esp-idf/components/esp32/Kconfig

719 lines
33 KiB
Plaintext
Raw Normal View History

menu "ESP32-specific"
2016-08-17 11:08:22 -04:00
choice ESP32_DEFAULT_CPU_FREQ_MHZ
prompt "CPU frequency"
default ESP32_DEFAULT_CPU_FREQ_160
help
CPU frequency to be set on application startup.
config ESP32_DEFAULT_CPU_FREQ_80
bool "80 MHz"
config ESP32_DEFAULT_CPU_FREQ_160
bool "160 MHz"
config ESP32_DEFAULT_CPU_FREQ_240
bool "240 MHz"
endchoice
config ESP32_DEFAULT_CPU_FREQ_MHZ
int
default 80 if ESP32_DEFAULT_CPU_FREQ_80
default 160 if ESP32_DEFAULT_CPU_FREQ_160
default 240 if ESP32_DEFAULT_CPU_FREQ_240
config ESP32_SPIRAM_SUPPORT
bool "Support for external, SPI-connected RAM"
default "n"
help
This enables support for an external SPI RAM chip, connected in parallel with the
main SPI flash chip.
menu "SPI RAM config"
depends on ESP32_SPIRAM_SUPPORT
config SPIRAM_BOOT_INIT
bool "Initialize SPI RAM when booting the ESP32"
default "y"
help
If this is enabled, the SPI RAM will be enabled during initial boot. Unless you
have specific requirements, you'll want to leave this enabled so memory allocated
during boot-up can also be placed in SPI RAM.
config SPIRAM_IGNORE_NOTFOUND
bool "Ignore PSRAM when not found"
default "n"
depends on SPIRAM_BOOT_INIT && !SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
help
Normally, if psram initialization is enabled during compile time but not found at runtime, it
is seen as an error making the ESP32 panic. If this is enabled, the ESP32 will keep on
running but will not add the (non-existing) RAM to any allocator.
choice SPIRAM_USE
prompt "SPI RAM access method"
default SPIRAM_USE_MALLOC
help
The SPI RAM can be accessed in multiple methods: by just having it available as an unmanaged
memory region in the ESP32 memory map, by integrating it in the ESP32s heap as 'special' memory
needing heap_caps_malloc to allocate, or by fully integrating it making malloc() also able to
return SPI RAM pointers.
config SPIRAM_USE_MEMMAP
bool "Integrate RAM into ESP32 memory map"
config SPIRAM_USE_CAPS_ALLOC
bool "Make RAM allocatable using heap_caps_malloc(..., MALLOC_CAP_SPIRAM)"
config SPIRAM_USE_MALLOC
bool "Make RAM allocatable using malloc() as well"
select FREERTOS_SUPPORT_STATIC_ALLOCATION
endchoice
choice SPIRAM_TYPE
prompt "Type of SPI RAM chip in use"
default SPIRAM_TYPE_AUTO
config SPIRAM_TYPE_AUTO
bool "Auto-detect"
config SPIRAM_TYPE_ESPPSRAM32
bool "ESP-PSRAM32 or IS25WP032"
config SPIRAM_TYPE_ESPPSRAM64
bool "ESP-PSRAM64 or LY68L6400"
endchoice
config SPIRAM_SIZE
int
default -1 if SPIRAM_TYPE_AUTO
default 4194304 if SPIRAM_TYPE_ESPPSRAM32
default 8388608 if SPIRAM_TYPE_ESPPSRAM64
default 0
choice SPIRAM_SPEED
prompt "Set RAM clock speed"
default SPIRAM_CACHE_SPEED_40M
help
Select the speed for the SPI RAM chip.
If SPI RAM is enabled, we only support three combinations of SPI speed mode we supported now:
1. Flash SPI running at 40Mhz and RAM SPI running at 40Mhz
2. Flash SPI running at 80Mhz and RAM SPI running at 40Mhz
3. Flash SPI running at 80Mhz and RAM SPI running at 80Mhz
Note: If the third mode(80Mhz+80Mhz) is enabled for SPI RAM of type 32MBit, one of the HSPI/VSPI host
will be occupied by the system. Which SPI host to use can be selected by the config item
SPIRAM_OCCUPY_SPI_HOST. Application code should never touch HSPI/VSPI hardware in this case. The
option to select 80MHz will only be visible if the flash SPI speed is also 80MHz.
