357 lines
13 KiB
C
Raw Normal View History

2017-01-09 05:54:04 +08:00
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "unity.h"
#include "driver/gpio.h"
#include "driver/sdmmc_host.h"
#include "driver/sdspi_host.h"
#include "driver/sdmmc_defs.h"
#include "soc/gpio_reg.h"
#include "sdmmc_cmd.h"
#include "esp_log.h"
#include "esp_heap_caps.h"
#include <time.h>
#include <sys/time.h>
#include <unistd.h>
TEST_CASE("MMC_RSP_BITS", "[sd]")
{
uint32_t data[2] = { 0x01234567, 0x89abcdef };
TEST_ASSERT_EQUAL_HEX32(0x7, MMC_RSP_BITS(data, 0, 4));
TEST_ASSERT_EQUAL_HEX32(0x567, MMC_RSP_BITS(data, 0, 12));
TEST_ASSERT_EQUAL_HEX32(0xf0, MMC_RSP_BITS(data, 28, 8));
TEST_ASSERT_EQUAL_HEX32(0x3, MMC_RSP_BITS(data, 1, 3));
TEST_ASSERT_EQUAL_HEX32(0x11, MMC_RSP_BITS(data, 59, 5));
}
TEST_CASE("can probe SD (4-bit)", "[sd][test_env=UT_T1_SDMODE]")
{
sdmmc_host_t config = SDMMC_HOST_DEFAULT();
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
TEST_ESP_OK(sdmmc_host_init());
TEST_ESP_OK(sdmmc_host_init_slot(SDMMC_HOST_SLOT_1, &slot_config));
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card);
TEST_ESP_OK(sdmmc_card_init(&config, card));
sdmmc_card_print_info(stdout, card);
TEST_ESP_OK(sdmmc_host_deinit());
free(card);
}
TEST_CASE("can probe SD (1-bit)", "[sd][test_env=UT_T1_SDMODE]")
{
//the card DAT3 should be connected to high in SD 1-bit mode
//do it by our own GPIO.
gpio_config_t conf = {
.pin_bit_mask = GPIO_SEL_13,
.mode = GPIO_MODE_OUTPUT,
.pull_up_en = 1,
.pull_down_en = 0,
.intr_type = GPIO_INTR_DISABLE,
};
gpio_config(&conf);
gpio_set_level(GPIO_NUM_13, 1);
sdmmc_host_t config = SDMMC_HOST_DEFAULT();
config.flags = SDMMC_HOST_FLAG_1BIT;
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
slot_config.width=1;
TEST_ESP_OK(sdmmc_host_init());
TEST_ESP_OK(sdmmc_host_init_slot(SDMMC_HOST_SLOT_1, &slot_config));
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card);
TEST_ESP_OK(sdmmc_card_init(&config, card));
sdmmc_card_print_info(stdout, card);
TEST_ESP_OK(sdmmc_host_deinit());
free(card);
}
TEST_CASE("can probe SD(using SPI)", "[sdspi][test_env=UT_T1_SPIMODE]")
{
sdmmc_host_t config = SDSPI_HOST_DEFAULT();
sdspi_slot_config_t slot_config = SDSPI_SLOT_CONFIG_DEFAULT();
TEST_ESP_OK(sdspi_host_init());
TEST_ESP_OK(sdspi_host_init_slot(config.slot, &slot_config));
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card);
TEST_ESP_OK(sdmmc_card_init(&config, card));
sdmmc_card_print_info(stdout, card);
TEST_ESP_OK(sdspi_host_deinit());
free(card);
}
// Fill buffer pointed to by 'dst' with 'count' 32-bit ints generated
// from 'rand' with the starting value of 'seed'
static void fill_buffer(uint32_t seed, uint8_t* dst, size_t count) {
srand(seed);
for (size_t i = 0; i < count; ++i) {
uint32_t val = rand();
memcpy(dst + i * sizeof(uint32_t), &val, sizeof(val));
}
}
