2018-07-29 01:24:20 -04:00
|
|
|
// Copyright 2015-2018 Espressif Systems (Shanghai) PTE LTD
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
#include <stdbool.h>
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <stdlib.h>
|
2019-03-14 05:29:32 -04:00
|
|
|
#include "esp32/rom/ets_sys.h"
|
|
|
|
#include "esp32/rom/rtc.h"
|
|
|
|
#include "esp32/rom/uart.h"
|
|
|
|
#include "esp32/rom/gpio.h"
|
2018-07-29 01:24:20 -04:00
|
|
|
#include "soc/rtc.h"
|
|
|
|
#include "soc/rtc_cntl_reg.h"
|
|
|
|
#include "soc/rtc_io_reg.h"
|
|
|
|
#include "soc/sens_reg.h"
|
|
|
|
#include "soc/dport_reg.h"
|
|
|
|
#include "soc/efuse_reg.h"
|
|
|
|
#include "soc/apb_ctrl_reg.h"
|
|
|
|
#include "i2c_rtc_clk.h"
|
|
|
|
#include "soc_log.h"
|
|
|
|
#include "sdkconfig.h"
|
|
|
|
#include "xtensa/core-macros.h"
|
|
|
|
#include "rtc_clk_common.h"
|
|
|
|
|
|
|
|
/* Number of 8M/256 clock cycles to use for XTAL frequency estimation.
|
|
|
|
* 10 cycles will take approximately 300 microseconds.
|
|
|
|
*/
|
|
|
|
#define XTAL_FREQ_EST_CYCLES 10
|
|
|
|
|
|
|
|
static rtc_xtal_freq_t rtc_clk_xtal_freq_estimate();
|
|
|
|
|
|
|
|
static const char* TAG = "rtc_clk_init";
|
|
|
|
|
|
|
|
void rtc_clk_init(rtc_clk_config_t cfg)
|
|
|
|
{
|
|
|
|
rtc_cpu_freq_config_t old_config, new_config;
|
|
|
|
|
|
|
|
/* If we get a TG WDT system reset while running at 240MHz,
|
|
|
|
* DPORT_CPUPERIOD_SEL register will be reset to 0 resulting in 120MHz
|
|
|
|
* APB and CPU frequencies after reset. This will cause issues with XTAL
|
|
|
|
* frequency estimation, so we switch to XTAL frequency first.
|
|
|
|
*
|
|
|
|
* Ideally we would only do this if RTC_CNTL_SOC_CLK_SEL == PLL and
|
|
|
|
* PLL is configured for 480M, but it takes less time to switch to 40M and
|
|
|
|
* run the following code than querying the PLL does.
|
|
|
|
*/
|
|
|
|
if (REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL) == RTC_CNTL_SOC_CLK_SEL_PLL) {
|
|
|
|
/* We don't know actual XTAL frequency yet, assume 40MHz.
|
|
|
|
* REF_TICK divider will be corrected below, once XTAL frequency is
|
|
|
|
* determined.
|
|
|
|
*/
|
|
|
|
rtc_clk_cpu_freq_to_xtal(40, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Set tuning parameters for 8M and 150k clocks.
|
|
|
|
* Note: this doesn't attempt to set the clocks to precise frequencies.
|
|
|
|
* Instead, we calibrate these clocks against XTAL frequency later, when necessary.
|
|
|
|
* - SCK_DCAP value controls tuning of 150k clock.
|
|
|
|
* The higher the value of DCAP is, the lower is the frequency.
|
|
|
|
* - CK8M_DFREQ value controls tuning of 8M clock.
|
|
|
|
* CLK_8M_DFREQ constant gives the best temperature characteristics.
|
|
|
|
*/
|
|
|
|
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_SCK_DCAP, cfg.slow_clk_dcap);
|
|
|
|
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DFREQ, cfg.clk_8m_dfreq);
|
|
|
|
|
|
|
|
/* Configure 8M clock division */
|
|
|
|
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DIV_SEL, cfg.clk_8m_div);
|
|
|
|
|
|
|
|
/* Enable the internal bus used to configure PLLs */
|
|
|
|
SET_PERI_REG_BITS(ANA_CONFIG_REG, ANA_CONFIG_M, ANA_CONFIG_M, ANA_CONFIG_S);
|
|
|
|
CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, I2C_APLL_M | I2C_BBPLL_M);
|
|
|
|
|
|
|
|
/* Estimate XTAL frequency */
|
|
|
|
rtc_xtal_freq_t xtal_freq = cfg.xtal_freq;
|
|
|
|
if (xtal_freq == RTC_XTAL_FREQ_AUTO) {
|
|
|
|
if (clk_val_is_valid(READ_PERI_REG(RTC_XTAL_FREQ_REG))) {
|
|
|
|
/* XTAL frequency has already been set, use existing value */
|
|
|
|
xtal_freq = rtc_clk_xtal_freq_get();
|
|
|
|
} else {
|
|
|
|
/* Not set yet, estimate XTAL frequency based on RTC_FAST_CLK */
|
|
|
|
xtal_freq = rtc_clk_xtal_freq_estimate();
|
|
|
|
if (xtal_freq == RTC_XTAL_FREQ_AUTO) {
|
|
|
|
SOC_LOGW(TAG, "Can't estimate XTAL frequency, assuming 26MHz");
|
|
|
|
xtal_freq = RTC_XTAL_FREQ_26M;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (!clk_val_is_valid(READ_PERI_REG(RTC_XTAL_FREQ_REG))) {
|
|
|
|
/* Exact frequency was set in sdkconfig, but still warn if autodetected
|
|
|
|
* frequency is different. If autodetection failed, worst case we get a
|
|
|
|
* bit of garbage output.
