esp-idf/components/bt/controller/esp32c2/bt.c

1002 lines
30 KiB
C
Raw Normal View History

2022-06-03 10:00:50 -04:00
/*
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "esp_random.h"
#include <esp_mac.h>
#include "sdkconfig.h"
#include "os/os.h"
#include "sysinit/sysinit.h"
#include "nimble/nimble_port.h"
#include "nimble/nimble_port_freertos.h"
#ifdef ESP_PLATFORM
#include "esp_log.h"
#endif
#if CONFIG_SW_COEXIST_ENABLE
#include "esp_coexist_internal.h"
#endif
#ifdef CONFIG_BT_LE_HCI_INTERFACE_USE_UART
#include "transport/uart/ble_hci_uart.h"
#else
#include "transport/ram/ble_hci_ram.h"
#endif
#include "nimble/ble_hci_trans.h"
#include "nimble/nimble_npl_os.h"
#include "esp_bt.h"
#include "esp_intr_alloc.h"
#include "nimble/nimble_npl_os.h"
#include "esp_sleep.h"
#include "esp_pm.h"
#include "esp_phy_init.h"
#include "soc/syscon_reg.h"
#include "soc/modem_clkrst_reg.h"
#include "esp_private/periph_ctrl.h"
#include "hal/hal_uart.h"
#ifdef CONFIG_BT_BLUEDROID_ENABLED
#include "hci/hci_hal.h"
#endif
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_private/periph_ctrl.h"
/* Macro definition
************************************************************************
*/
#define NIMBLE_PORT_LOG_TAG "BLE_INIT"
#define OSI_COEX_VERSION 0x00010006
#define OSI_COEX_MAGIC_VALUE 0xFADEBEAD
#define EXT_FUNC_VERSION 0x20220125
#define EXT_FUNC_MAGIC_VALUE 0xA5A5A5A5
/* Types definition
************************************************************************
*/
struct osi_coex_funcs_t {
uint32_t _magic;
uint32_t _version;
void (* _coex_wifi_sleep_set)(bool sleep);
int (* _coex_core_ble_conn_dyn_prio_get)(bool *low, bool *high);
void (* _coex_schm_status_bit_set)(uint32_t type, uint32_t status);
void (* _coex_schm_status_bit_clear)(uint32_t type, uint32_t status);
};
struct ext_funcs_t {
uint32_t ext_version;
int (*_esp_intr_alloc)(int source, int flags, intr_handler_t handler, void *arg, void **ret_handle);
int (*_esp_intr_free)(void **ret_handle);
void *(* _malloc)(size_t size);
void (*_free)(void *p);
void (*_hal_uart_start_tx)(int);
int (*_hal_uart_init_cbs)(int, hal_uart_tx_char, hal_uart_tx_done, hal_uart_rx_char, void *);
int (*_hal_uart_config)(int, int32_t, uint8_t, uint8_t, enum hal_uart_parity, enum hal_uart_flow_ctl);
int (*_hal_uart_close)(int);
void (*_hal_uart_blocking_tx)(int, uint8_t);
int (*_hal_uart_init)(int, void *);
int (* _task_create)(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
void (* _task_delete)(void *task_handle);
void (*_osi_assert)(const uint32_t ln, const char *fn, uint32_t param1, uint32_t param2);
uint32_t (* _os_random)(void);
int (* _ecc_gen_key_pair)(uint8_t *public, uint8_t *priv);
int (* _ecc_gen_dh_key)(const uint8_t *remote_pub_key_x, const uint8_t *remote_pub_key_y, const uint8_t *local_priv_key, uint8_t *dhkey);
void (* _esp_reset_rpa_moudle)(void);
uint32_t magic;
};
/* External functions or variables
************************************************************************
*/
extern int ble_plf_set_log_level(int level);
extern int ble_osi_coex_funcs_register(struct osi_coex_funcs_t *coex_funcs);
extern int coex_core_ble_conn_dyn_prio_get(bool *low, bool *high);
extern int ble_controller_init(struct esp_bt_controller_config_t *cfg);
extern int ble_controller_deinit(void);
extern int ble_controller_enable(uint8_t mode);
extern int ble_controller_disable(void);
extern int esp_register_ext_funcs (struct ext_funcs_t *);