(ESPTOOLPY_FLASHFREQ_80M is true)
config SPIRAM_SPEED_40M
bool "40MHz clock speed"
config SPIRAM_SPEED_80M
depends on ESPTOOLPY_FLASHFREQ_80M
bool "80MHz clock speed"
endchoice
config SPIRAM_MEMTEST
bool "Run memory test on SPI RAM initialization"
default "y"
depends on SPIRAM_BOOT_INIT
help
Runs a rudimentary memory test on initialization. Aborts when memory test fails. Disable this for
slightly faster startop.
config SPIRAM_CACHE_WORKAROUND
bool "Enable workaround for bug in SPI RAM cache for Rev1 ESP32s"
depends on SPIRAM_USE_MEMMAP || SPIRAM_USE_CAPS_ALLOC || SPIRAM_USE_MALLOC
default "y"
help
Revision 1 of the ESP32 has a bug that can cause a write to PSRAM not to take place in some situations
when the cache line needs to be fetched from external RAM and an interrupt occurs. This enables a
fix in the compiler (-mfix-esp32-psram-cache-issue) that makes sure the specific code that is
vulnerable to this will not be emitted.
This will also not use any bits of newlib that are located in ROM, opting for a version that is
compiled with the workaround and located in flash instead.
config SPIRAM_BANKSWITCH_ENABLE
bool "Enable bank switching for >4MiB external RAM"
default y
depends on SPIRAM_USE_MEMMAP || SPIRAM_USE_CAPS_ALLOC || SPIRAM_USE_MALLOC
help
The ESP32 only supports 4MiB of external RAM in its address space. The hardware does support larger
memories, but these have to be bank-switched in and out of this address space. Enabling this allows you
to reserve some MMU pages for this, which allows the use of the esp_himem api to manage these banks.
#Note that this is limited to 62 banks, as esp_spiram_writeback_cache needs some kind of mapping of
#some banks below that mark to work. We cannot at this moment guarantee this to exist when himem is
#enabled.
config SPIRAM_BANKSWITCH_RESERVE
int "Amount of 32K pages to reserve for bank switching"
depends on SPIRAM_BANKSWITCH_ENABLE
default 8
range 1 62
help
Select the amount of banks reserved for bank switching. Note that the amount of RAM allocatable with
malloc/esp_heap_alloc_caps will decrease by 32K for each page reserved here.
Note that this reservation is only actually done if your program actually uses the himem API. Without
any himem calls, the reservation is not done and the original amount of memory will be available
to malloc/esp_heap_alloc_caps.
config SPIRAM_MALLOC_ALWAYSINTERNAL
int "Maximum malloc() size, in bytes, to always put in internal memory"
depends on SPIRAM_USE_MALLOC
default 16384
range 0 131072
help
If malloc() is capable of also allocating SPI-connected ram, its allocation strategy will prefer to
allocate chunks less than this size in internal memory, while allocations larger than this will be
done from external RAM. If allocation from the preferred region fails, an attempt is made to allocate
from the non-preferred region instead, so malloc() will not suddenly fail when either internal or
external memory is full.
config SPIRAM_TRY_ALLOCATE_WIFI_LWIP
bool "Try to allocate memories of WiFi and LWIP in SPIRAM firstly. If failed, allocate internal memory"
depends on SPIRAM_USE_CAPS_ALLOC || SPIRAM_USE_MALLOC
default "n"
help
Try to allocate memories of WiFi and LWIP in SPIRAM firstly. If failed, try to allocate internal
memory then.
config SPIRAM_MALLOC_RESERVE_INTERNAL
int "Reserve this amount of bytes for data that specifically needs to be in DMA or internal memory"
depends on SPIRAM_USE_MALLOC
default 32768
range 0 262144
help
Because the external/internal RAM allocation strategy is not always perfect, it sometimes may happen
that the internal memory is entirely filled up. This causes allocations that are specifically done in
internal memory, for example the stack for new tasks or memory to service DMA or have memory that's
also available when SPI cache is down, to fail. This option reserves a pool specifically for requests
like that; the memory in this pool is not given out when a normal malloc() is called.
