esp-idf/components/driver/spi_common.c

454 lines
18 KiB
C
Raw Normal View History

// Copyright 2015-2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include "driver/spi_master.h"
#include "soc/dport_reg.h"
#include "soc/spi_periph.h"
#include "esp32/rom/ets_sys.h"
#include "esp_types.h"
#include "esp_attr.h"
2019-03-26 04:30:43 -04:00
#include "esp_intr_alloc.h"
#include "esp_intr_alloc.h"
#include "esp_log.h"
#include "esp_err.h"
#include "soc/soc.h"
#include "soc/dport_reg.h"
#include "soc/lldesc.h"
#include "driver/gpio.h"
#include "driver/periph_ctrl.h"
#include "esp_heap_caps.h"
#include "driver/spi_common.h"
#include "stdatomic.h"
#include "hal/spi_hal.h"
static const char *SPI_TAG = "spi";
#define SPI_CHECK(a, str, ret_val) do { \
if (!(a)) { \
ESP_LOGE(SPI_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
return (ret_val); \
} \
} while(0)
#define SPI_CHECK_PIN(pin_num, pin_name, check_output) if (check_output) { \
SPI_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(pin_num), pin_name" not valid", ESP_ERR_INVALID_ARG); \
} else { \
SPI_CHECK(GPIO_IS_VALID_GPIO(pin_num), pin_name" not valid", ESP_ERR_INVALID_ARG); \
}
typedef struct spi_device_t spi_device_t;
#define FUNC_SPI 1 //all pins of HSPI and VSPI shares this function number
#define FUNC_GPIO PIN_FUNC_GPIO
#define DMA_CHANNEL_ENABLED(dma_chan) (BIT(dma_chan-1))
//Periph 1 is 'claimed' by SPI flash code.
static atomic_bool spi_periph_claimed[3] = { ATOMIC_VAR_INIT(true), ATOMIC_VAR_INIT(false), ATOMIC_VAR_INIT(false)};
static const char* spi_claiming_func[3] = {NULL, NULL, NULL};
static uint8_t spi_dma_chan_enabled = 0;
static portMUX_TYPE spi_dma_spinlock = portMUX_INITIALIZER_UNLOCKED;
//Returns true if this peripheral is successfully claimed, false if otherwise.
bool spicommon_periph_claim(spi_host_device_t host, const char* source)
2017-04-26 23:24:44 -04:00
{
bool false_var = false;
bool ret = atomic_compare_exchange_strong(&spi_periph_claimed[host], &false_var, true);
if (ret) {
spi_claiming_func[host] = source;
periph_module_enable(spi_periph_signal[host].module);
} else {
ESP_EARLY_LOGE(SPI_TAG, "SPI%d already claimed by %s.", host+1, spi_claiming_func[host]);
}
return ret;
}
bool spicommon_periph_in_use(spi_host_device_t host)
{
return atomic_load(&spi_periph_claimed[host]);
}
//Returns true if this peripheral is successfully freed, false if otherwise.
2017-04-26 23:24:44 -04:00
bool spicommon_periph_free(spi_host_device_t host)
{
bool true_var = true;
bool ret = atomic_compare_exchange_strong(&spi_periph_claimed[host], &true_var, false);
if (ret) periph_module_disable(spi_periph_signal[host].module);
return ret;
}
2017-04-26 23:24:44 -04:00
int spicommon_irqsource_for_host(spi_host_device_t host)
{
return spi_periph_signal[host].irq;
}
2017-04-26 23:24:44 -04:00
spi_dev_t *spicommon_hw_for_host(spi_host_device_t host)
{
return spi_periph_signal[host].hw;
}
bool spicommon_dma_chan_claim (int dma_chan)
{
bool ret = false;
assert( dma_chan == 1 || dma_chan == 2 );
portENTER_CRITICAL(&spi_dma_spinlock);
if ( !(spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan)) ) {
// get the channel only when it's not claimed yet.