// Check if the buffer pointed to by 'dst' contains 'count' 32-bit
// ints generated from 'rand' with the starting value of 'seed'
static void check_buffer(uint32_t seed, const uint8_t* src, size_t count) {
srand(seed);
for (size_t i = 0; i < count; ++i) {
uint32_t val;
memcpy(&val, src + i * sizeof(uint32_t), sizeof(val));
TEST_ASSERT_EQUAL_HEX32(rand(), val);
}
}
static void do_single_write_read_test(sdmmc_card_t* card,
size_t start_block, size_t block_count, size_t alignment)
{
size_t block_size = card->csd.sector_size;
size_t total_size = block_size * block_count;
printf(" %8d | %3d | %d | %4.1f ", start_block, block_count, alignment, total_size / 1024.0f);
uint32_t* buffer = heap_caps_malloc(total_size + 4, MALLOC_CAP_DMA);
size_t offset = alignment % 4;
uint8_t* c_buffer = (uint8_t*) buffer + offset;
fill_buffer(start_block, c_buffer, total_size / sizeof(buffer[0]));
struct timeval t_start_wr;
gettimeofday(&t_start_wr, NULL);
TEST_ESP_OK(sdmmc_write_sectors(card, c_buffer, start_block, block_count));
struct timeval t_stop_wr;
gettimeofday(&t_stop_wr, NULL);
float time_wr = 1e3f * (t_stop_wr.tv_sec - t_start_wr.tv_sec) + 1e-3f * (t_stop_wr.tv_usec - t_start_wr.tv_usec);
memset(buffer, 0xbb, total_size + 4);
struct timeval t_start_rd;
gettimeofday(&t_start_rd, NULL);
TEST_ESP_OK(sdmmc_read_sectors(card, c_buffer, start_block, block_count));
struct timeval t_stop_rd;
gettimeofday(&t_stop_rd, NULL);
float time_rd = 1e3f * (t_stop_rd.tv_sec - t_start_rd.tv_sec) + 1e-3f * (t_stop_rd.tv_usec - t_start_rd.tv_usec);
printf(" | %6.2f | %5.2f | %6.2f | %5.2f\n",
time_wr, total_size / (time_wr / 1000) / (1024 * 1024),
time_rd, total_size / (time_rd / 1000) / (1024 * 1024));
check_buffer(start_block, c_buffer, total_size / sizeof(buffer[0]));
free(buffer);
}
static void read_write_test(sdmmc_card_t* card)
{
sdmmc_card_print_info(stdout, card);
printf(" sector | count | align | size(kB) | wr_time(ms) | wr_speed(MB/s) | rd_time(ms) | rd_speed(MB/s)\n");
do_single_write_read_test(card, 0, 1, 4);
do_single_write_read_test(card, 0, 4, 4);
do_single_write_read_test(card, 1, 16, 4);
do_single_write_read_test(card, 16, 32, 4);
do_single_write_read_test(card, 48, 64, 4);
do_single_write_read_test(card, 128, 128, 4);
do_single_write_read_test(card, card->csd.capacity - 64, 32, 4);
do_single_write_read_test(card, card->csd.capacity - 64, 64, 4);
do_single_write_read_test(card, card->csd.capacity - 8, 1, 4);
do_single_write_read_test(card, card->csd.capacity/2, 1, 4);
do_single_write_read_test(card, card->csd.capacity/2, 4, 4);
do_single_write_read_test(card, card->csd.capacity/2, 8, 4);
do_single_write_read_test(card, card->csd.capacity/2, 16, 4);
do_single_write_read_test(card, card->csd.capacity/2, 32, 4);
do_single_write_read_test(card, card->csd.capacity/2, 64, 4);
do_single_write_read_test(card, card->csd.capacity/2, 128, 4);