Set this to 0 to disable this feature.
Note that because FreeRTOS stacks are forced to internal memory, they will also use this memory pool;
be sure to keep this in mind when adjusting this value.
Note also that the DMA reserved pool may not be one single contiguous memory region, depending on the
configured size and the static memory usage of the app.
config SPIRAM_ALLOW_STACK_EXTERNAL_MEMORY
bool "Allow external memory as an argument to xTaskCreateStatic"
default n
depends on SPIRAM_USE_MALLOC
help
Because some bits of the ESP32 code environment cannot be recompiled with the cache workaround,
normally tasks cannot be safely run with their stack residing in external memory; for this reason
xTaskCreate and friends always allocate stack in internal memory and xTaskCreateStatic will check if
the memory passed to it is in internal memory. If you have a task that needs a large amount of stack
and does not call on ROM code in any way (no direct calls, but also no Bluetooth/WiFi), you can try to
disable this and use xTaskCreateStatic to create the tasks stack in external memory.
config SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
bool "Allow .bss segment placed in external memory"
default n
depends on ESP32_SPIRAM_SUPPORT
help
If enabled the option,and add EXT_RAM_ATTR defined your variable,then your variable will be placed in
PSRAM instead of internal memory, and placed most of variables of lwip,net802.11,pp,bluedroid library
to external memory defaultly.
choice SPIRAM_OCCUPY_SPI_HOST
prompt "SPI host to use for 32MBit PSRAM"
default SPIRAM_OCCUPY_VSPI_HOST
depends on SPIRAM_SPEED_80M
help
When both flash and PSRAM is working under 80MHz, and the PSRAM is of type 32MBit, one of the HSPI/VSPI
host will be used to output the clock. Select which one to use here.
config SPIRAM_OCCUPY_HSPI_HOST
bool "HSPI host (SPI2)"
config SPIRAM_OCCUPY_VSPI_HOST
bool "VSPI host (SPI3)"
endchoice
config SPIRAM_PICO_PSRAM_CS_IO
int "PSRAM CS IO for ESP32-PICO chip"
depends on ESP32_SPIRAM_SUPPORT
range 0 33
default 10
help
When ESP32-PICO chip connect a external psram, the clock IO and data IO is fixed, but the CS IO can be
any unused GPIO, user can config it based on hardware design.
endmenu
config ESP32_MEMMAP_TRACEMEM
bool
default "n"
config ESP32_MEMMAP_TRACEMEM_TWOBANKS
bool
default "n"
config ESP32_TRAX
bool "Use TRAX tracing feature"
default "n"
select ESP32_MEMMAP_TRACEMEM
help
The ESP32 contains a feature which allows you to trace the execution path the processor
has taken through the program. This is stored in a chunk of 32K (16K for single-processor)
of memory that can't be used for general purposes anymore. Disable this if you do not know
what this is.
config ESP32_TRAX_TWOBANKS
bool "Reserve memory for tracing both pro as well as app cpu execution"
default "n"
depends on ESP32_TRAX && !FREERTOS_UNICORE
select ESP32_MEMMAP_TRACEMEM_TWOBANKS
help
The ESP32 contains a feature which allows you to trace the execution path the processor
has taken through the program. This is stored in a chunk of 32K (16K for single-processor)
of memory that can't be used for general purposes anymore. Disable this if you do not know
what this is.
# Memory to reverse for trace, used in linker script
config ESP32_TRACEMEM_RESERVE_DRAM
hex
default 0x8000 if ESP32_MEMMAP_TRACEMEM && ESP32_MEMMAP_TRACEMEM_TWOBANKS
default 0x4000 if ESP32_MEMMAP_TRACEMEM && !ESP32_MEMMAP_TRACEMEM_TWOBANKS
default 0x0
choice ESP32_UNIVERSAL_MAC_ADDRESSES
bool "Number of universally administered (by IEEE) MAC address"
default ESP32_UNIVERSAL_MAC_ADDRESSES_FOUR
help
Configure the number of universally administered (by IEEE) MAC addresses.
During initialisation, MAC addresses for each network interface are generated or derived from a
single base MAC address.
