esp-idf/components/sdmmc/sdmmc_common.c

361 lines
12 KiB
C
Raw Normal View History

2018-06-20 07:59:11 -04:00
/*
* Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
* Adaptations to ESP-IDF Copyright (c) 2016-2018 Espressif Systems (Shanghai) PTE LTD
2018-06-20 07:59:11 -04:00
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <inttypes.h>
2018-06-20 07:59:11 -04:00
#include "sdmmc_common.h"
static const char* TAG = "sdmmc_common";
esp_err_t sdmmc_init_ocr(sdmmc_card_t* card)
{
esp_err_t err;
/* In SPI mode, READ_OCR (CMD58) command is used to figure out which voltage
* ranges the card can support. This step is skipped since 1.8V isn't
* supported on the ESP32.
*/
uint32_t host_ocr = get_host_ocr(card->host.io_voltage);
/* In SPI mode, the only non-zero bit of ACMD41 is HCS (bit 30)
* In SD mode, bits 23:8 contain the supported voltage mask
*/
uint32_t acmd41_arg = 0;
if (!host_is_spi(card)) {
acmd41_arg = host_ocr;
}
2018-06-20 07:59:11 -04:00
if ((card->ocr & SD_OCR_SDHC_CAP) != 0) {
acmd41_arg |= SD_OCR_SDHC_CAP;
2018-06-20 07:59:11 -04:00
}
2018-06-20 07:59:11 -04:00
/* Send SEND_OP_COND (ACMD41) command to the card until it becomes ready. */
err = sdmmc_send_cmd_send_op_cond(card, acmd41_arg, &card->ocr);
2018-06-20 07:59:11 -04:00
/* If time-out, re-try send_op_cond as MMC */
if (err == ESP_ERR_TIMEOUT && !host_is_spi(card)) {
ESP_LOGD(TAG, "send_op_cond timeout, trying MMC");
card->is_mmc = 1;
err = sdmmc_send_cmd_send_op_cond(card, acmd41_arg, &card->ocr);
2018-06-20 07:59:11 -04:00
}
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: send_op_cond (1) returned 0x%x", __func__, err);
return err;
}
if (host_is_spi(card)) {
err = sdmmc_send_cmd_read_ocr(card, &card->ocr);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: read_ocr returned 0x%x", __func__, err);
return err;
}
}
ESP_LOGD(TAG, "host_ocr=0x%" PRIx32 " card_ocr=0x%" PRIx32, host_ocr, card->ocr);
2018-06-20 07:59:11 -04:00
/* Clear all voltage bits in host's OCR which the card doesn't support.
* Don't touch CCS bit because in SPI mode cards don't report CCS in ACMD41
* response.
*/
host_ocr &= (card->ocr | (~SD_OCR_VOL_MASK));
ESP_LOGD(TAG, "sdmmc_card_init: host_ocr=%08" PRIx32 ", card_ocr=%08" PRIx32, host_ocr, card->ocr);
2018-06-20 07:59:11 -04:00
return ESP_OK;
}
esp_err_t sdmmc_init_cid(sdmmc_card_t* card)
{
esp_err_t err;
sdmmc_response_t raw_cid;
if (!host_is_spi(card)) {
2018-12-28 13:04:37 -05:00
err = sdmmc_send_cmd_all_send_cid(card, &raw_cid);
2018-06-20 07:59:11 -04:00
if (err != ESP_OK) {
2018-12-28 13:04:37 -05:00
ESP_LOGE(TAG, "%s: all_send_cid returned 0x%x", __func__, err);
2018-06-20 07:59:11 -04:00
return err;
}
2018-12-28 13:04:37 -05:00
if (!card->is_mmc) {
err = sdmmc_decode_cid(raw_cid, &card->cid);
2018-06-20 07:59:11 -04:00
if (err != ESP_OK) {
2018-12-28 13:04:37 -05:00
ESP_LOGE(TAG, "%s: decoding CID failed (0x%x)", __func__, err);
2018-06-20 07:59:11 -04:00
return err;
}
} else {
2018-12-28 13:04:37 -05:00
/* For MMC, need to know CSD to decode CID. But CSD can only be read
* in data transfer mode, and it is not possible to read CID in data
* transfer mode. We temporiliy store the raw cid and do the
* decoding after the RCA is set and the card is in data transfer
* mode.
