esp-idf/components/riscv/include/riscv/rv_utils.h

377 lines
13 KiB
C
Raw Normal View History

/*
* SPDX-FileCopyrightText: 2020-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdint.h>
#include "soc/soc_caps.h"
#include "soc/assist_debug_reg.h"
#include "soc/interrupt_reg.h"
#include "esp_attr.h"
#include "riscv/csr.h"
#include "riscv/interrupt.h"
#include "riscv/csr_pie.h"
#ifdef __cplusplus
extern "C" {
#endif
2024-03-14 10:21:29 -04:00
#if SOC_CPU_HAS_CSR_PC
/*performance counter*/
#define CSR_PCER_MACHINE 0x7e0
#define CSR_PCMR_MACHINE 0x7e1
#define CSR_PCCR_MACHINE 0x7e2
2024-03-14 10:21:29 -04:00
#endif /* SOC_CPU_HAS_CSR_PC */
#if SOC_CPU_HAS_FPU
/* FPU bits in mstatus start at bit 13 */
#define CSR_MSTATUS_FPU_SHIFT 13
/* FPU registers are clean if bits are 0b10 */
#define CSR_MSTATUS_FPU_CLEAN_STATE 2
/* FPU status in mstatus are represented with two bits */
#define CSR_MSTATUS_FPU_MASK 3
/* FPU is enabled when writing 1 to FPU bits */
#define CSR_MSTATUS_FPU_ENA BIT(13)
/* Set FPU registers state to clean (after being dirty) */
#define CSR_MSTATUS_FPU_CLEAR BIT(13)
#endif /* SOC_CPU_HAS_FPU */
/* SW defined level which the interrupt module will mask interrupt with priority less than threshold during critical sections
and spinlocks */
#define RVHAL_EXCM_LEVEL 4
/* --------------------------------------------------- CPU Control -----------------------------------------------------
*
* ------------------------------------------------------------------------------------------------------------------ */
FORCE_INLINE_ATTR void __attribute__((always_inline)) rv_utils_wait_for_intr(void)
{
asm volatile ("wfi\n");
}
/* -------------------------------------------------- CPU Registers ----------------------------------------------------
*
* ------------------------------------------------------------------------------------------------------------------ */
FORCE_INLINE_ATTR __attribute__((pure)) uint32_t rv_utils_get_core_id(void)
{
#if SOC_CPU_CORES_NUM == 1
return 0; // No need to check core ID on single core hardware
#else
uint32_t cpuid;
cpuid = RV_READ_CSR(mhartid);
return cpuid;
#endif
}
FORCE_INLINE_ATTR void *rv_utils_get_sp(void)
{
void *sp;
asm volatile ("mv %0, sp;" : "=r" (sp));
return sp;
}
FORCE_INLINE_ATTR uint32_t __attribute__((always_inline)) rv_utils_get_cycle_count(void)
{
2024-03-14 10:21:29 -04:00
#if !SOC_CPU_HAS_CSR_PC
return RV_READ_CSR(mcycle);
#else
return RV_READ_CSR(CSR_PCCR_MACHINE);
#endif
}
FORCE_INLINE_ATTR void __attribute__((always_inline)) rv_utils_set_cycle_count(uint32_t ccount)
{
2024-03-14 10:21:29 -04:00
#if !SOC_CPU_HAS_CSR_PC
RV_WRITE_CSR(mcycle, ccount);
#else
RV_WRITE_CSR(CSR_PCCR_MACHINE, ccount);
#endif
}
/* ------------------------------------------------- CPU Interrupts ----------------------------------------------------
*
* ------------------------------------------------------------------------------------------------------------------ */
// --------------- Interrupt Configuration -----------------
FORCE_INLINE_ATTR void rv_utils_set_mtvec(uint32_t mtvec_val)
{
RV_WRITE_CSR(mtvec, mtvec_val | MTVEC_MODE_CSR);
}
// ------------------ Interrupt Control --------------------
FORCE_INLINE_ATTR void rv_utils_intr_enable(uint32_t intr_mask)
{
// Disable all interrupts to make updating of the interrupt mask atomic.
unsigned old_mstatus = RV_CLEAR_CSR(mstatus, MSTATUS_MIE);
esprv_int_enable(intr_mask);
RV_SET_CSR(mstatus, old_mstatus & MSTATUS_MIE);
}
FORCE_INLINE_ATTR void rv_utils_intr_disable(uint32_t intr_mask)
{
// Disable all interrupts to make updating of the interrupt mask atomic.
unsigned old_mstatus = RV_CLEAR_CSR(mstatus, MSTATUS_MIE);
esprv_int_disable(intr_mask);
RV_SET_CSR(mstatus, old_mstatus & MSTATUS_MIE);
}
FORCE_INLINE_ATTR void rv_utils_intr_global_enable(void)
{
RV_SET_CSR(mstatus, MSTATUS_MIE);
}
FORCE_INLINE_ATTR void rv_utils_intr_global_disable(void)
{
RV_CLEAR_CSR(mstatus, MSTATUS_MIE);
}
/**
* The other rv_utils functions related to each interrupt controller are defined in `interrupt_clic.h`, `interrupt_plic.h`,
* and `interrupt_intc.h`.
