));
if (test_task_param->sem) {
xSemaphoreGive(test_task_param->sem);
}
vTaskDelete(NULL);
}
static inline void start_read_task(const test_task_param_t *test_task_param)
{
xTaskCreate(read_task, "read_task", 8*1024, (void *) test_task_param, 5, NULL);
}
2018-05-03 10:41:10 +02:00
static void send_task(void *param)
{
const test_task_param_t *test_task_param = param;
vTaskDelay(test_task_param->delay_ms / portTICK_PERIOD_MS);
write(test_task_param->fd, message, sizeof(message));
if (test_task_param->sem) {
xSemaphoreGive(test_task_param->sem);
}
vTaskDelete(NULL);
}
static inline void start_write_task(const test_task_param_t *test_task_param)
2018-05-03 10:41:10 +02:00
{
xTaskCreate(send_task, "send_task", 8*1024, (void *) test_task_param, 5, NULL);
2018-05-03 10:41:10 +02:00
}
static void init(int *uart_fd, int *socket_fd)
{
test_case_uses_tcpip();
2018-05-03 10:41:10 +02:00
uart1_init();
2019-04-17 20:19:44 +08:00
uart_set_loop_back(UART_NUM_1, true);
2018-05-03 10:41:10 +02:00
*uart_fd = open("/dev/uart/1", O_RDWR);
TEST_ASSERT_NOT_EQUAL_MESSAGE(*uart_fd, -1, "Cannot open UART");
uart_vfs_dev_use_driver(1);
2018-05-03 10:41:10 +02:00
*socket_fd = socket_init();
}
static void deinit(int uart_fd, int socket_fd)
{
uart_vfs_dev_use_nonblocking(1);
2018-05-03 10:41:10 +02:00
close(uart_fd);
uart_driver_delete(UART_NUM_1);
close(socket_fd);
}
TEST_CASE("UART can do select()", "[vfs]")
{
int uart_fd;
int socket_fd;
struct timeval tv = {
.tv_sec = 0,
.tv_usec = 100000,
};
char recv_message[sizeof(message)];
init(&uart_fd, &socket_fd);
fd_set rfds;
FD_ZERO(&rfds);
FD_SET(uart_fd, &rfds);
//without socket in rfds it will not use the same signalization
const test_task_param_t test_task_param = {
.fd = uart_fd,
.delay_ms = 50,
.sem = xSemaphoreCreateBinary(),
};
TEST_ASSERT_NOT_NULL(test_task_param.sem);
start_write_task(&test_task_param);
2018-05-03 10:41:10 +02:00
int s = select(uart_fd + 1, &rfds, NULL, NULL, &tv);
TEST_ASSERT_EQUAL(s, 1);
TEST_ASSERT(FD_ISSET(uart_fd, &rfds));
TEST_ASSERT_UNLESS(FD_ISSET(socket_fd, &rfds));
int read_bytes = read(uart_fd, recv_message, sizeof(message));
TEST_ASSERT_EQUAL(read_bytes, sizeof(message));
TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message));
TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE);
FD_ZERO(&rfds);
FD_SET(uart_fd, &rfds);
FD_SET(socket_fd, &rfds);
start_write_task(&test_task_param);
2018-05-03 10:41:10 +02:00
s = select(MAX(uart_fd, socket_fd) + 1, &rfds, NULL, NULL, &tv);
TEST_ASSERT_EQUAL(s, 1);
TEST_ASSERT(FD_ISSET(uart_fd, &rfds));
TEST_ASSERT_UNLESS(FD_ISSET(socket_fd, &rfds));
read_bytes = read(uart_fd, recv_message, sizeof(message));
TEST_ASSERT_EQUAL(read_bytes, sizeof(message));
TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message));
TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE);
vSemaphoreDelete(test_task_param.sem);
deinit(uart_fd, socket_fd);
}
static void select_task(void *task_param)
{
const test_select_task_param_t *param = task_param;
int s = select(param->maxfds, param->rdfds, param->wrfds, param->errfds, param->tv);
TEST_ASSERT_EQUAL(param->select_ret, s);
if (param->sem) {
xSemaphoreGive(param->sem);
}
vTaskDelete(NULL);
}
static void inline start_select_task(test_select_task_param_t *param)
{
xTaskCreate(select_task, "select_task", 4*1024, (void *) param, 5, NULL);
}
TEST_CASE("concurrent selects work for UART", "[vfs]")
{
// This test case initiates two select tasks on the same UART FD,
// One task will wait for a write operation, while the other will wait for a read operation to occur.
