esp-idf/examples/11_rmt_nec_tx_rx/main/infrared_nec.c

360 lines
11 KiB
C
Raw Normal View History

2016-11-09 22:23:40 -05:00
/* NEC remote infrared RMT example
This example code is in the Public Domain (or CC0 licensed, at your option.)
Unless required by applicable law or agreed to in writing, this
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.
*/
#include <stdio.h>
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "freertos/semphr.h"
#include "esp_err.h"
#include "esp_log.h"
#include "driver/rmt.h"
#include "driver/periph_ctrl.h"
#include "soc/rmt_reg.h"
static const char* NEC_TAG = "NEC";
//CHOOSE SELF TEST OR NORMAL TEST
#define RMT_RX_SELF_TEST 1
/******************************************************/
/***** SELF TEST: *****/
/*Connect RMT_TX_GPIO_NUM with RMT_RX_GPIO_NUM */
/*TX task will send NEC data with carrier disabled */
/*RX task will print NEC data it receives. */
/******************************************************/
#if RMT_RX_SELF_TEST
#define RMT_RX_ACTIVE_LEVEL 1 /*!< Data bit is active high for self test mode */
#define RMT_TX_CARRIER_EN 0 /*!< Disable carrier for self test mode */
#else
//Test with infrared LED, we have to enable carrier for transmitter
//When testing via IR led, the receiver waveform is usually active-low.
#define RMT_RX_ACTIVE_LEVEL 0 /*!< If we connect with a IR receiver, the data is active low */
#define RMT_TX_CARRIER_EN 1 /*!< Enable carrier for IR transmitter test with IR led */
#endif
#define RMT_TX_CHANNEL 1 /*!< RMT channel for transmitter */
#define RMT_TX_GPIO_NUM 16 /*!< GPIO number for transmitter signal */
#define RMT_RX_CHANNEL 0 /*!< RMT channel for receiver */
#define RMT_RX_GPIO_NUM 19 /*!< GPIO number for receiver */
#define RMT_INTR_NUM 19 /*!< RMT interrupt number, select from soc.h */
#define RMT_CLK_DIV 100 /*!< RMT counter clock divider */
#define RMT_TICK_10_US (80000000/RMT_CLK_DIV/100000) /*!< RMT counter value for 10 us.(Source clock is APB clock) */
#define NEC_HEADER_HIGH_US 9000 /*!< NEC protocol header: positive 9ms */
#define NEC_HEADER_LOW_US 4500 /*!< NEC protocol header: negative 4.5ms*/
#define NEC_BIT_ONE_HIGH_US 560 /*!< NEC protocol data bit 1: positive 0.56ms */
#define NEC_BIT_ONE_LOW_US (2250-NEC_BIT_ONE_HIGH_US) /*!< NEC protocol data bit 1: negative 1.69ms */
#define NEC_BIT_ZERO_HIGH_US 560 /*!< NEC protocol data bit 0: positive 0.56ms */
#define NEC_BIT_ZERO_LOW_US (1120-NEC_BIT_ZERO_HIGH_US) /*!< NEC protocol data bit 0: negative 0.56ms */
#define NEC_BIT_END 560 /*!< NEC protocol end: positive 0.56ms */
#define NEC_BIT_MARGIN 20 /*!< NEC parse margin time */
#define NEC_ITEM_DURATION(d) ((d & 0x7fff)*10/RMT_TICK_10_US) /*!< Parse duration time from memory register value */
#define NEC_DATA_ITEM_NUM 34 /*!< NEC code item number: header + 32bit data + end */
#define RMT_TX_DATA_NUM 100 /*!< NEC tx test data number */
#define rmt_item32_tIMEOUT_US 9500 /*!< RMT receiver timeout value(us) */
/*
* @brief Build register value of waveform for NEC one data bit
*/
inline void nec_fill_item_level(rmt_item32_t* item, int high_us, int low_us)
{