*/
/* ------------------------------------------------- FPU Related ----------------------------------------------------
*
* ------------------------------------------------------------------------------------------------------------------ */
#if SOC_CPU_HAS_FPU
FORCE_INLINE_ATTR bool rv_utils_enable_fpu(void)
{
/* Set mstatus[14:13] to 0b01 to start the floating-point unit initialization */
RV_SET_CSR(mstatus, CSR_MSTATUS_FPU_ENA);
/* On the ESP32-P4, the FPU can be used directly after setting `mstatus` bit 13.
* Since the interrupt handler expects the FPU states to be either 0b10 or 0b11,
* let's write the FPU CSR and clear the dirty bit afterwards. */
RV_WRITE_CSR(fcsr, 1);
RV_CLEAR_CSR(mstatus, CSR_MSTATUS_FPU_CLEAR);
const uint32_t mstatus = RV_READ_CSR(mstatus);
/* Make sure the FPU state is 0b10 (clean registers) */
return ((mstatus >> CSR_MSTATUS_FPU_SHIFT) & CSR_MSTATUS_FPU_MASK) == CSR_MSTATUS_FPU_CLEAN_STATE;
}
FORCE_INLINE_ATTR void rv_utils_disable_fpu(void)
{
/* Clear mstatus[14:13] bits to disable the floating-point unit */
RV_CLEAR_CSR(mstatus, CSR_MSTATUS_FPU_MASK << CSR_MSTATUS_FPU_SHIFT);
}
#endif /* SOC_CPU_HAS_FPU */
/* ------------------------------------------------- PIE Related ----------------------------------------------------
*
* ------------------------------------------------------------------------------------------------------------------ */
#if SOC_CPU_HAS_PIE
FORCE_INLINE_ATTR void rv_utils_enable_pie(void)
{
RV_WRITE_CSR(CSR_PIE_STATE_REG, 1);
}
FORCE_INLINE_ATTR void rv_utils_disable_pie(void)
{
RV_WRITE_CSR(CSR_PIE_STATE_REG, 0);
}
#endif /* SOC_CPU_HAS_FPU */
/* -------------------------------------------------- Memory Ports -----------------------------------------------------
*
* ------------------------------------------------------------------------------------------------------------------ */
#if SOC_ASYNCHRONOUS_BUS_ERROR_MODE
FORCE_INLINE_ATTR uintptr_t rv_utils_asynchronous_bus_get_error_pc(void)
{
uint32_t error_pc;
uint32_t mcause, mexstatus;
mexstatus = RV_READ_CSR(MEXSTATUS);
/* MEXSTATUS: Bit 8: Indicates that a load/store access fault (MCAUSE=5/7)
* is due to bus-error exception. If this bit is not cleared before exiting
* the exception handler, it will trigger a bus error again.
* Since we have not mechanisms to recover a normal program execution after
* load/store error appears, do nothing. */
if ((mexstatus & BIT(8)) == 0) {
return 0;
}
mcause = RV_READ_CSR(mcause) & 0xFF;
if (mcause == 5) { /* Load access fault */
/* Get the oldest PC at which the load instruction failed */
error_pc = RV_READ_CSR(LDPC1);
if (error_pc == 0) {
error_pc = RV_READ_CSR(LDPC0);
}
} else if (mcause == 7) { /* Store access fault */
/* Get the oldest PC at which the store instruction failed */
error_pc = RV_READ_CSR(STPC2);
if (error_pc == 0) {
error_pc = RV_READ_CSR(STPC1);
if (error_pc == 0) {
error_pc = RV_READ_CSR(STPC0);
}
}
} else {
return 0;
}
/* Bit 0: Valid bit indicating that this CSR holds the PC (program counter).
* Clear this bit */
return error_pc & ~(1);
}
#endif // SOC_ASYNCHRONOUS_BUS_ERROR_MODE
/* ---------------------------------------------------- Debugging ------------------------------------------------------
*
* ------------------------------------------------------------------------------------------------------------------ */
// --------------- Breakpoints/Watchpoints -----------------
FORCE_INLINE_ATTR void rv_utils_set_breakpoint(int bp_num, uint32_t bp_addr)
{
2024-03-14 10:21:29 -04:00
/* The code below sets breakpoint which will trigger `Breakpoint` exception
* instead transferring control to debugger. */
RV_WRITE_CSR(tselect, bp_num);
2023-04-19 13:37:44 -04:00
RV_WRITE_CSR(tcontrol, TCONTROL_MPTE | TCONTROL_MTE);
RV_WRITE_CSR(tdata1, TDATA1_USER | TDATA1_MACHINE | TDATA1_EXECUTE);
RV_WRITE_CSR(tdata2, bp_addr);
}
FORCE_INLINE_ATTR void rv_utils_set_watchpoint(int wp_num,
uint32_t wp_addr,
size_t size,
bool on_read,
bool on_write)
{
RV_WRITE_CSR(tselect, wp_num);
2023-04-19 13:37:44 -04:00
RV_WRITE_CSR(tcontrol, TCONTROL_MPTE | TCONTROL_MTE);
RV_WRITE_CSR(tdata1, TDATA1_USER |
TDATA1_MACHINE |
((size == 1) ? TDATA1_MATCH_EXACT : TDATA1_MATCH_NAPOT) |
(on_read ? TDATA1_LOAD : 0) |
(on_write ? TDATA1_STORE : 0));
/* From RISC-V Debug Specification:
* tdata1(mcontrol) match = 0 : Exact byte match
*
* tdata1(mcontrol) match = 1 : NAPOT (Naturally Aligned Power-Of-Two):
* Matches when the top M bits of any compare value match the top M bits of tdata2.