// The first task will complete its operation before the second task proceeds with its operation on the same FD
// In this scenario, the write operation will be performed initially,
// followed by the subsequent continuation of the read operation.
int uart_fd, socket_fd;
init(&uart_fd, &socket_fd);
const test_task_param_t send_param = {
.fd = uart_fd,
.delay_ms = 0,
.sem = NULL,
};
fd_set wrfds1;
FD_ZERO(&wrfds1);
FD_SET(uart_fd, &wrfds1);
test_select_task_param_t param_write = {
.rdfds = NULL,
.wrfds = &wrfds1,
.errfds = NULL,
.maxfds = uart_fd + 1,
.tv = NULL,
.select_ret = 1,
.sem = xSemaphoreCreateBinary(),
};
TEST_ASSERT_NOT_NULL(param_write.sem);
//Start first task which will wait on select call for write operation on the UART FD
start_select_task(&param_write);
fd_set rdfds2;
FD_ZERO(&rdfds2);
FD_SET(uart_fd, &rdfds2);
test_select_task_param_t param_read = {
.rdfds = &rdfds2,
.wrfds = NULL,
.errfds = NULL,
.maxfds = uart_fd + 1,
.tv = NULL,
.select_ret = 1,
.sem = xSemaphoreCreateBinary(),
};
TEST_ASSERT_NOT_NULL(param_read.sem);
//Start second task which will wait on another select call for read operation on the same UART FD
start_select_task(&param_read);
//Start writing operation on the UART port
start_write_task(&send_param);
//Confirm the completion of the write operation
TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(param_write.sem, 1000 / portTICK_PERIOD_MS));
vSemaphoreDelete(param_write.sem);
TEST_ASSERT(FD_ISSET(uart_fd, &wrfds1));
//Start reading operation on the same UART port
start_read_task(&send_param);
//Confirm the completion of the read operation
TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(param_read.sem, 1000 / portTICK_PERIOD_MS));
vSemaphoreDelete(param_read.sem);
TEST_ASSERT(FD_ISSET(uart_fd, &rdfds2));
deinit(uart_fd, socket_fd);
}
TEST_CASE("concurrent selects work", "[vfs]")
{
int uart_fd, socket_fd;
init(&uart_fd, &socket_fd);
const int dummy_socket_fd = open_dummy_socket();
{
// Two tasks will wait for the same UART FD for reading and they will time-out
struct timeval tv = {
.tv_sec = 0,
.tv_usec = 100000,
};
fd_set rdfds1;
FD_ZERO(&rdfds1);
FD_SET(uart_fd, &rdfds1);
test_select_task_param_t param = {
.rdfds = &rdfds1,
.wrfds = NULL,
.errfds = NULL,
.maxfds = uart_fd + 1,
.tv = &tv,
.select_ret = 0, // expected timeout
.sem = xSemaphoreCreateBinary(),
};
TEST_ASSERT_NOT_NULL(param.sem);
fd_set rdfds2;
FD_ZERO(&rdfds2);
FD_SET(uart_fd, &rdfds2);
FD_SET(socket_fd, &rdfds2);
FD_SET(dummy_socket_fd, &rdfds2);
start_select_task(&param);
vTaskDelay(10 / portTICK_PERIOD_MS); //make sure the task has started and waits in select()
int s = select(MAX(MAX(uart_fd, dummy_socket_fd), socket_fd) + 1, &rdfds2, NULL, NULL, &tv);
TEST_ASSERT_EQUAL(0, s); // timeout here as well
TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(param.sem, 1000 / portTICK_PERIOD_MS));
vSemaphoreDelete(param.sem);
}
{
// One tasks waits for UART reading and one for writing. The former will be successful and latter will
// time-out.