do_single_write_read_test(card, card->csd.capacity/2, 1, 1);
do_single_write_read_test(card, card->csd.capacity/2, 8, 1);
do_single_write_read_test(card, card->csd.capacity/2, 128, 1);
}
TEST_CASE("can write and read back blocks", "[sd][test_env=UT_T1_SDMODE]")
{
sdmmc_host_t config = SDMMC_HOST_DEFAULT();
config.max_freq_khz = SDMMC_FREQ_HIGHSPEED;
TEST_ESP_OK(sdmmc_host_init());
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
TEST_ESP_OK(sdmmc_host_init_slot(SDMMC_HOST_SLOT_1, &slot_config));
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card);
TEST_ESP_OK(sdmmc_card_init(&config, card));
read_write_test(card);
free(card);
TEST_ESP_OK(sdmmc_host_deinit());
}
TEST_CASE("can write and read back blocks(using SPI)", "[sdspi][test_env=UT_T1_SPIMODE]")
{
sdmmc_host_t config = SDSPI_HOST_DEFAULT();
sdspi_slot_config_t slot_config = SDSPI_SLOT_CONFIG_DEFAULT();
TEST_ESP_OK(sdspi_host_init());
TEST_ESP_OK(sdspi_host_init_slot(config.slot, &slot_config));
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card);
TEST_ESP_OK(sdmmc_card_init(&config, card));
read_write_test(card);
free(card);
TEST_ESP_OK(sdspi_host_deinit());
}
TEST_CASE("reads and writes with an unaligned buffer", "[sd][test_env=UT_T1_SDMODE]")
{
sdmmc_host_t config = SDMMC_HOST_DEFAULT();
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
TEST_ESP_OK(sdmmc_host_init());
TEST_ESP_OK(sdmmc_host_init_slot(SDMMC_HOST_SLOT_1, &slot_config));
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card);
TEST_ESP_OK(sdmmc_card_init(&config, card));
const size_t buffer_size = 4096;
const size_t block_count = buffer_size / 512;
const size_t extra = 4;
uint8_t* buffer = heap_caps_malloc(buffer_size + extra, MALLOC_CAP_DMA);
// Check read behavior: do aligned write, then unaligned read
const uint32_t seed = 0x89abcdef;
fill_buffer(seed, buffer, buffer_size / sizeof(uint32_t));
TEST_ESP_OK(sdmmc_write_sectors(card, buffer, 0, block_count));
memset(buffer, 0xcc, buffer_size + extra);
TEST_ESP_OK(sdmmc_read_sectors(card, buffer + 1, 0, block_count));
check_buffer(seed, buffer + 1, buffer_size / sizeof(uint32_t));
// Check write behavior: do unaligned write, then aligned read
fill_buffer(seed, buffer + 1, buffer_size / sizeof(uint32_t));
TEST_ESP_OK(sdmmc_write_sectors(card, buffer + 1, 8, block_count));
memset(buffer, 0xcc, buffer_size + extra);
TEST_ESP_OK(sdmmc_read_sectors(card, buffer, 8, block_count));
check_buffer(seed, buffer, buffer_size / sizeof(uint32_t));
free(buffer);
free(card);
TEST_ESP_OK(sdmmc_host_deinit());
}
static void test_cd_input(int gpio_cd_num, const sdmmc_host_t* config)
{
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card);
// SDMMC host should have configured CD as input.
// Enable output as well (not using the driver, to avoid touching input
// enable bits).