* M is XLEN 1 minus the index of the least-significant bit containing 0 in tdata2.
* Note: Expecting that size is number power of 2 (numbers should be in the range of 1 ~ 31)
*
* Examples for understanding how to calculate match pattern to tdata2:
*
* nnnn...nnnnn 1-byte Exact byte match
* nnnn...nnnn0 2-byte NAPOT range
* nnnn...nnn01 4-byte NAPOT range
* nnnn...nn011 8-byte NAPOT range
* nnnn...n0111 16-byte NAPOT range
* nnnn...01111 32-byte NAPOT range
* ...
* n011...11111 2^31 byte NAPOT range
* * where n are bits from original address
*/
uint32_t match_pattern = (wp_addr & ~(size-1)) | ((size-1) >> 1);
RV_WRITE_CSR(tdata2, match_pattern);
}
FORCE_INLINE_ATTR void rv_utils_clear_breakpoint(int bp_num)
{
RV_WRITE_CSR(tselect, bp_num);
/* tdata1 is a WARL(write any read legal) register
* We can just write 0 to it
*/
2023-04-19 13:37:44 -04:00
RV_WRITE_CSR(tdata1, 0);
}
FORCE_INLINE_ATTR void rv_utils_clear_watchpoint(int wp_num)
{
/* riscv have the same registers for breakpoints and watchpoints */
rv_utils_clear_breakpoint(wp_num);
}
FORCE_INLINE_ATTR bool rv_utils_is_trigger_fired(int id)
{
RV_WRITE_CSR(tselect, id);
return (RV_READ_CSR(tdata1) >> TDATA1_HIT_S) & 1;
}
// ---------------------- Debugger -------------------------
FORCE_INLINE_ATTR bool rv_utils_dbgr_is_attached(void)
{
return REG_GET_BIT(ASSIST_DEBUG_CORE_0_DEBUG_MODE_REG, ASSIST_DEBUG_CORE_0_DEBUG_MODULE_ACTIVE);
}
FORCE_INLINE_ATTR void rv_utils_dbgr_break(void)
{
asm volatile("ebreak\n");
}
/* ------------------------------------------------------ Misc ---------------------------------------------------------
*
* ------------------------------------------------------------------------------------------------------------------ */
FORCE_INLINE_ATTR bool rv_utils_compare_and_set(volatile uint32_t *addr, uint32_t compare_value, uint32_t new_value)
{
#if __riscv_atomic
uint32_t old_value = 0;
int error = 0;
/* Based on sample code for CAS from RISCV specs v2.2, atomic instructions */
__asm__ __volatile__(
"cas: lr.w %0, 0(%2) \n" // load 4 bytes from addr (%2) into old_value (%0)
" bne %0, %3, fail \n" // fail if old_value if not equal to compare_value (%3)
" sc.w %1, %4, 0(%2) \n" // store new_value (%4) into addr,
" bnez %1, cas \n" // if we failed to store the new value then retry the operation
"fail: \n"
: "+r" (old_value), "+r" (error) // output parameters
: "r" (addr), "r" (compare_value), "r" (new_value) // input parameters
);
#else
// For a single core RV target has no atomic CAS instruction, we can achieve atomicity by disabling interrupts
unsigned old_mstatus;
old_mstatus = RV_CLEAR_CSR(mstatus, MSTATUS_MIE);
// Compare and set
uint32_t old_value;
old_value = *addr;
if (old_value == compare_value) {
*addr = new_value;
}
// Restore interrupts
RV_SET_CSR(mstatus, old_mstatus & MSTATUS_MIE);
#endif //__riscv_atomic
return (old_value == compare_value);
}
#if SOC_BRANCH_PREDICTOR_SUPPORTED
FORCE_INLINE_ATTR void rv_utils_en_branch_predictor(void)
{
#define MHCR 0x7c1
#define MHCR_RS (1<<4) /* R/W, address return stack set bit */
#define MHCR_BFE (1<<5) /* R/W, allow predictive jump set bit */
#define MHCR_BTB (1<<12) /* R/W, branch target prediction enable bit */
RV_SET_CSR(MHCR, MHCR_RS|MHCR_BFE|MHCR_BTB);
}
#endif
#ifdef __cplusplus
}
#endif