*/
memcpy(card->raw_cid, raw_cid, sizeof(sdmmc_response_t));
2018-06-20 07:59:11 -04:00
}
} else {
err = sdmmc_send_cmd_send_cid(card, &card->cid);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: send_cid returned 0x%x", __func__, err);
return err;
}
}
return ESP_OK;
}
2018-12-28 13:04:37 -05:00
esp_err_t sdmmc_init_rca(sdmmc_card_t* card)
{
esp_err_t err;
err = sdmmc_send_cmd_set_relative_addr(card, &card->rca);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: set_relative_addr returned 0x%x", __func__, err);
return err;
}
return ESP_OK;
}
esp_err_t sdmmc_init_mmc_decode_cid(sdmmc_card_t* card)
{
esp_err_t err;
sdmmc_response_t raw_cid;
memcpy(raw_cid, card->raw_cid, sizeof(raw_cid));
err = sdmmc_mmc_decode_cid(card->csd.mmc_ver, raw_cid, &card->cid);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: decoding CID failed (0x%x)", __func__, err);
return err;
}
return ESP_OK;
}
2018-06-20 07:59:11 -04:00
esp_err_t sdmmc_init_csd(sdmmc_card_t* card)
{
assert(card->is_mem == 1);
2018-06-20 07:59:11 -04:00
/* Get and decode the contents of CSD register. Determine card capacity. */
esp_err_t err = sdmmc_send_cmd_send_csd(card, &card->csd);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: send_csd returned 0x%x", __func__, err);
return err;
}
const size_t max_sdsc_capacity = UINT32_MAX / card->csd.sector_size + 1;
if (!(card->ocr & SD_OCR_SDHC_CAP) &&
card->csd.capacity > max_sdsc_capacity) {
ESP_LOGW(TAG, "%s: SDSC card reports capacity=%u. Limiting to %u.",
__func__, card->csd.capacity, max_sdsc_capacity);
card->csd.capacity = max_sdsc_capacity;
}
return ESP_OK;
}
esp_err_t sdmmc_init_select_card(sdmmc_card_t* card)
{
assert(!host_is_spi(card));
esp_err_t err = sdmmc_send_cmd_select_card(card, card->rca);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: select_card returned 0x%x", __func__, err);
return err;
}
return ESP_OK;
}
esp_err_t sdmmc_init_card_hs_mode(sdmmc_card_t* card)
{
esp_err_t err = ESP_ERR_NOT_SUPPORTED;
if (card->is_mem && !card->is_mmc) {
err = sdmmc_enable_hs_mode_and_check(card);
} else if (card->is_sdio) {
err = sdmmc_io_enable_hs_mode(card);
} else if (card->is_mmc){
err = sdmmc_mmc_enable_hs_mode(card);
}
if (err == ESP_ERR_NOT_SUPPORTED) {
ESP_LOGD(TAG, "%s: host supports HS mode, but card doesn't", __func__);
card->max_freq_khz = SDMMC_FREQ_DEFAULT;
} else if (err != ESP_OK) {
return err;
}
return ESP_OK;
}
esp_err_t sdmmc_init_host_bus_width(sdmmc_card_t* card)
{
int bus_width = 1;
if ((card->host.flags & SDMMC_HOST_FLAG_4BIT) &&
(card->log_bus_width == 2)) {
bus_width = 4;
} else if ((card->host.flags & SDMMC_HOST_FLAG_8BIT) &&
(card->log_bus_width == 3)) {
bus_width = 8;
}
ESP_LOGD(TAG, "%s: using %d-bit bus", __func__, bus_width);
if (bus_width > 1) {
esp_err_t err = (*card->host.set_bus_width)(card->host.slot, bus_width);
if (err != ESP_OK) {
ESP_LOGE(TAG, "host.set_bus_width failed (0x%x)", err);
return err;
}
}
return ESP_OK;
}
esp_err_t sdmmc_init_host_frequency(sdmmc_card_t* card)
{
esp_err_t err;
2018-06-20 07:59:11 -04:00
assert(card->max_freq_khz <= card->host.max_freq_khz);
if (card->max_freq_khz > SDMMC_FREQ_PROBING) {
err = (*card->host.set_card_clk)(card->host.slot, card->max_freq_khz);
if (err != ESP_OK) {
ESP_LOGE(TAG, "failed to switch bus frequency (0x%x)", err);
return err;
2018-06-20 07:59:11 -04:00
}
}
2018-06-20 07:59:11 -04:00
if (card->host.input_delay_phase != SDMMC_DELAY_PHASE_0) {
if (card->host.set_input_delay) {
err = (*card->host.set_input_delay)(card->host.slot, card->host.input_delay_phase);
if (err != ESP_OK) {
ESP_LOGE(TAG, "host.set_input_delay failed (0x%x)", err);
return err;
}
} else {
ESP_LOGE(TAG, "input phase delay feature isn't supported");
return ESP_ERR_NOT_SUPPORTED;
}
}
err = (*card->host.get_real_freq)(card->host.slot, &(card->real_freq_khz));
if (err != ESP_OK) {
ESP_LOGE(TAG, "failed to get real working frequency (0x%x)", err);
return err;
2018-06-20 07:59:11 -04:00
}
if (card->is_ddr) {
if (card->host.set_bus_ddr_mode == NULL) {