spi_dma_chan_enabled |= DMA_CHANNEL_ENABLED(dma_chan);
ret = true;
}
periph_module_enable( PERIPH_SPI_DMA_MODULE );
portEXIT_CRITICAL(&spi_dma_spinlock);
return ret;
}
bool spicommon_dma_chan_in_use(int dma_chan)
{
assert(dma_chan==1 || dma_chan == 2);
return spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan);
}
bool spicommon_dma_chan_free(int dma_chan)
{
assert( dma_chan == 1 || dma_chan == 2 );
assert( spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan) );
portENTER_CRITICAL(&spi_dma_spinlock);
spi_dma_chan_enabled &= ~DMA_CHANNEL_ENABLED(dma_chan);
if ( spi_dma_chan_enabled == 0 ) {
//disable the DMA only when all the channels are freed.
periph_module_disable( PERIPH_SPI_DMA_MODULE );
}
portEXIT_CRITICAL(&spi_dma_spinlock);
return true;
}
static bool bus_uses_iomux_pins(spi_host_device_t host, const spi_bus_config_t* bus_config)
{
if (bus_config->sclk_io_num>=0 &&
bus_config->sclk_io_num != spi_periph_signal[host].spiclk_iomux_pin) return false;
if (bus_config->quadwp_io_num>=0 &&
bus_config->quadwp_io_num != spi_periph_signal[host].spiwp_iomux_pin) return false;
if (bus_config->quadhd_io_num>=0 &&
bus_config->quadhd_io_num != spi_periph_signal[host].spihd_iomux_pin) return false;
if (bus_config->mosi_io_num >= 0 &&
bus_config->mosi_io_num != spi_periph_signal[host].spid_iomux_pin) return false;
if (bus_config->miso_io_num>=0 &&
bus_config->miso_io_num != spi_periph_signal[host].spiq_iomux_pin) return false;
return true;
}
/*
Do the common stuff to hook up a SPI host to a bus defined by a bunch of GPIO pins. Feed it a host number and a
bus config struct and it'll set up the GPIO matrix and enable the device. If a pin is set to non-negative value,
it should be able to be initialized.
*/
esp_err_t spicommon_bus_initialize_io(spi_host_device_t host, const spi_bus_config_t *bus_config, int dma_chan, uint32_t flags, uint32_t* flags_o)
{
uint32_t temp_flag=0;
bool miso_need_output;
bool mosi_need_output;
bool sclk_need_output;
if ((flags&SPICOMMON_BUSFLAG_MASTER) != 0) {
//initial for master
miso_need_output = ((flags&SPICOMMON_BUSFLAG_DUAL) != 0) ? true : false;
mosi_need_output = true;
sclk_need_output = true;
} else {
//initial for slave
miso_need_output = true;
mosi_need_output = ((flags&SPICOMMON_BUSFLAG_DUAL) != 0) ? true : false;
sclk_need_output = false;
}
const bool wp_need_output = true;
const bool hd_need_output = true;
//check pin capabilities
if (bus_config->sclk_io_num>=0) {
temp_flag |= SPICOMMON_BUSFLAG_SCLK;
SPI_CHECK_PIN(bus_config->sclk_io_num, "sclk", sclk_need_output);
}
if (bus_config->quadwp_io_num>=0) {
SPI_CHECK_PIN(bus_config->quadwp_io_num, "wp", wp_need_output);
}
if (bus_config->quadhd_io_num>=0) {
SPI_CHECK_PIN(bus_config->quadhd_io_num, "hd", hd_need_output);
}
//set flags for QUAD mode according to the existence of wp and hd
if (bus_config->quadhd_io_num >= 0 && bus_config->quadwp_io_num >= 0) temp_flag |= SPICOMMON_BUSFLAG_WPHD;
if (bus_config->mosi_io_num >= 0) {
temp_flag |= SPICOMMON_BUSFLAG_MOSI;
SPI_CHECK_PIN(bus_config->mosi_io_num, "mosi", mosi_need_output);
}
if (bus_config->miso_io_num>=0) {
temp_flag |= SPICOMMON_BUSFLAG_MISO;
SPI_CHECK_PIN(bus_config->miso_io_num, "miso", miso_need_output);
}
//set flags for DUAL mode according to output-capability of MOSI and MISO pins.