struct timeval tv = {
.tv_sec = 0,
.tv_usec = 100000,
};
fd_set wrfds1;
FD_ZERO(&wrfds1);
FD_SET(uart_fd, &wrfds1);
test_select_task_param_t param = {
.rdfds = NULL,
.wrfds = &wrfds1,
.errfds = NULL,
.maxfds = uart_fd + 1,
.tv = &tv,
.select_ret = 1,
.sem = xSemaphoreCreateBinary(),
};
TEST_ASSERT_NOT_NULL(param.sem);
const test_task_param_t send_param = {
.fd = uart_fd,
.delay_ms = 50,
.sem = xSemaphoreCreateBinary(),
};
TEST_ASSERT_NOT_NULL(send_param.sem);
start_write_task(&send_param); // This task will write to UART which will be detected by select()
start_select_task(&param);
vTaskDelay(100 / portTICK_PERIOD_MS); //make sure the task has started and waits in select()
fd_set rdfds2;
FD_ZERO(&rdfds2);
FD_SET(uart_fd, &rdfds2);
FD_SET(socket_fd, &rdfds2);
FD_SET(dummy_socket_fd, &rdfds2);
int s = select(MAX(MAX(uart_fd, dummy_socket_fd), socket_fd) + 1, &rdfds2, NULL, NULL, &tv);
TEST_ASSERT_EQUAL(1, s);
TEST_ASSERT(FD_ISSET(uart_fd, &rdfds2));
TEST_ASSERT_UNLESS(FD_ISSET(socket_fd, &rdfds2));
TEST_ASSERT_UNLESS(FD_ISSET(dummy_socket_fd, &rdfds2));
TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(param.sem, 1000 / portTICK_PERIOD_MS));
vSemaphoreDelete(param.sem);
TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(send_param.sem, 1000 / portTICK_PERIOD_MS));
vSemaphoreDelete(send_param.sem);
}
deinit(uart_fd, socket_fd);
close(dummy_socket_fd);
}
TEST_CASE("select() works with concurrent mount", "[vfs][fatfs]")
{
wl_handle_t test_wl_handle;
int uart_fd, socket_fd;
init(&uart_fd, &socket_fd);
const int dummy_socket_fd = open_dummy_socket();
esp_vfs_fat_sdmmc_mount_config_t mount_config = {
.format_if_mount_failed = true,
.max_files = 2
};
// select() will be waiting for a socket & UART and FATFS mount will occur in parallel
struct timeval tv = {
.tv_sec = 1,
.tv_usec = 0,
};
fd_set rdfds;
FD_ZERO(&rdfds);
FD_SET(uart_fd, &rdfds);
FD_SET(dummy_socket_fd, &rdfds);
test_select_task_param_t param = {
.rdfds = &rdfds,
.wrfds = NULL,
.errfds = NULL,
.maxfds = MAX(uart_fd, dummy_socket_fd) + 1,
.tv = &tv,
.select_ret = 0, // expected timeout
.sem = xSemaphoreCreateBinary(),
};
TEST_ASSERT_NOT_NULL(param.sem);
start_select_task(&param);
vTaskDelay(10 / portTICK_PERIOD_MS); //make sure the task has started and waits in select()
TEST_ESP_OK(esp_vfs_fat_spiflash_mount_rw_wl("/spiflash", NULL, &mount_config, &test_wl_handle));
TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(param.sem, 1500 / portTICK_PERIOD_MS));
// select() will be waiting for a socket & UART and FATFS unmount will occur in parallel
FD_ZERO(&rdfds);
FD_SET(uart_fd, &rdfds);
FD_SET(dummy_socket_fd, &rdfds);
start_select_task(&param);
vTaskDelay(10 / portTICK_PERIOD_MS); //make sure the task has started and waits in select()
TEST_ESP_OK(esp_vfs_fat_spiflash_unmount_rw_wl("/spiflash", test_wl_handle));
TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(param.sem, 1500 / portTICK_PERIOD_MS));
vSemaphoreDelete(param.sem);
deinit(uart_fd, socket_fd);
close(dummy_socket_fd);
}
TEST_CASE("UART can do poll() with POLLIN event", "[vfs]")
{
int uart_fd;
int socket_fd;
char recv_message[sizeof(message)];
init(&uart_fd, &socket_fd);
struct pollfd poll_fds[] = {
{
.fd = uart_fd,
.events = POLLIN,
},
{