extern void esp_unregister_ext_funcs (void);
extern int esp_ble_ll_set_public_addr(const uint8_t *addr);
extern int esp_register_npl_funcs (struct npl_funcs_t *p_npl_func);
extern void esp_unregister_npl_funcs (void);
extern void npl_freertos_mempool_deinit(void);
extern void bt_bb_v2_init_cmplx(uint8_t i);
extern int os_msys_buf_alloc(void);
extern uint32_t r_os_cputime_get32(void);
extern uint32_t r_os_cputime_ticks_to_usecs(uint32_t ticks);
extern void r_ble_ll_rfmgmt_set_sleep_cb(void *s_cb, void *w_cb, void *s_arg, void *w_arg, uint32_t us_to_enabled);
extern int os_msys_init(void);
extern void os_msys_buf_free(void);
/* Local Function Declaration
*********************************************************************
*/
static void coex_schm_status_bit_set_wrapper(uint32_t type, uint32_t status);
static void coex_schm_status_bit_clear_wrapper(uint32_t type, uint32_t status);
static int task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
static void task_delete_wrapper(void *task_handle);
static void hal_uart_start_tx_wrapper(int uart_no);
static int hal_uart_init_cbs_wrapper(int uart_no, hal_uart_tx_char tx_func,
hal_uart_tx_done tx_done, hal_uart_rx_char rx_func, void *arg);
static int hal_uart_config_wrapper(int uart_no, int32_t speed, uint8_t databits, uint8_t stopbits,
enum hal_uart_parity parity, enum hal_uart_flow_ctl flow_ctl);
static int hal_uart_close_wrapper(int uart_no);
static void hal_uart_blocking_tx_wrapper(int port, uint8_t data);
static int hal_uart_init_wrapper(int uart_no, void *cfg);
static int esp_intr_alloc_wrapper(int source, int flags, intr_handler_t handler, void *arg, void **ret_handle_in);
static int esp_intr_free_wrapper(void **ret_handle);
static void osi_assert_wrapper(const uint32_t ln, const char *fn, uint32_t param1, uint32_t param2);
static uint32_t osi_random_wrapper(void);
static void esp_reset_rpa_moudle(void);
extern int ble_sm_alg_gen_dhkey(const uint8_t *peer_pub_key_x,
const uint8_t *peer_pub_key_y,
const uint8_t *our_priv_key, uint8_t *out_dhkey);
extern int ble_sm_alg_gen_key_pair(uint8_t *pub, uint8_t *priv);
/* Local variable definition
***************************************************************************
*/
/* Static variable declare */
static DRAM_ATTR esp_bt_controller_status_t ble_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
static bool s_is_sleep_state = false;
#ifdef CONFIG_PM_ENABLE
#ifdef CONFIG_BT_NIMBLE_WAKEUP_SOURCE_CPU_RTC_TIMER
uint32_t s_sleep_tick;
#endif
#endif
#ifdef CONFIG_PM_ENABLE
static DRAM_ATTR esp_timer_handle_t s_btdm_slp_tmr = NULL;
static DRAM_ATTR esp_pm_lock_handle_t s_pm_lock = NULL;
static bool s_pm_lock_acquired = true;
static DRAM_ATTR bool s_btdm_allow_light_sleep;
// pm_lock to prevent light sleep when using main crystal as Bluetooth low power clock
static DRAM_ATTR esp_pm_lock_handle_t s_light_sleep_pm_lock;
static void btdm_slp_tmr_callback(void *arg);
#define BTDM_MIN_TIMER_UNCERTAINTY_US (200)
#endif /* #ifdef CONFIG_PM_ENABLE */
#ifdef CONFIG_BT_NIMBLE_WAKEUP_SOURCE_BLE_RTC_TIMER
#define BLE_RTC_DELAY_US (1100)
#else
#define BLE_RTC_DELAY_US (0)
#endif
static const struct osi_coex_funcs_t s_osi_coex_funcs_ro = {
._magic = OSI_COEX_MAGIC_VALUE,
._version = OSI_COEX_VERSION,
._coex_wifi_sleep_set = NULL,
._coex_core_ble_conn_dyn_prio_get = NULL,
._coex_schm_status_bit_set = coex_schm_status_bit_set_wrapper,