if ( (bus_config->mosi_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->mosi_io_num)) &&
(bus_config->miso_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->miso_io_num)) ) {
temp_flag |= SPICOMMON_BUSFLAG_DUAL;
}
//check if the selected pins correspond to the iomux pins of the peripheral
bool use_iomux = bus_uses_iomux_pins(host, bus_config);
if (use_iomux) temp_flag |= SPICOMMON_BUSFLAG_NATIVE_PINS;
uint32_t missing_flag = flags & ~temp_flag;
missing_flag &= ~SPICOMMON_BUSFLAG_MASTER;//don't check this flag
if (missing_flag != 0) {
//check pins existence
if (missing_flag & SPICOMMON_BUSFLAG_SCLK) ESP_LOGE(SPI_TAG, "sclk pin required.");
if (missing_flag & SPICOMMON_BUSFLAG_MOSI) ESP_LOGE(SPI_TAG, "mosi pin required.");
if (missing_flag & SPICOMMON_BUSFLAG_MISO) ESP_LOGE(SPI_TAG, "miso pin required.");
if (missing_flag & SPICOMMON_BUSFLAG_DUAL) ESP_LOGE(SPI_TAG, "not both mosi and miso output capable");
if (missing_flag & SPICOMMON_BUSFLAG_WPHD) ESP_LOGE(SPI_TAG, "both wp and hd required.");
if (missing_flag & SPICOMMON_BUSFLAG_NATIVE_PINS) ESP_LOGE(SPI_TAG, "not using iomux pins");
SPI_CHECK(missing_flag == 0, "not all required capabilities satisfied.", ESP_ERR_INVALID_ARG);
}
if (use_iomux) {
//All SPI iomux pin selections resolve to 1, so we put that here instead of trying to figure
//out which FUNC_GPIOx_xSPIxx to grab; they all are defined to 1 anyway.
ESP_LOGD(SPI_TAG, "SPI%d use iomux pins.", host+1);
if (bus_config->mosi_io_num >= 0) {
gpio_iomux_in(bus_config->mosi_io_num, spi_periph_signal[host].spid_in);
gpio_iomux_out(bus_config->mosi_io_num, FUNC_SPI, false);
}
if (bus_config->miso_io_num >= 0) {
gpio_iomux_in(bus_config->miso_io_num, spi_periph_signal[host].spiq_in);
gpio_iomux_out(bus_config->miso_io_num, FUNC_SPI, false);
}
if (bus_config->quadwp_io_num >= 0) {
gpio_iomux_in(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_in);
gpio_iomux_out(bus_config->quadwp_io_num, FUNC_SPI, false);
}
if (bus_config->quadhd_io_num >= 0) {
gpio_iomux_in(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_in);
gpio_iomux_out(bus_config->quadhd_io_num, FUNC_SPI, false);
}
if (bus_config->sclk_io_num >= 0) {
gpio_iomux_in(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_in);
gpio_iomux_out(bus_config->sclk_io_num, FUNC_SPI, false);
}
temp_flag |= SPICOMMON_BUSFLAG_NATIVE_PINS;
} else {
//Use GPIO matrix
ESP_LOGD(SPI_TAG, "SPI%d use gpio matrix.", host+1);
if (bus_config->mosi_io_num >= 0) {
if (mosi_need_output || (temp_flag&SPICOMMON_BUSFLAG_DUAL)) {
gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT_OUTPUT);
gpio_matrix_out(bus_config->mosi_io_num, spi_periph_signal[host].spid_out, false, false);
} else {
gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT);
}
gpio_matrix_in(bus_config->mosi_io_num, spi_periph_signal[host].spid_in, false);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->mosi_io_num], FUNC_GPIO);
}
if (bus_config->miso_io_num >= 0) {
if (miso_need_output || (temp_flag&SPICOMMON_BUSFLAG_DUAL)) {
gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT_OUTPUT);
gpio_matrix_out(bus_config->miso_io_num, spi_periph_signal[host].spiq_out, false, false);
} else {
gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT);
}
gpio_matrix_in(bus_config->miso_io_num, spi_periph_signal[host].spiq_in, false);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->miso_io_num], FUNC_GPIO);
}
if (bus_config->quadwp_io_num >= 0) {
gpio_set_direction(bus_config->quadwp_io_num, GPIO_MODE_INPUT_OUTPUT);
gpio_matrix_out(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_out, false, false);
gpio_matrix_in(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_in, false);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num], FUNC_GPIO);
}
if (bus_config->quadhd_io_num >= 0) {
gpio_set_direction(bus_config->quadhd_io_num, GPIO_MODE_INPUT_OUTPUT);
gpio_matrix_out(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_out, false, false);
gpio_matrix_in(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_in, false);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num], FUNC_GPIO);
}
if (bus_config->sclk_io_num >= 0) {
if (sclk_need_output) {
gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT_OUTPUT);
gpio_matrix_out(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_out, false, false);
} else {
gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT);
}
gpio_matrix_in(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_in, false);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->sclk_io_num], FUNC_GPIO);
}
}
//Select DMA channel.