If the number of universal MAC addresses is four, all four interfaces (WiFi station, WiFi softap,
Bluetooth and Ethernet) receive a universally administered MAC address. These are generated
sequentially by adding 0, 1, 2 and 3 (respectively) to the final octet of the base MAC address.
If the number of universal MAC addresses is two, only two interfaces (WiFi station and Bluetooth)
receive a universally administered MAC address. These are generated sequentially by adding 0
and 1 (respectively) to the base MAC address. The remaining two interfaces (WiFi softap and Ethernet)
receive local MAC addresses. These are derived from the universal WiFi station and Bluetooth MAC
addresses, respectively.
When using the default (Espressif-assigned) base MAC address, either setting can be used. When using
a custom universal MAC address range, the correct setting will depend on the allocation of MAC
addresses in this range (either 2 or 4 per device.)
config ESP32_UNIVERSAL_MAC_ADDRESSES_TWO
bool "Two"
config ESP32_UNIVERSAL_MAC_ADDRESSES_FOUR
bool "Four"
endchoice
config ESP32_UNIVERSAL_MAC_ADDRESSES
int
default 2 if ESP32_UNIVERSAL_MAC_ADDRESSES_TWO
default 4 if ESP32_UNIVERSAL_MAC_ADDRESSES_FOUR
config ESP32_ULP_COPROC_ENABLED
bool "Enable Ultra Low Power (ULP) Coprocessor"
default "n"
help
Set to 'y' if you plan to load a firmware for the coprocessor.
If this option is enabled, further coprocessor configuration will appear in the Components menu.
config ESP32_ULP_COPROC_RESERVE_MEM
int
prompt "RTC slow memory reserved for coprocessor" if ESP32_ULP_COPROC_ENABLED
default 512 if ESP32_ULP_COPROC_ENABLED
range 32 8192 if ESP32_ULP_COPROC_ENABLED
default 0 if !ESP32_ULP_COPROC_ENABLED
range 0 0 if !ESP32_ULP_COPROC_ENABLED
help
Bytes of memory to reserve for ULP coprocessor firmware & data.
Data is reserved at the beginning of RTC slow memory.
choice ESP32_PANIC
prompt "Panic handler behaviour"
default ESP32_PANIC_PRINT_REBOOT
help
If FreeRTOS detects unexpected behaviour or an unhandled exception, the panic handler is
invoked. Configure the panic handlers action here.
config ESP32_PANIC_PRINT_HALT
bool "Print registers and halt"
help
Outputs the relevant registers over the serial port and halt the
processor. Needs a manual reset to restart.
config ESP32_PANIC_PRINT_REBOOT
bool "Print registers and reboot"
help
Outputs the relevant registers over the serial port and immediately
reset the processor.
config ESP32_PANIC_SILENT_REBOOT
bool "Silent reboot"
help
Just resets the processor without outputting anything
config ESP32_PANIC_GDBSTUB
bool "Invoke GDBStub"
help
Invoke gdbstub on the serial port, allowing for gdb to attach to it to do a postmortem
of the crash.
endchoice
config ESP32_DEBUG_OCDAWARE
bool "Make exception and panic handlers JTAG/OCD aware"
default y
help
The FreeRTOS panic and unhandled exception handers can detect a JTAG OCD debugger and
instead of panicking, have the debugger stop on the offending instruction.
config ESP32_DEBUG_STUBS_ENABLE
bool "OpenOCD debug stubs"
2019-04-24 09:02:25 -04:00
default COMPILER_OPTIMIZATION_LEVEL_DEBUG
depends on !ESP32_TRAX
help
Debug stubs are used by OpenOCD to execute pre-compiled onboard code which does some useful debugging,
e.g. GCOV data dump.
config ESP32_BROWNOUT_DET
#The brownout detector code is disabled (by making it depend on a nonexisting symbol) because the current
#revision of ESP32 silicon has a bug in the brown-out detector, rendering it unusable for resetting the CPU.
bool "Hardware brownout detect & reset"
default y
help
The ESP32 has a built-in brownout detector which can detect if the voltage is lower than
a specific value. If this happens, it will reset the chip in order to prevent unintended
behaviour.
choice ESP32_BROWNOUT_DET_LVL_SEL
prompt "Brownout voltage level"
depends on ESP32_BROWNOUT_DET
default BROWNOUT_DET_LVL_SEL_25
help
The brownout detector will reset the chip when the supply voltage is approximately
below this level. Note that there may be some variation of brownout voltage level
between each ESP32 chip.