._coex_schm_status_bit_clear = coex_schm_status_bit_clear_wrapper,
};
struct ext_funcs_t ext_funcs_ro = {
.ext_version = EXT_FUNC_VERSION,
._esp_intr_alloc = esp_intr_alloc_wrapper,
._esp_intr_free = esp_intr_free_wrapper,
._malloc = malloc,
._free = free,
._hal_uart_start_tx = hal_uart_start_tx_wrapper,
._hal_uart_init_cbs = hal_uart_init_cbs_wrapper,
._hal_uart_config = hal_uart_config_wrapper,
._hal_uart_close = hal_uart_close_wrapper,
._hal_uart_blocking_tx = hal_uart_blocking_tx_wrapper,
._hal_uart_init = hal_uart_init_wrapper,
._task_create = task_create_wrapper,
._task_delete = task_delete_wrapper,
._osi_assert = osi_assert_wrapper,
._os_random = osi_random_wrapper,
._ecc_gen_key_pair = ble_sm_alg_gen_key_pair,
._ecc_gen_dh_key = ble_sm_alg_gen_dhkey,
._esp_reset_rpa_moudle = esp_reset_rpa_moudle,
.magic = EXT_FUNC_MAGIC_VALUE,
};
static void IRAM_ATTR esp_reset_rpa_moudle(void)
{
periph_module_reset(PERIPH_MODEM_RPA_MODULE);
}
static void IRAM_ATTR osi_assert_wrapper(const uint32_t ln, const char *fn, uint32_t param1, uint32_t param2)
{
ESP_LOGE(NIMBLE_PORT_LOG_TAG, "BLE assert: line %d in function %s, param: 0x%x, 0x%x", ln, fn, param1, param2);
assert(0);
}
static uint32_t IRAM_ATTR osi_random_wrapper(void)
{
return esp_random();
}
static void coex_schm_status_bit_set_wrapper(uint32_t type, uint32_t status)
{
#if CONFIG_SW_COEXIST_ENABLE
coex_schm_status_bit_set(type, status);
#endif
}
static void coex_schm_status_bit_clear_wrapper(uint32_t type, uint32_t status)
{
#if CONFIG_SW_COEXIST_ENABLE
coex_schm_status_bit_clear(type, status);
#endif
}
#ifdef CONFIG_BT_BLUEDROID_ENABLED
bool esp_vhci_host_check_send_available(void)
{
if (ble_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
return false;
}
return true;
}
/**
* Allocates an mbuf for use by the nimble host.
*/
static struct os_mbuf *ble_hs_mbuf_gen_pkt(uint16_t leading_space)
{
struct os_mbuf *om;
int rc;
om = os_msys_get_pkthdr(0, 0);
if (om == NULL) {
return NULL;
}
if (om->om_omp->omp_databuf_len < leading_space) {
rc = os_mbuf_free_chain(om);
assert(rc == 0);
return NULL;
}
om->om_data += leading_space;
return om;
}
/**
* Allocates an mbuf suitable for an HCI ACL data packet.
*
* @return An empty mbuf on success; null on memory
* exhaustion.
*/
struct os_mbuf *ble_hs_mbuf_acl_pkt(void)
{
return ble_hs_mbuf_gen_pkt(4 + 1);
}
void esp_vhci_host_send_packet(uint8_t *data, uint16_t len)
{
if (ble_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
return;
}
if (*(data) == DATA_TYPE_COMMAND) {
struct ble_hci_cmd *cmd = NULL;
cmd = (struct ble_hci_cmd *) ble_hci_trans_buf_alloc(BLE_HCI_TRANS_BUF_CMD);
memcpy((uint8_t *)cmd, data + 1, len - 1);
ble_hci_trans_hs_cmd_tx((uint8_t *)cmd);
}
if (*(data) == DATA_TYPE_ACL) {
struct os_mbuf *om = os_msys_get_pkthdr(0, 0);
assert(om);
memcpy(om->om_data, &data[1], len - 1);
om->om_len = len - 1;
OS_MBUF_PKTHDR(om)->omp_len = len - 1;
ble_hci_trans_hs_acl_tx(om);
}
}
esp_err_t esp_vhci_host_register_callback(const esp_vhci_host_callback_t *callback)
{
if (ble_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
return ESP_FAIL;
}
ble_hci_trans_cfg_hs(ble_hs_hci_rx_evt, NULL, ble_hs_rx_data, NULL);
return ESP_OK;
}
#endif
static int task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id)
{
return (uint32_t)xTaskCreatePinnedToCore(task_func, name, stack_depth, param, prio, task_handle, (core_id < portNUM_PROCESSORS ? core_id : tskNO_AFFINITY));
}