.fd = -1, // should be ignored according to the documentation of poll()
},
};
const test_task_param_t test_task_param = {
.fd = uart_fd,
.delay_ms = 50,
.sem = xSemaphoreCreateBinary(),
};
TEST_ASSERT_NOT_NULL(test_task_param.sem);
start_write_task(&test_task_param);
int s = poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100);
TEST_ASSERT_EQUAL(s, 1);
TEST_ASSERT_EQUAL(uart_fd, poll_fds[0].fd);
TEST_ASSERT_EQUAL(POLLIN, poll_fds[0].revents);
TEST_ASSERT_EQUAL(-1, poll_fds[1].fd);
TEST_ASSERT_EQUAL(0, poll_fds[1].revents);
int read_bytes = read(uart_fd, recv_message, sizeof(message));
TEST_ASSERT_EQUAL(read_bytes, sizeof(message));
TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message));
TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE);
poll_fds[1].fd = socket_fd;
poll_fds[1].events = POLLIN;
start_write_task(&test_task_param);
s = poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100);
TEST_ASSERT_EQUAL(s, 1);
TEST_ASSERT_EQUAL(uart_fd, poll_fds[0].fd);
TEST_ASSERT_EQUAL(POLLIN, poll_fds[0].revents);
TEST_ASSERT_EQUAL(socket_fd, poll_fds[1].fd);
TEST_ASSERT_EQUAL(0, poll_fds[1].revents);
read_bytes = read(uart_fd, recv_message, sizeof(message));
TEST_ASSERT_EQUAL(read_bytes, sizeof(message));
TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message));
TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE);
vSemaphoreDelete(test_task_param.sem);
deinit(uart_fd, socket_fd);
}
TEST_CASE("UART can do poll() with POLLOUT event", "[vfs]")
{
int uart_fd;
int socket_fd;
char recv_message[sizeof(message)];
init(&uart_fd, &socket_fd);
struct pollfd poll_fds[] = {
{
.fd = uart_fd,
.events = POLLOUT,
},
{
.fd = -1, // should be ignored according to the documentation of poll()
},
};
const test_task_param_t test_task_param = {
.fd = uart_fd,
.delay_ms = 50,
.sem = xSemaphoreCreateBinary(),
};
TEST_ASSERT_NOT_NULL(test_task_param.sem);
start_write_task(&test_task_param);
poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100);
TEST_ASSERT_EQUAL(uart_fd, poll_fds[0].fd);
TEST_ASSERT_EQUAL(POLLOUT, poll_fds[0].revents);
TEST_ASSERT_EQUAL(-1, poll_fds[1].fd);
TEST_ASSERT_EQUAL(0, poll_fds[1].revents);
int read_bytes = read(uart_fd, recv_message, sizeof(message));
TEST_ASSERT_EQUAL(read_bytes, sizeof(message));
TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message));
TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE);
vSemaphoreDelete(test_task_param.sem);
deinit(uart_fd, socket_fd);
}
2018-05-03 10:41:10 +02:00
TEST_CASE("socket can do select()", "[vfs]")
{
int uart_fd;
int socket_fd;
struct timeval tv = {
.tv_sec = 0,
.tv_usec = 100000,
};
char recv_message[sizeof(message)];
init(&uart_fd, &socket_fd);
const int dummy_socket_fd = open_dummy_socket();
2018-05-03 10:41:10 +02:00
fd_set rfds;
FD_ZERO(&rfds);
FD_SET(uart_fd, &rfds);
FD_SET(socket_fd, &rfds);
FD_SET(dummy_socket_fd, &rfds);
2018-05-03 10:41:10 +02:00
const test_task_param_t test_task_param = {
.fd = socket_fd,
.delay_ms = 50,
.sem = xSemaphoreCreateBinary(),
};
TEST_ASSERT_NOT_NULL(test_task_param.sem);
start_write_task(&test_task_param);
2018-05-03 10:41:10 +02:00
const int s = select(MAX(MAX(uart_fd, socket_fd), dummy_socket_fd) + 1, &rfds, NULL, NULL, &tv);
TEST_ASSERT_EQUAL(1, s);
2018-05-03 10:41:10 +02:00