gpio_matrix_out(gpio_cd_num, SIG_GPIO_OUT_IDX, false, false);
REG_WRITE(GPIO_ENABLE_W1TS_REG, BIT(gpio_cd_num));
// Check that card initialization fails if CD is high
REG_WRITE(GPIO_OUT_W1TS_REG, BIT(gpio_cd_num));
usleep(100);
TEST_ESP_ERR(ESP_ERR_NOT_FOUND, sdmmc_card_init(config, card));
// Check that card initialization succeeds if CD is low
REG_WRITE(GPIO_OUT_W1TC_REG, BIT(gpio_cd_num));
usleep(100);
TEST_ESP_OK(sdmmc_card_init(config, card));
free(card);
}
TEST_CASE("CD input works in SD mode", "[sd][test_env=UT_T1_SDMODE][ignore]")
{
sdmmc_host_t config = SDMMC_HOST_DEFAULT();
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
const int gpio_cd_num = 5;
slot_config.gpio_cd = gpio_cd_num;
TEST_ESP_OK(sdmmc_host_init());
TEST_ESP_OK(sdmmc_host_init_slot(SDMMC_HOST_SLOT_1, &slot_config));
test_cd_input(gpio_cd_num, &config);
TEST_ESP_OK(sdmmc_host_deinit());
}
TEST_CASE("CD input works in SPI mode", "[sd][test_env=UT_T1_SPIMODE]")
{
sdmmc_host_t config = SDSPI_HOST_DEFAULT();
sdspi_slot_config_t slot_config = SDSPI_SLOT_CONFIG_DEFAULT();
const int gpio_cd_num = 5;
slot_config.gpio_cd = gpio_cd_num;
TEST_ESP_OK(sdspi_host_init());
TEST_ESP_OK(sdspi_host_init_slot(config.slot, &slot_config));
test_cd_input(gpio_cd_num, &config);
TEST_ESP_OK(sdspi_host_deinit());
}
static void test_wp_input(int gpio_wp_num, const sdmmc_host_t* config)
{
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card);
// SDMMC host should have configured WP as input.
// Enable output as well (not using the driver, to avoid touching input
// enable bits).
gpio_matrix_out(gpio_wp_num, SIG_GPIO_OUT_IDX, false, false);
REG_WRITE(GPIO_ENABLE_W1TS_REG, BIT(gpio_wp_num));
// Check that the card can be initialized with WP low
REG_WRITE(GPIO_OUT_W1TC_REG, BIT(gpio_wp_num));
TEST_ESP_OK(sdmmc_card_init(config, card));
uint32_t* data = heap_caps_calloc(1, 512, MALLOC_CAP_DMA);
// Check that card write succeeds if WP is high
REG_WRITE(GPIO_OUT_W1TS_REG, BIT(gpio_wp_num));
usleep(100);
TEST_ESP_OK(sdmmc_write_sectors(card, &data, 0, 1));
// Check that write fails if WP is low
REG_WRITE(GPIO_OUT_W1TC_REG, BIT(gpio_wp_num));
usleep(100);
TEST_ESP_ERR(ESP_ERR_INVALID_STATE, sdmmc_write_sectors(card, &data, 0, 1));
// ...but reads still work
TEST_ESP_OK(sdmmc_read_sectors(card, &data, 0, 1));
free(data);
free(card);
}
TEST_CASE("WP input works in SD mode", "[sd][test_env=UT_T1_SDMODE][ignore]")
{
sdmmc_host_t config = SDMMC_HOST_DEFAULT();
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
const int gpio_wp_num = 5;
slot_config.gpio_wp = gpio_wp_num;
TEST_ESP_OK(sdmmc_host_init());
TEST_ESP_OK(sdmmc_host_init_slot(SDMMC_HOST_SLOT_1, &slot_config));
test_wp_input(gpio_wp_num, &config);
TEST_ESP_OK(sdmmc_host_deinit());
}
TEST_CASE("WP input works in SPI mode", "[sd][test_env=UT_T1_SPIMODE]")
{
sdmmc_host_t config = SDSPI_HOST_DEFAULT();
sdspi_slot_config_t slot_config = SDSPI_SLOT_CONFIG_DEFAULT();
const int gpio_wp_num = 5;
slot_config.gpio_wp = gpio_wp_num;
TEST_ESP_OK(sdspi_host_init());
TEST_ESP_OK(sdspi_host_init_slot(config.slot, &slot_config));
test_wp_input(gpio_wp_num, &config);
TEST_ESP_OK(sdspi_host_deinit());
}