DPORT_SET_PERI_REG_BITS(DPORT_SPI_DMA_CHAN_SEL_REG, 3, dma_chan, (host * 2));
if (flags_o) *flags_o = temp_flag;
return ESP_OK;
}
//Find any pin with output muxed to ``func`` and reset it to GPIO
2017-04-26 23:24:44 -04:00
static void reset_func_to_gpio(int func)
{
for (int x = 0; x < GPIO_PIN_COUNT; x++) {
if (GPIO_IS_VALID_GPIO(x) && (READ_PERI_REG(GPIO_FUNC0_OUT_SEL_CFG_REG + (x * 4))&GPIO_FUNC0_OUT_SEL_M) == func) {
gpio_matrix_out(x, SIG_GPIO_OUT_IDX, false, false);
}
}
}
esp_err_t spicommon_bus_free_io(spi_host_device_t host)
{
if (REG_GET_FIELD(GPIO_PIN_MUX_REG[spi_periph_signal[host].spid_iomux_pin], MCU_SEL) == 1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[spi_periph_signal[host].spid_iomux_pin], PIN_FUNC_GPIO);
if (REG_GET_FIELD(GPIO_PIN_MUX_REG[spi_periph_signal[host].spiq_iomux_pin], MCU_SEL) == 1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[spi_periph_signal[host].spiq_iomux_pin], PIN_FUNC_GPIO);
if (REG_GET_FIELD(GPIO_PIN_MUX_REG[spi_periph_signal[host].spiclk_iomux_pin], MCU_SEL) == 1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[spi_periph_signal[host].spiclk_iomux_pin], PIN_FUNC_GPIO);
if (REG_GET_FIELD(GPIO_PIN_MUX_REG[spi_periph_signal[host].spiwp_iomux_pin], MCU_SEL) == 1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[spi_periph_signal[host].spiwp_iomux_pin], PIN_FUNC_GPIO);
if (REG_GET_FIELD(GPIO_PIN_MUX_REG[spi_periph_signal[host].spihd_iomux_pin], MCU_SEL) == 1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[spi_periph_signal[host].spihd_iomux_pin], PIN_FUNC_GPIO);
reset_func_to_gpio(spi_periph_signal[host].spid_out);
reset_func_to_gpio(spi_periph_signal[host].spiq_out);
reset_func_to_gpio(spi_periph_signal[host].spiclk_out);
reset_func_to_gpio(spi_periph_signal[host].spiwp_out);
reset_func_to_gpio(spi_periph_signal[host].spihd_out);
return ESP_OK;
}
esp_err_t spicommon_bus_free_io_cfg(const spi_bus_config_t *bus_cfg)
{
int pin_array[] = {
bus_cfg->mosi_io_num,
bus_cfg->miso_io_num,
bus_cfg->sclk_io_num,
bus_cfg->quadwp_io_num,
bus_cfg->quadhd_io_num,
};
for (int i = 0; i < sizeof(pin_array)/sizeof(int); i ++) {
const int io = pin_array[i];
if (io >= 0 && GPIO_IS_VALID_GPIO(io)) gpio_reset_pin(io);
}
return ESP_OK;
}
2017-04-26 23:24:44 -04:00
void spicommon_cs_initialize(spi_host_device_t host, int cs_io_num, int cs_num, int force_gpio_matrix)
{
if (!force_gpio_matrix && cs_io_num == spi_periph_signal[host].spics0_iomux_pin && cs_num == 0) {
//The cs0s for all SPI peripherals map to pin mux source 1, so we use that instead of a define.