static void task_delete_wrapper(void *task_handle)
{
vTaskDelete(task_handle);
}
static void hal_uart_start_tx_wrapper(int uart_no)
{
#ifdef CONFIG_BT_LE_HCI_INTERFACE_USE_UART
hal_uart_start_tx(uart_no);
#endif
}
static int hal_uart_init_cbs_wrapper(int uart_no, hal_uart_tx_char tx_func,
hal_uart_tx_done tx_done, hal_uart_rx_char rx_func, void *arg)
{
int rc = -1;
#ifdef CONFIG_BT_LE_HCI_INTERFACE_USE_UART
rc = hal_uart_init_cbs(uart_no, tx_func, tx_done, rx_func, arg);
#endif
return rc;
}
static int hal_uart_config_wrapper(int uart_no, int32_t speed, uint8_t databits, uint8_t stopbits,
enum hal_uart_parity parity, enum hal_uart_flow_ctl flow_ctl)
{
int rc = -1;
#ifdef CONFIG_BT_LE_HCI_INTERFACE_USE_UART
rc = hal_uart_config(uart_no, speed, databits, stopbits, parity, flow_ctl);
#endif
return rc;
}
static int hal_uart_close_wrapper(int uart_no)
{
int rc = -1;
#ifdef CONFIG_BT_LE_HCI_INTERFACE_USE_UART
rc = hal_uart_close(uart_no);
#endif
return rc;
}
static void hal_uart_blocking_tx_wrapper(int port, uint8_t data)
{
#ifdef CONFIG_BT_LE_HCI_INTERFACE_USE_UART
hal_uart_blocking_tx(port, data);
#endif
}
static int hal_uart_init_wrapper(int uart_no, void *cfg)
{
int rc = -1;
#ifdef CONFIG_BT_LE_HCI_INTERFACE_USE_UART
rc = hal_uart_init(uart_no, cfg);
#endif
return rc;
}
static int esp_intr_alloc_wrapper(int source, int flags, intr_handler_t handler, void *arg, void **ret_handle_in)
{
int rc = esp_intr_alloc(source, flags, handler, arg, (intr_handle_t *)ret_handle_in);
return rc;
}
static int esp_intr_free_wrapper(void **ret_handle)
{
int rc = 0;
rc = esp_intr_free((intr_handle_t) * ret_handle);
*ret_handle = NULL;
return rc;
}
IRAM_ATTR void controller_sleep_cb(uint32_t enable_tick, void *arg)
{
if (s_is_sleep_state) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "sleep state error");
assert(0);
}
s_is_sleep_state = true;
#ifdef CONFIG_PM_ENABLE
#ifdef CONFIG_BT_NIMBLE_WAKEUP_SOURCE_CPU_RTC_TIMER
uint32_t tick_invalid = *(uint32_t *)(arg);
if (!tick_invalid) {
s_sleep_tick = r_os_cputime_get32();
assert(enable_tick >= s_sleep_tick);
// start a timer to wake up and acquire the pm_lock before modem_sleep awakes
uint32_t us_to_sleep = os_cputime_ticks_to_usecs(enable_tick - s_sleep_tick);
assert(us_to_sleep > BTDM_MIN_TIMER_UNCERTAINTY_US);
if (esp_timer_start_once(s_btdm_slp_tmr, us_to_sleep - BTDM_MIN_TIMER_UNCERTAINTY_US) != ESP_OK) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "timer start failed");
}
}
#endif // CONFIG_NIMBLE_WAKEUP_SOURCE_CPU_RTC_TIMER
if (s_pm_lock_acquired) {
esp_pm_lock_release(s_pm_lock);
s_pm_lock_acquired = false;
}
#endif // CONFIG_PM_ENABLE
}
IRAM_ATTR void controller_wakeup_cb(void *arg)
{
if (!s_is_sleep_state) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "wake up state error");
assert(0);
}
s_is_sleep_state = false;
// need to check if need to call pm lock here
#ifdef CONFIG_PM_ENABLE
if (!s_pm_lock_acquired) {
s_pm_lock_acquired = true;
esp_pm_lock_acquire(s_pm_lock);
}
#ifdef CONFIG_BT_NIMBLE_WAKEUP_SOURCE_CPU_RTC_TIMER
if (esp_sleep_get_wakeup_cause() != ESP_SLEEP_WAKEUP_TIMER) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "wake up source %d", esp_sleep_get_wakeup_cause());
}
#endif
#ifdef CONFIG_BT_NIMBLE_WAKEUP_SOURCE_BLE_RTC_TIMER
if (esp_sleep_get_wakeup_cause() != ESP_SLEEP_WAKEUP_BT) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "wake up source %d", esp_sleep_get_wakeup_cause());
}
#endif
#endif
}