|
|
|
|
*/
|
|
|
|
|
|
|
|
rtc_xtal_freq_t est_xtal_freq = rtc_clk_xtal_freq_estimate();
|
|
|
|
if (est_xtal_freq != xtal_freq) {
|
|
|
|
SOC_LOGW(TAG, "Possibly invalid CONFIG_ESP32_XTAL_FREQ setting (%dMHz). Detected %d MHz.",
|
|
|
|
xtal_freq, est_xtal_freq);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
uart_tx_wait_idle(0);
|
|
|
|
rtc_clk_xtal_freq_update(xtal_freq);
|
|
|
|
rtc_clk_apb_freq_update(xtal_freq * MHZ);
|
|
|
|
|
|
|
|
/* Set CPU frequency */
|
|
|
|
|
|
|
|
rtc_clk_cpu_freq_get_config(&old_config);
|
|
|
|
uint32_t freq_before = old_config.freq_mhz;
|
|
|
|
|
|
|
|
bool res = rtc_clk_cpu_freq_mhz_to_config(cfg.cpu_freq_mhz, &new_config);
|
2018-09-24 22:58:43 -04:00
|
|
|
if (!res) {
|
|
|
|
SOC_LOGE(TAG, "invalid CPU frequency value");
|
|
|
|
abort();
|
|
|
|
}
|
2018-09-10 07:49:22 -04:00
|
|
|
rtc_clk_cpu_freq_set_config(&new_config);
|
2018-07-29 01:24:20 -04:00
|
|
|
|
|
|
|
/* Configure REF_TICK */
|
|
|
|
REG_WRITE(APB_CTRL_XTAL_TICK_CONF_REG, xtal_freq - 1);
|
|
|
|
REG_WRITE(APB_CTRL_PLL_TICK_CONF_REG, APB_CLK_FREQ / MHZ - 1); /* Under PLL, APB frequency is always 80MHz */
|
|
|
|
|
|
|
|
/* Re-calculate the ccount to make time calculation correct. */
|
|
|
|
XTHAL_SET_CCOUNT( XTHAL_GET_CCOUNT() * cfg.cpu_freq_mhz / freq_before );
|
|
|
|
|
|
|
|
/* Slow & fast clocks setup */
|
|
|
|
if (cfg.slow_freq == RTC_SLOW_FREQ_32K_XTAL) {
|
|
|
|
rtc_clk_32k_enable(true);
|
|
|
|
}
|
|
|
|
if (cfg.fast_freq == RTC_FAST_FREQ_8M) {
|
|
|
|
bool need_8md256 = cfg.slow_freq == RTC_SLOW_FREQ_8MD256;
|
|
|
|
rtc_clk_8m_enable(true, need_8md256);
|
|
|
|
}
|
|
|
|
rtc_clk_fast_freq_set(cfg.fast_freq);
|
|
|
|
rtc_clk_slow_freq_set(cfg.slow_freq);
|
|
|
|
}
|
|
|
|
|
|
|
|
static rtc_xtal_freq_t rtc_clk_xtal_freq_estimate()
|
|
|
|
{
|
|
|
|
/* Enable 8M/256 clock if needed */
|
|
|
|
const bool clk_8m_enabled = rtc_clk_8m_enabled();
|
|
|
|
const bool clk_8md256_enabled = rtc_clk_8md256_enabled();
|
|
|
|
if (!clk_8md256_enabled) {
|
|
|
|
rtc_clk_8m_enable(true, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t cal_val = rtc_clk_cal_ratio(RTC_CAL_8MD256, XTAL_FREQ_EST_CYCLES);
|
|
|
|
/* cal_val contains period of 8M/256 clock in XTAL clock cycles
|
|
|
|
* (shifted by RTC_CLK_CAL_FRACT bits).
|
|
|
|
* Xtal frequency will be (cal_val * 8M / 256) / 2^19
|
|
|
|
*/
|
|
|
|
uint32_t freq_mhz = (cal_val * RTC_FAST_CLK_FREQ_APPROX / MHZ / 256 ) >> RTC_CLK_CAL_FRACT;
|
|
|
|
/* Guess the XTAL type. For now, only 40 and 26MHz are supported.
|
|
|
|
*/
|
|
|
|
switch (freq_mhz) {
|
|
|
|
case 21 ... 31:
|
|
|
|
return RTC_XTAL_FREQ_26M;
|
|
|
|
case 32 ... 33:
|
|
|
|
SOC_LOGW(TAG, "Potentially bogus XTAL frequency: %d MHz, guessing 26 MHz", freq_mhz);
|
|
|
|
return RTC_XTAL_FREQ_26M;
|
|
|
|
case 34 ... 35:
|
|
|
|
SOC_LOGW(TAG, "Potentially bogus XTAL frequency: %d MHz, guessing 40 MHz", freq_mhz);
|
|
|
|
return RTC_XTAL_FREQ_40M;
|
|
|
|
case 36 ... 45:
|
|
|
|
return RTC_XTAL_FREQ_40M;
|
|
|
|
default:
|
|
|
|
SOC_LOGW(TAG, "Bogus XTAL frequency: %d MHz", freq_mhz);
|
|
|
|
return RTC_XTAL_FREQ_AUTO;
|
|
|
|
}
|
|
|
|
/* Restore 8M and 8md256 clocks to original state */
|
|
|
|
rtc_clk_8m_enable(clk_8m_enabled, clk_8md256_enabled);
|
|
|
|
}
|