item->level0 = 1;
item->duration0 = (high_us) / 10 * RMT_TICK_10_US;
item->level1 = 0;
item->duration1 = (low_us) / 10 * RMT_TICK_10_US;
}
/*
* @brief Generate NEC header value: active 9ms + negative 4.5ms
*/
static void nec_fill_item_header(rmt_item32_t* item)
{
nec_fill_item_level(item, NEC_HEADER_HIGH_US, NEC_HEADER_LOW_US);
}
/*
* @brief Generate NEC data bit 1: positive 0.56ms + negative 1.69ms
*/
static void nec_fill_item_bit_one(rmt_item32_t* item)
{
nec_fill_item_level(item, NEC_BIT_ONE_HIGH_US, NEC_BIT_ONE_LOW_US);
}
/*
* @brief Generate NEC data bit 0: positive 0.56ms + negative 0.56ms
*/
static void nec_fill_item_bit_zero(rmt_item32_t* item)
{
nec_fill_item_level(item, NEC_BIT_ZERO_HIGH_US, NEC_BIT_ZERO_LOW_US);
}
/*
* @brief Generate NEC end signal: positive 0.56ms
*/
static void nec_fill_item_end(rmt_item32_t* item)
{
nec_fill_item_level(item, NEC_BIT_END, 0x7fff);
}
/*
* @brief Check whether duration is around target_us
*/
inline bool nec_check_in_range(int duration_ticks, int target_us, int margin_us)
{
if(( NEC_ITEM_DURATION(duration_ticks) < (target_us + margin_us))
&& ( NEC_ITEM_DURATION(duration_ticks) > (target_us - margin_us))) {
return true;
} else {
return false;
}
}
/*
* @brief Check whether this value represents an NEC header
*/
static bool nec_header_if(rmt_item32_t* item)
{
if((item->level0 == RMT_RX_ACTIVE_LEVEL && item->level1 != RMT_RX_ACTIVE_LEVEL)
&& nec_check_in_range(item->duration0, NEC_HEADER_HIGH_US, NEC_BIT_MARGIN)
&& nec_check_in_range(item->duration1, NEC_HEADER_LOW_US, NEC_BIT_MARGIN)) {
return true;
}
return false;
}
/*
* @brief Check whether this value represents an NEC data bit 1
*/
static bool nec_bit_one_if(rmt_item32_t* item)
{
if((item->level0 == RMT_RX_ACTIVE_LEVEL && item->level1 != RMT_RX_ACTIVE_LEVEL)
&& nec_check_in_range(item->duration0, NEC_BIT_ONE_HIGH_US, NEC_BIT_MARGIN)
&& nec_check_in_range(item->duration1, NEC_BIT_ONE_LOW_US, NEC_BIT_MARGIN)) {
return true;
}
return false;
}
/*
* @brief Check whether this value represents an NEC data bit 0
*/
static bool nec_bit_zero_if(rmt_item32_t* item)
{
if((item->level0 == RMT_RX_ACTIVE_LEVEL && item->level1 != RMT_RX_ACTIVE_LEVEL)
&& nec_check_in_range(item->duration0, NEC_BIT_ZERO_HIGH_US, NEC_BIT_MARGIN)
&& nec_check_in_range(item->duration1, NEC_BIT_ZERO_LOW_US, NEC_BIT_MARGIN)) {
return true;
}
return false;
}
/*
* @brief Parse NEC 32 bit waveform to address and command.
*/
static int nec_parse_items(rmt_item32_t* item, int item_num, uint16_t* addr, uint16_t* data)
{
int w_len = item_num;
if(w_len < NEC_DATA_ITEM_NUM) {
return -1;
}
int i = 0, j = 0;
if(!nec_header_if(item++)) {
return -1;
}
uint16_t addr_t = 0;
for(j = 0; j < 16; j++) {
if(nec_bit_one_if(item)) {
addr_t |= (1 << j);
} else if(nec_bit_zero_if(item)) {
addr_t |= (0 << j);
} else {
return -1;
}
item++;
i++;
}
uint16_t data_t = 0;
for(j = 0; j < 16; j++) {
if(nec_bit_one_if(item)) {
data_t |= (1 << j);
} else if(nec_bit_zero_if(item)) {
data_t |= (0 << j);
} else {
return -1;
}
item++;
i++;
}
*addr = addr_t;
*data = data_t;
return i;
}
/*
* @brief Build NEC 32bit waveform.