gpio_iomux_in(cs_io_num, spi_periph_signal[host].spics_in);
gpio_iomux_out(cs_io_num, FUNC_SPI, false);
} else {
//Use GPIO matrix
if (GPIO_IS_VALID_OUTPUT_GPIO(cs_io_num)) {
gpio_set_direction(cs_io_num, GPIO_MODE_INPUT_OUTPUT);
gpio_matrix_out(cs_io_num, spi_periph_signal[host].spics_out[cs_num], false, false);
} else {
gpio_set_direction(cs_io_num, GPIO_MODE_INPUT);
}
if (cs_num == 0) gpio_matrix_in(cs_io_num, spi_periph_signal[host].spics_in, false);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cs_io_num], FUNC_GPIO);
}
}
2017-04-26 23:24:44 -04:00
void spicommon_cs_free(spi_host_device_t host, int cs_io_num)
{
if (cs_io_num == 0 && REG_GET_FIELD(GPIO_PIN_MUX_REG[spi_periph_signal[host].spics0_iomux_pin], MCU_SEL) == 1) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[spi_periph_signal[host].spics0_iomux_pin], PIN_FUNC_GPIO);
}
reset_func_to_gpio(spi_periph_signal[host].spics_out[cs_io_num]);
}
void spicommon_cs_free_io(int cs_gpio_num)
{
assert(cs_gpio_num>=0 && GPIO_IS_VALID_GPIO(cs_gpio_num));
gpio_reset_pin(cs_gpio_num);
}
//Set up a list of dma descriptors. dmadesc is an array of descriptors. Data is the buffer to point to.
void IRAM_ATTR spicommon_setup_dma_desc_links(lldesc_t *dmadesc, int len, const uint8_t *data, bool isrx)
2017-04-26 23:24:44 -04:00
{
lldesc_setup_link(dmadesc, data, len, isrx);
}
/*
Code for workaround for DMA issue in ESP32 v0/v1 silicon
*/
2017-04-26 23:24:44 -04:00
static volatile int dmaworkaround_channels_busy[2] = {0, 0};
static dmaworkaround_cb_t dmaworkaround_cb;
static void *dmaworkaround_cb_arg;
2017-04-26 23:24:44 -04:00
static portMUX_TYPE dmaworkaround_mux = portMUX_INITIALIZER_UNLOCKED;
static int dmaworkaround_waiting_for_chan = 0;
2017-04-26 23:24:44 -04:00
bool IRAM_ATTR spicommon_dmaworkaround_req_reset(int dmachan, dmaworkaround_cb_t cb, void *arg)
{
2017-04-26 23:24:44 -04:00
int otherchan = (dmachan == 1) ? 2 : 1;
bool ret;
portENTER_CRITICAL_ISR(&dmaworkaround_mux);
if (dmaworkaround_channels_busy[otherchan-1]) {
//Other channel is busy. Call back when it's done.
2017-04-26 23:24:44 -04:00
dmaworkaround_cb = cb;
dmaworkaround_cb_arg = arg;
dmaworkaround_waiting_for_chan = otherchan;
ret = false;
} else {
//Reset DMA
periph_module_reset( PERIPH_SPI_DMA_MODULE );
2017-04-26 23:24:44 -04:00
ret = true;
}
portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
return ret;
}
bool IRAM_ATTR spicommon_dmaworkaround_reset_in_progress()
{
2017-04-26 23:24:44 -04:00
return (dmaworkaround_waiting_for_chan != 0);
}
2017-04-26 23:24:44 -04:00
void IRAM_ATTR spicommon_dmaworkaround_idle(int dmachan)
{
portENTER_CRITICAL_ISR(&dmaworkaround_mux);
dmaworkaround_channels_busy[dmachan-1] = 0;
if (dmaworkaround_waiting_for_chan == dmachan) {
//Reset DMA
periph_module_reset( PERIPH_SPI_DMA_MODULE );
2017-04-26 23:24:44 -04:00
dmaworkaround_waiting_for_chan = 0;
//Call callback
dmaworkaround_cb(dmaworkaround_cb_arg);
}
portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
}
2017-04-26 23:24:44 -04:00
void IRAM_ATTR spicommon_dmaworkaround_transfer_active(int dmachan)
{
portENTER_CRITICAL_ISR(&dmaworkaround_mux);
dmaworkaround_channels_busy[dmachan-1] = 1;
portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
}