#ifdef CONFIG_PM_ENABLE
#ifdef CONFIG_BT_NIMBLE_WAKEUP_SOURCE_CPU_RTC_TIMER
static void btdm_slp_tmr_callback(void *arg)
{
(void)(arg);
if (!s_pm_lock_acquired) {
s_pm_lock_acquired = true;
esp_pm_lock_acquire(s_pm_lock);
}
}
#endif
#endif // CONFIG_PM_ENABLE
void controller_sleep_init(void)
{
#ifdef CONFIG_NIMBLE_SLEEP_ENABLE
s_is_sleep_state = false;
#ifdef CONFIG_PM_ENABLE
s_btdm_allow_light_sleep = true;
#endif // CONFIG_PM_ENABLE
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "BLE modem sleep is enabled");
// register sleep callbacks
r_ble_ll_rfmgmt_set_sleep_cb(controller_sleep_cb, controller_wakeup_cb, 0, 0, 500 + BLE_RTC_DELAY_US);
#else
#ifdef CONFIG_PM_ENABLE
s_btdm_allow_light_sleep = false;
#endif // CONFIG_PM_ENABLE
#endif // CONFIG_NIMBLE_SLEEP_ENABLE
// enable light sleep
#ifdef CONFIG_PM_ENABLE
if (!s_btdm_allow_light_sleep) {
if (esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "btnosleep", &s_light_sleep_pm_lock) != ESP_OK) {
goto error;
}
}
if (esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "bt", &s_pm_lock) != ESP_OK) {
goto error;
}
#ifdef CONFIG_BT_NIMBLE_WAKEUP_SOURCE_CPU_RTC_TIMER
esp_timer_create_args_t create_args = {
.callback = btdm_slp_tmr_callback,
.arg = NULL,
.name = "btSlp"
};
if ( esp_timer_create(&create_args, &s_btdm_slp_tmr) != ESP_OK) {
goto error;
}
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "light sleep enable success, CPU RTC timer wake up");
#endif //CONFIG_NIMBLE_WAKEUP_SOURCE_CPU_RTC_TIMER
#ifdef CONFIG_BT_NIMBLE_WAKEUP_SOURCE_BLE_RTC_TIMER
esp_sleep_enable_bt_wakeup();
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "light sleep enable success, BLE RTC timer wake up");
#endif // CONFIG_NIMBLE_WAKEUP_SOURCE_BLE_RTC_TIMER
s_pm_lock_acquired = true;
if (!s_btdm_allow_light_sleep) {
esp_pm_lock_acquire(s_light_sleep_pm_lock);
}
if (s_pm_lock) {
esp_pm_lock_acquire(s_pm_lock);
}
return;
error:
if (!s_btdm_allow_light_sleep) {
if (s_light_sleep_pm_lock != NULL) {
esp_pm_lock_delete(s_light_sleep_pm_lock);
s_light_sleep_pm_lock = NULL;
}
}
if (s_pm_lock != NULL) {
esp_pm_lock_delete(s_pm_lock);
s_pm_lock = NULL;
}
#ifdef CONFIG_BT_NIMBLE_WAKEUP_SOURCE_CPU_RTC_TIMER
if (s_btdm_slp_tmr != NULL) {
esp_timer_delete(s_btdm_slp_tmr);
s_btdm_slp_tmr = NULL;
}
#endif // CONFIG_BT_NIMBLE_WAKEUP_SOURCE_CPU_RTC_TIMER
#ifdef CONFIG_BT_NIMBLE_WAKEUP_SOURCE_BLE_RTC_TIMER
esp_sleep_disable_bt_wakeup();
#endif // CONFIG_BT_NIMBLE_WAKEUP_SOURCE_BLE_RTC_TIMER
#endif
}
void controller_sleep_deinit(void)
{
#ifdef CONFIG_PM_ENABLE
if (!s_btdm_allow_light_sleep) {
if (s_light_sleep_pm_lock != NULL) {
esp_pm_lock_delete(s_light_sleep_pm_lock);
s_light_sleep_pm_lock = NULL;
}
}
if (s_pm_lock != NULL) {
esp_pm_lock_delete(s_pm_lock);
s_pm_lock = NULL;
}
#ifdef CONFIG_BT_NIMBLE_WAKEUP_SOURCE_CPU_RTC_TIMER
if (s_btdm_slp_tmr != NULL) {
esp_timer_stop(s_btdm_slp_tmr);
esp_timer_delete(s_btdm_slp_tmr);
s_btdm_slp_tmr = NULL;
}
#endif
s_pm_lock_acquired = false;
#endif
}
void ble_rtc_clk_init(void)
{
// modem_clkrst_reg
// LP_TIMER_SEL_XTAL32K -> 0
// LP_TIMER_SEL_XTAL -> 1
// LP_TIMER_SEL_8M -> 0
// LP_TIMER_SEL_RTC_SLOW -> 0
// LP_TIMER_CLK_DIV_NUM -> 1250
SET_PERI_REG_BITS(MODEM_CLKRST_MODEM_LP_TIMER_CONF_REG, 1, 0, MODEM_CLKRST_LP_TIMER_SEL_XTAL32K_S);
SET_PERI_REG_BITS(MODEM_CLKRST_MODEM_LP_TIMER_CONF_REG, 1, 1, MODEM_CLKRST_LP_TIMER_SEL_XTAL_S);
SET_PERI_REG_BITS(MODEM_CLKRST_MODEM_LP_TIMER_CONF_REG, 1, 0, MODEM_CLKRST_LP_TIMER_SEL_8M_S);