*/
static int nec_build_items(int channel, rmt_item32_t* item, int item_num, uint16_t addr, uint16_t cmd_data)
{
int i = 0, j = 0;
if(item_num < NEC_DATA_ITEM_NUM) {
return -1;
}
nec_fill_item_header(item++);
i++;
for(j = 0; j < 16; j++) {
if(addr & 0x1) {
nec_fill_item_bit_one(item);
} else {
nec_fill_item_bit_zero(item);
}
item++;
i++;
addr >>= 1;
}
for(j = 0; j < 16; j++) {
if(cmd_data & 0x1) {
nec_fill_item_bit_one(item);
} else {
nec_fill_item_bit_zero(item);
}
item++;
i++;
cmd_data >>= 1;
}
nec_fill_item_end(item);
i++;
return i;
}
/*
* @brief RMT transmitter initialization
*/
static void rmt_tx_init()
{
rmt_config_t rmt_tx;
rmt_tx.channel = RMT_TX_CHANNEL;
rmt_tx.gpio_num = RMT_TX_GPIO_NUM;
rmt_tx.mem_block_num = 1;
rmt_tx.clk_div = RMT_CLK_DIV;
rmt_tx.tx_config.loop_en = false;
rmt_tx.tx_config.carrier_duty_percent = 50;
rmt_tx.tx_config.carrier_freq_hz = 38000;
rmt_tx.tx_config.carrier_level = 1;
rmt_tx.tx_config.carrier_en = RMT_TX_CARRIER_EN;
rmt_tx.tx_config.idle_level = 0;
rmt_tx.tx_config.idle_output_en = true;
rmt_tx.rmt_mode = 0;
rmt_config(&rmt_tx);
rmt_driver_install(rmt_tx.channel, 0, RMT_INTR_NUM);
}
/*
* @brief RMT receiver initialization
*/
void rmt_rx_init()
{
rmt_config_t rmt_rx;
rmt_rx.channel = RMT_RX_CHANNEL;
rmt_rx.gpio_num = RMT_RX_GPIO_NUM;
rmt_rx.clk_div = RMT_CLK_DIV;
rmt_rx.mem_block_num = 1;
rmt_rx.rmt_mode = RMT_MODE_RX;
rmt_rx.rx_config.filter_en = true;
rmt_rx.rx_config.filter_ticks_thresh = 100;
rmt_rx.rx_config.idle_threshold = rmt_item32_tIMEOUT_US / 10 * (RMT_TICK_10_US);
rmt_config(&rmt_rx);
rmt_driver_install(rmt_rx.channel, 1000, RMT_INTR_NUM);
}
/**
* @brief RMT receiver demo, this task will print each received NEC data.
*
*/
void rmt_nec_rx_task()
{
int channel = RMT_RX_CHANNEL;
rmt_rx_init();
RingbufHandle_t rb = NULL;
//get RMT RX ringbuffer
rmt_get_ringbuf_handler(channel, &rb);
rmt_rx_start(channel, 1);
while(rb) {
size_t rx_size = 0;
//try to receive data from ringbuffer.
//RMT driver will push all the data it receives to its ringbuffer.
//We just need to parse the value and return the spaces of ringbuffer.
rmt_item32_t* item = (rmt_item32_t*) xRingbufferReceive(rb, &rx_size, 1000);
if(item) {
uint16_t rmt_addr;
uint16_t rmt_cmd;
int offset = 0;
while(1) {
//parse data value from ringbuffer.
int res = nec_parse_items(item + offset, rx_size / 4 - offset, &rmt_addr, &rmt_cmd);
if(res > 0) {
offset += res + 1;
ESP_LOGI(NEC_TAG, "RMT RCV --- addr: 0x%04x cmd: 0x%04x", rmt_addr, rmt_cmd);
} else {
break;
}
}
//after parsing the data, return spaces to ringbuffer.
vRingbufferReturnItem(rb, (void*) item);
} else {
break;
}
}
vTaskDelete(NULL);
}
/**
* @brief RMT transmitter demo, this task will periodically send NEC data. (100 * 32 bits each time.)
*
*/
void rmt_nec_tx_task()
{
vTaskDelay(10);
rmt_tx_init();
esp_log_level_set(NEC_TAG, ESP_LOG_INFO);
int channel = RMT_TX_CHANNEL;
uint16_t cmd = 0x0;
uint16_t addr = 0x11;
int nec_tx_num = RMT_TX_DATA_NUM;
for(;;) {
ESP_LOGI(NEC_TAG, "RMT TX DATA");
size_t size = (sizeof(rmt_item32_t) * NEC_DATA_ITEM_NUM * nec_tx_num);
//each item represent a cycle of waveform.
rmt_item32_t* item = (rmt_item32_t*) malloc(size);
int item_num = NEC_DATA_ITEM_NUM * nec_tx_num;
memset((void*) item, 0, size);
int i, offset = 0;
while(1) {
//To build a series of waveforms.
i = nec_build_items(channel, item + offset, item_num - offset, ((~addr) << 8) | addr, cmd);
if(i < 0) {
break;
}
cmd++;
addr++;
offset += i;
}
//To send data according to the waveform items.
rmt_write_items(channel, item, item_num, true);
//Wait until sending is done.
rmt_wait_tx_done(channel);
//before we free the data, make sure sending is already done.
free(item);
vTaskDelay(2000 / portTICK_RATE_MS);
}
vTaskDelete(NULL);
}