ESP_LOGE(TAG, "host doesn't support DDR mode or voltage switching");
return ESP_ERR_NOT_SUPPORTED;
}
err = (*card->host.set_bus_ddr_mode)(card->host.slot, true);
if (err != ESP_OK) {
ESP_LOGE(TAG, "failed to switch bus to DDR mode (0x%x)", err);
return err;
}
}
2018-06-20 07:59:11 -04:00
return ESP_OK;
}
void sdmmc_flip_byte_order(uint32_t* response, size_t size)
{
assert(size % (2 * sizeof(uint32_t)) == 0);
const size_t n_words = size / sizeof(uint32_t);
for (int i = 0; i < n_words / 2; ++i) {
uint32_t left = __builtin_bswap32(response[i]);
uint32_t right = __builtin_bswap32(response[n_words - i - 1]);
response[i] = right;
response[n_words - i - 1] = left;
}
}
void sdmmc_card_print_info(FILE* stream, const sdmmc_card_t* card)
{
bool print_scr = false;
bool print_csd = false;
const char* type;
2018-06-20 07:59:11 -04:00
fprintf(stream, "Name: %s\n", card->cid.name);
2018-06-20 07:59:11 -04:00
if (card->is_sdio) {
type = "SDIO";
print_scr = true;
print_csd = true;
} else if (card->is_mmc) {
type = "MMC";
print_csd = true;
} else {
type = (card->ocr & SD_OCR_SDHC_CAP) ? "SDHC/SDXC" : "SDSC";
print_csd = true;
2018-06-20 07:59:11 -04:00
}
fprintf(stream, "Type: %s\n", type);
if (card->real_freq_khz == 0) {
fprintf(stream, "Speed: N/A\n");
} else {
const char *freq_unit = card->real_freq_khz < 1000 ? "kHz" : "MHz";
const float freq = card->real_freq_khz < 1000 ? card->real_freq_khz : card->real_freq_khz / 1000.0;
const char *max_freq_unit = card->max_freq_khz < 1000 ? "kHz" : "MHz";
const float max_freq = card->max_freq_khz < 1000 ? card->max_freq_khz : card->max_freq_khz / 1000.0;
fprintf(stream, "Speed: %.2f %s (limit: %.2f %s)%s\n", freq, freq_unit, max_freq, max_freq_unit, card->is_ddr ? ", DDR" : "");
}
2018-06-20 07:59:11 -04:00
fprintf(stream, "Size: %lluMB\n", ((uint64_t) card->csd.capacity) * card->csd.sector_size / (1024 * 1024));
if (print_csd) {
fprintf(stream, "CSD: ver=%d, sector_size=%d, capacity=%d read_bl_len=%d\n",
(int) (card->is_mmc ? card->csd.csd_ver : card->csd.csd_ver + 1),
2018-06-20 07:59:11 -04:00
card->csd.sector_size, card->csd.capacity, card->csd.read_block_len);
if (card->is_mmc) {
fprintf(stream, "EXT CSD: bus_width=%" PRIu32 "\n", (uint32_t) (1 << card->log_bus_width));
} else if (!card->is_sdio){ // make sure card is SD
fprintf(stream, "SSR: bus_width=%" PRIu32 "\n", (uint32_t) (card->ssr.cur_bus_width ? 4 : 1));
}
2018-06-20 07:59:11 -04:00
}
if (print_scr) {
fprintf(stream, "SCR: sd_spec=%d, bus_width=%d\n", card->scr.sd_spec, card->scr.bus_width);
}
}
esp_err_t sdmmc_fix_host_flags(sdmmc_card_t* card)
{
const uint32_t width_1bit = SDMMC_HOST_FLAG_1BIT;
const uint32_t width_4bit = SDMMC_HOST_FLAG_4BIT;
const uint32_t width_8bit = SDMMC_HOST_FLAG_8BIT;
const uint32_t width_mask = width_1bit | width_4bit | width_8bit;
int slot_bit_width = card->host.get_bus_width(card->host.slot);
if (slot_bit_width == 1 &&
(card->host.flags & (width_4bit | width_8bit))) {
card->host.flags &= ~width_mask;
card->host.flags |= width_1bit;
} else if (slot_bit_width == 4 && (card->host.flags & width_8bit)) {
if ((card->host.flags & width_4bit) == 0) {
ESP_LOGW(TAG, "slot width set to 4, but host flags don't have 4 line mode enabled; using 1 line mode");
card->host.flags &= ~width_mask;
card->host.flags |= width_1bit;
} else {
card->host.flags &= ~width_mask;
card->host.flags |= width_4bit;
}
2018-06-20 07:59:11 -04:00
}
return ESP_OK;
}
esp_err_t sdmmc_allocate_aligned_buf(sdmmc_card_t* card)
{
if (card->host.flags & SDMMC_HOST_FLAG_ALLOC_ALIGNED_BUF) {
void* buf = NULL;
size_t actual_size = 0;
esp_err_t ret = esp_dma_malloc(SDMMC_IO_BLOCK_SIZE, 0, &buf, &actual_size);
if (ret != ESP_OK) {
return ret;
}
assert(actual_size == SDMMC_IO_BLOCK_SIZE);
card->host.dma_aligned_buffer = buf;
}
return ESP_OK;
}
uint32_t sdmmc_get_erase_timeout_ms(const sdmmc_card_t* card, int arg, size_t erase_size_kb)
{
if (card->is_mmc) {
return sdmmc_mmc_get_erase_timeout_ms(card, arg, erase_size_kb);
} else {
return sdmmc_sd_get_erase_timeout_ms(card, arg, erase_size_kb);
}
}