SET_PERI_REG_BITS(MODEM_CLKRST_MODEM_LP_TIMER_CONF_REG, 1, 0, MODEM_CLKRST_LP_TIMER_SEL_RTC_SLOW_S);
SET_PERI_REG_BITS(MODEM_CLKRST_MODEM_LP_TIMER_CONF_REG, MODEM_CLKRST_LP_TIMER_CLK_DIV_NUM, 249, MODEM_CLKRST_LP_TIMER_CLK_DIV_NUM_S);
// MODEM_CLKRST_ETM_CLK_ACTIVE -> 1
// MODEM_CLKRST_ETM_CLK_SEL -> 0
SET_PERI_REG_BITS(MODEM_CLKRST_ETM_CLK_CONF_REG, 1, 1, MODEM_CLKRST_ETM_CLK_ACTIVE_S);
SET_PERI_REG_BITS(MODEM_CLKRST_ETM_CLK_CONF_REG, 1, 0, MODEM_CLKRST_ETM_CLK_SEL_S);
}
esp_err_t esp_bt_controller_init(struct esp_bt_controller_config_t *cfg)
{
if (ble_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "invalid controller state");
return ESP_FAIL;
}
if (cfg == NULL) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "cfg is NULL");
return ESP_ERR_INVALID_ARG;
}
ble_rtc_clk_init();
if (esp_register_ext_funcs(&ext_funcs_ro) != 0) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "register extend functions failed");
return ESP_ERR_INVALID_ARG;
}
/* Initialize the function pointers for OS porting */
npl_freertos_funcs_init();
struct npl_funcs_t *p_npl_funcs = npl_freertos_funcs_get();
if (!p_npl_funcs) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "npl functions get failed");
return ESP_ERR_INVALID_ARG;
}
if (esp_register_npl_funcs(p_npl_funcs) != 0) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "npl functions register failed");
return ESP_ERR_INVALID_ARG;
}
if (npl_freertos_mempool_init() != 0) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "npl mempool init failed");
return ESP_ERR_INVALID_ARG;
}
/* Initialize the global memory pool */
if (os_msys_buf_alloc() != 0) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "os msys alloc failed");
return ESP_ERR_INVALID_ARG;
}
os_msys_init();
#if CONFIG_BT_NIMBLE_ENABLED
// ble_npl_eventq_init() need to use npl function in rom and must be called after esp_bt_controller_init()
/* Initialize default event queue */
ble_npl_eventq_init(nimble_port_get_dflt_eventq());
#endif
periph_module_enable(PERIPH_BT_MODULE);
// init phy
esp_phy_enable();
// init bb
bt_bb_v2_init_cmplx(1);
if (ble_osi_coex_funcs_register((struct osi_coex_funcs_t *)&s_osi_coex_funcs_ro) != 0) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "osi coex funcs reg failed");
return ESP_ERR_INVALID_ARG;
}
#if CONFIG_SW_COEXIST_ENABLE
coex_init();
#endif
int rc = ble_controller_init(cfg);
if (rc != 0) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "ble_controller_init failed %d", rc);
return ESP_ERR_NO_MEM;
}
controller_sleep_init();
uint8_t mac[6];
ESP_ERROR_CHECK(esp_read_mac((uint8_t *)mac, ESP_MAC_BT));
swap_in_place(mac, 6);
esp_ble_ll_set_public_addr(mac);
ble_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
#ifdef CONFIG_BT_BLUEDROID_ENABLED
ble_hci_trans_cfg_hs(ble_hs_hci_rx_evt, NULL, ble_hs_rx_data, NULL);
#endif
return ESP_OK;
}
esp_err_t esp_bt_controller_deinit(void)
{
if ((ble_controller_status < ESP_BT_CONTROLLER_STATUS_INITED) || (ble_controller_status >= ESP_BT_CONTROLLER_STATUS_ENABLED)) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "invalid controller state");
return ESP_FAIL;
}
controller_sleep_deinit();
if (ble_controller_deinit() != 0) {
return ESP_FAIL;
}
#if CONFIG_BT_NIMBLE_ENABLED
/* De-initialize default event queue */
ble_npl_eventq_deinit(nimble_port_get_dflt_eventq());
#endif
os_msys_buf_free();
esp_unregister_npl_funcs();
esp_unregister_ext_funcs();