TEST_ASSERT_UNLESS(FD_ISSET(uart_fd, &rfds));
TEST_ASSERT_UNLESS(FD_ISSET(dummy_socket_fd, &rfds));
2018-05-03 10:41:10 +02:00
TEST_ASSERT(FD_ISSET(socket_fd, &rfds));
int read_bytes = read(socket_fd, recv_message, sizeof(message));
TEST_ASSERT_EQUAL(read_bytes, sizeof(message));
TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message));
TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE);
vSemaphoreDelete(test_task_param.sem);
deinit(uart_fd, socket_fd);
close(dummy_socket_fd);
2018-05-03 10:41:10 +02:00
}
TEST_CASE("socket can do poll()", "[vfs]")
{
int uart_fd;
int socket_fd;
char recv_message[sizeof(message)];
init(&uart_fd, &socket_fd);
const int dummy_socket_fd = open_dummy_socket();
struct pollfd poll_fds[] = {
{
.fd = uart_fd,
.events = POLLIN,
},
{
.fd = socket_fd,
.events = POLLIN,
},
{
.fd = dummy_socket_fd,
.events = POLLIN,
},
};
const test_task_param_t test_task_param = {
.fd = socket_fd,
.delay_ms = 50,
.sem = xSemaphoreCreateBinary(),
};
TEST_ASSERT_NOT_NULL(test_task_param.sem);
start_write_task(&test_task_param);
int s = poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100);
TEST_ASSERT_EQUAL(s, 1);
TEST_ASSERT_EQUAL(uart_fd, poll_fds[0].fd);
TEST_ASSERT_EQUAL(0, poll_fds[0].revents);
TEST_ASSERT_EQUAL(socket_fd, poll_fds[1].fd);
TEST_ASSERT_EQUAL(POLLIN, poll_fds[1].revents);
TEST_ASSERT_EQUAL(dummy_socket_fd, poll_fds[2].fd);
TEST_ASSERT_EQUAL(0, poll_fds[2].revents);
int read_bytes = read(socket_fd, recv_message, sizeof(message));
TEST_ASSERT_EQUAL(read_bytes, sizeof(message));
TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message));
TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE);
vSemaphoreDelete(test_task_param.sem);
deinit(uart_fd, socket_fd);
close(dummy_socket_fd);
}
2018-05-03 10:41:10 +02:00
TEST_CASE("select() timeout", "[vfs]")
{
int uart_fd;
int socket_fd;
struct timeval tv = {
.tv_sec = 0,
.tv_usec = 100000,
};
init(&uart_fd, &socket_fd);
fd_set rfds;
FD_ZERO(&rfds);
FD_SET(uart_fd, &rfds);
FD_SET(socket_fd, &rfds);
int s = select(MAX(uart_fd, socket_fd) + 1, &rfds, NULL, NULL, &tv);
TEST_ASSERT_EQUAL(s, 0);
TEST_ASSERT_UNLESS(FD_ISSET(uart_fd, &rfds));
TEST_ASSERT_UNLESS(FD_ISSET(socket_fd, &rfds));
FD_ZERO(&rfds);
s = select(MAX(uart_fd, socket_fd) + 1, &rfds, NULL, NULL, &tv);
TEST_ASSERT_EQUAL(s, 0);
TEST_ASSERT_UNLESS(FD_ISSET(uart_fd, &rfds));
TEST_ASSERT_UNLESS(FD_ISSET(socket_fd, &rfds));
deinit(uart_fd, socket_fd);
}
TEST_CASE("poll() timeout", "[vfs]")
{
int uart_fd;
int socket_fd;
init(&uart_fd, &socket_fd);
struct pollfd poll_fds[] = {
{
.fd = uart_fd,
.events = POLLIN,
},
{
.fd = socket_fd,
.events = POLLIN,
},
};
int s = poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100);
TEST_ASSERT_EQUAL(s, 0);
TEST_ASSERT_EQUAL(uart_fd, poll_fds[0].fd);
TEST_ASSERT_EQUAL(0, poll_fds[0].revents);
TEST_ASSERT_EQUAL(socket_fd, poll_fds[1].fd);
TEST_ASSERT_EQUAL(0, poll_fds[1].revents);
poll_fds[0].fd = -1;
poll_fds[1].fd = -1;
s = poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100);
TEST_ASSERT_EQUAL(s, 0);
TEST_ASSERT_EQUAL(-1, poll_fds[0].fd);
TEST_ASSERT_EQUAL(0, poll_fds[0].revents);
TEST_ASSERT_EQUAL(-1, poll_fds[1].fd);
TEST_ASSERT_EQUAL(0, poll_fds[1].revents);
deinit(uart_fd, socket_fd);
}