/* De-initialize npl functions */
npl_freertos_funcs_deinit();
npl_freertos_mempool_deinit();
esp_phy_disable();
ble_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
return ESP_OK;
}
esp_err_t esp_bt_controller_enable(esp_bt_mode_t mode)
{
if (mode != ESP_BT_MODE_BLE) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "invalid controller mode");
return ESP_FAIL;
}
if (ble_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "invalid controller state");
return ESP_FAIL;
}
#if CONFIG_SW_COEXIST_ENABLE
coex_enable();
#endif
if (ble_controller_enable(mode) != 0) {
return ESP_FAIL;
}
ble_controller_status = ESP_BT_CONTROLLER_STATUS_ENABLED;
return ESP_OK;
}
esp_err_t esp_bt_controller_disable(void)
{
if (ble_controller_status < ESP_BT_CONTROLLER_STATUS_ENABLED) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "invalid controller state");
return ESP_FAIL;
}
if (ble_controller_disable() != 0) {
return ESP_FAIL;
}
ble_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
return ESP_OK;
}
esp_err_t esp_bt_controller_mem_release(esp_bt_mode_t mode)
{
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "%s not implemented, return OK", __func__);
return ESP_OK;
}
esp_err_t esp_bt_mem_release(esp_bt_mode_t mode)
{
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "%s not implemented, return OK", __func__);
return ESP_OK;
}
esp_bt_controller_status_t esp_bt_controller_get_status(void)
{
return ble_controller_status;
}
/* extra functions */
esp_err_t esp_ble_tx_power_set(esp_ble_power_type_t power_type, esp_power_level_t power_level)
{
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "%s not implemented, return OK", __func__);
return ESP_OK;
}
esp_power_level_t esp_ble_tx_power_get(esp_ble_power_type_t power_type)
{
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "%s not implemented, return OK", __func__);
return ESP_PWR_LVL_N0;
}
#if (!CONFIG_BT_NIMBLE_ENABLED) && (CONFIG_BT_CONTROLLER_ENABLED == true)
#define BLE_SM_KEY_ERR 0x17
#if CONFIG_BT_LE_CRYPTO_STACK_MBEDTLS
#include "mbedtls/aes.h"
#if CONFIG_BT_LE_SM_SC
#include "mbedtls/cipher.h"
#include "mbedtls/entropy.h"
#include "mbedtls/ctr_drbg.h"
#include "mbedtls/cmac.h"
#include "mbedtls/ecdh.h"
#include "mbedtls/ecp.h"
#endif
#else
#include "tinycrypt/aes.h"
#include "tinycrypt/constants.h"
#include "tinycrypt/utils.h"
#if CONFIG_BT_LE_SM_SC
#include "tinycrypt/cmac_mode.h"
#include "tinycrypt/ecc_dh.h"
#endif
#endif
#if CONFIG_BT_LE_CRYPTO_STACK_MBEDTLS
#if CONFIG_BT_LE_SM_SC
static mbedtls_ecp_keypair keypair;
#endif
#endif
int ble_sm_alg_gen_dhkey(const uint8_t *peer_pub_key_x, const uint8_t *peer_pub_key_y,
const uint8_t *our_priv_key, uint8_t *out_dhkey)
{
uint8_t dh[32];
uint8_t pk[64];
uint8_t priv[32];
int rc = BLE_SM_KEY_ERR;
swap_buf(pk, peer_pub_key_x, 32);
swap_buf(&pk[32], peer_pub_key_y, 32);
swap_buf(priv, our_priv_key, 32);
#if CONFIG_BT_LE_CRYPTO_STACK_MBEDTLS
struct mbedtls_ecp_point pt = {0}, Q = {0};
mbedtls_mpi z = {0}, d = {0};
mbedtls_ctr_drbg_context ctr_drbg = {0};
mbedtls_entropy_context entropy = {0};
uint8_t pub[65] = {0};
/* Hardcoded first byte of pub key for MBEDTLS_ECP_PF_UNCOMPRESSED */
pub[0] = 0x04;
memcpy(&pub[1], pk, 64);
/* Initialize the required structures here */
mbedtls_ecp_point_init(&pt);
mbedtls_ecp_point_init(&Q);
mbedtls_ctr_drbg_init(&ctr_drbg);
mbedtls_entropy_init(&entropy);
mbedtls_mpi_init(&d);
mbedtls_mpi_init(&z);
/* Below 3 steps are to validate public key on curve secp256r1 */
if (mbedtls_ecp_group_load(&keypair.MBEDTLS_PRIVATE(grp), MBEDTLS_ECP_DP_SECP256R1) != 0) {
goto exit;
}
if (mbedtls_ecp_point_read_binary(&keypair.MBEDTLS_PRIVATE(grp), &pt, pub, 65) != 0) {
goto exit;
}
if (mbedtls_ecp_check_pubkey(&keypair.MBEDTLS_PRIVATE(grp), &pt) != 0) {
goto exit;
}
/* Set PRNG */
if ((rc = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy,
NULL, 0)) != 0) {
goto exit;
}
/* Prepare point Q from pub key */
if (mbedtls_ecp_point_read_binary(&keypair.MBEDTLS_PRIVATE(grp), &Q, pub, 65) != 0) {
goto exit;
}
if (mbedtls_mpi_read_binary(&d, priv, 32) != 0) {
goto exit;
}
rc = mbedtls_ecdh_compute_shared(&keypair.MBEDTLS_PRIVATE(grp), &z, &Q, &d,
mbedtls_ctr_drbg_random, &ctr_drbg);
if (rc != 0) {
goto exit;
}
rc = mbedtls_mpi_write_binary(&z, dh, 32);
if (rc != 0) {
goto exit;
}
exit:
mbedtls_ecp_point_free(&pt);
mbedtls_mpi_free(&z);
mbedtls_mpi_free(&d);
mbedtls_ecp_point_free(&Q);
mbedtls_entropy_free(&entropy);
mbedtls_ctr_drbg_free(&ctr_drbg);
if (rc != 0) {
return BLE_SM_KEY_ERR;
}
#else
if (uECC_valid_public_key(pk, &curve_secp256r1) < 0) {
return BLE_SM_KEY_ERR;
}
rc = uECC_shared_secret(pk, priv, dh, &curve_secp256r1);
if (rc == TC_CRYPTO_FAIL) {
return BLE_SM_KEY_ERR;
}
#endif
swap_buf(out_dhkey, dh, 32);
return 0;
}
/* based on Core Specification 4.2 Vol 3. Part H 2.3.5.6.1 */
static const uint8_t ble_sm_alg_dbg_priv_key[32] = {
0x3f, 0x49, 0xf6, 0xd4, 0xa3, 0xc5, 0x5f, 0x38, 0x74, 0xc9, 0xb3, 0xe3,
0xd2, 0x10, 0x3f, 0x50, 0x4a, 0xff, 0x60, 0x7b, 0xeb, 0x40, 0xb7, 0x99,
0x58, 0x99, 0xb8, 0xa6, 0xcd, 0x3c, 0x1a, 0xbd
};
#if CONFIG_BT_LE_CRYPTO_STACK_MBEDTLS
static int mbedtls_gen_keypair(uint8_t *public_key, uint8_t *private_key)
{
int rc = BLE_SM_KEY_ERR;
mbedtls_entropy_context entropy = {0};
mbedtls_ctr_drbg_context ctr_drbg = {0};
mbedtls_entropy_init(&entropy);
mbedtls_ctr_drbg_init(&ctr_drbg);
mbedtls_ecp_keypair_init(&keypair);
if ((rc = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy,
NULL, 0)) != 0) {
goto exit;
}
if ((rc = mbedtls_ecp_gen_key(MBEDTLS_ECP_DP_SECP256R1, &keypair,
mbedtls_ctr_drbg_random, &ctr_drbg)) != 0) {
goto exit;
}
if ((rc = mbedtls_mpi_write_binary(&keypair.MBEDTLS_PRIVATE(d), private_key, 32)) != 0) {
goto exit;
}
size_t olen = 0;
uint8_t pub[65] = {0};
if ((rc = mbedtls_ecp_point_write_binary(&keypair.MBEDTLS_PRIVATE(grp), &keypair.MBEDTLS_PRIVATE(Q), MBEDTLS_ECP_PF_UNCOMPRESSED,
&olen, pub, 65)) != 0) {
goto exit;
}
memcpy(public_key, &pub[1], 64);
exit:
mbedtls_ctr_drbg_free(&ctr_drbg);
mbedtls_entropy_free(&entropy);
if (rc != 0) {
mbedtls_ecp_keypair_free(&keypair);
return BLE_SM_KEY_ERR;
}
return 0;
}
#endif
/**
* pub: 64 bytes
* priv: 32 bytes
*/
int ble_sm_alg_gen_key_pair(uint8_t *pub, uint8_t *priv)
{
#if CONFIG_BT_LE_SM_SC_DEBUG_KEYS
swap_buf(pub, ble_sm_alg_dbg_pub_key, 32);
swap_buf(&pub[32], &ble_sm_alg_dbg_pub_key[32], 32);
swap_buf(priv, ble_sm_alg_dbg_priv_key, 32);
#else
uint8_t pk[64];
do {
#if CONFIG_BT_LE_CRYPTO_STACK_MBEDTLS
if (mbedtls_gen_keypair(pk, priv) != 0) {
return BLE_SM_KEY_ERR;
}
#else
if (uECC_make_key(pk, priv, &curve_secp256r1) != TC_CRYPTO_SUCCESS) {
return BLE_SM_KEY_ERR;
}
#endif
/* Make sure generated key isn't debug key. */
} while (memcmp(priv, ble_sm_alg_dbg_priv_key, 32) == 0);
swap_buf(pub, pk, 32);
swap_buf(&pub[32], &pk[32], 32);
swap_in_place(priv, 32);
#endif
return 0;
}
#endif