#The voltage levels here are estimates, more work needs to be done to figure out the exact voltages
#of the brownout threshold levels.
config ESP32_BROWNOUT_DET_LVL_SEL_0
bool "2.43V +/- 0.05"
config ESP32_BROWNOUT_DET_LVL_SEL_1
bool "2.48V +/- 0.05"
config ESP32_BROWNOUT_DET_LVL_SEL_2
bool "2.58V +/- 0.05"
config ESP32_BROWNOUT_DET_LVL_SEL_3
bool "2.62V +/- 0.05"
config ESP32_BROWNOUT_DET_LVL_SEL_4
bool "2.67V +/- 0.05"
config ESP32_BROWNOUT_DET_LVL_SEL_5
bool "2.70V +/- 0.05"
config ESP32_BROWNOUT_DET_LVL_SEL_6
bool "2.77V +/- 0.05"
config ESP32_BROWNOUT_DET_LVL_SEL_7
bool "2.80V +/- 0.05"
endchoice
config ESP32_BROWNOUT_DET_LVL
int
default 0 if ESP32_BROWNOUT_DET_LVL_SEL_0
default 1 if ESP32_BROWNOUT_DET_LVL_SEL_1
default 2 if ESP32_BROWNOUT_DET_LVL_SEL_2
default 3 if ESP32_BROWNOUT_DET_LVL_SEL_3
default 4 if ESP32_BROWNOUT_DET_LVL_SEL_4
default 5 if ESP32_BROWNOUT_DET_LVL_SEL_5
default 6 if ESP32_BROWNOUT_DET_LVL_SEL_6
default 7 if ESP32_BROWNOUT_DET_LVL_SEL_7
#Reduce PHY TX power when brownout reset
config ESP32_REDUCE_PHY_TX_POWER
bool "Reduce PHY TX power when brownout reset"
depends on ESP32_BROWNOUT_DET
default y
help
When brownout reset occurs, reduce PHY TX power to keep the code running
# Note about the use of "FRC1" name: currently FRC1 timer is not used for
# high resolution timekeeping anymore. Instead the esp_timer API, implemented
# using FRC2 timer, is used.
# FRC1 name in the option name is kept for compatibility.
choice ESP32_TIME_SYSCALL
prompt "Timers used for gettimeofday function"
default ESP32_TIME_SYSCALL_USE_RTC_FRC1
help
This setting defines which hardware timers are used to
implement 'gettimeofday' and 'time' functions in C library.
- If both high-resolution and RTC timers are used, timekeeping will
continue in deep sleep. Time will be reported at 1 microsecond
resolution. This is the default, and the recommended option.
- If only high-resolution timer is used, gettimeofday will
provide time at microsecond resolution.
Time will not be preserved when going into deep sleep mode.
- If only RTC timer is used, timekeeping will continue in
deep sleep, but time will be measured at 6.(6) microsecond
resolution. Also the gettimeofday function itself may take
longer to run.
- If no timers are used, gettimeofday and time functions
return -1 and set errno to ENOSYS.
- When RTC is used for timekeeping, two RTC_STORE registers are
used to keep time in deep sleep mode.
config ESP32_TIME_SYSCALL_USE_RTC_FRC1
bool "RTC and high-resolution timer"
config ESP32_TIME_SYSCALL_USE_RTC
bool "RTC"
config ESP32_TIME_SYSCALL_USE_FRC1
bool "High-resolution timer"
config ESP32_TIME_SYSCALL_USE_NONE
bool "None"
endchoice
choice ESP32_RTC_CLK_SRC
prompt "RTC clock source"
default ESP32_RTC_CLK_SRC_INT_RC
help
Choose which clock is used as RTC clock source.
- "Internal 150kHz oscillator" option provides lowest deep sleep current
consumption, and does not require extra external components. However
frequency stability with respect to temperature is poor, so time may
drift in deep/light sleep modes.
- "External 32kHz crystal" provides better frequency stability, at the
expense of slightly higher (1uA) deep sleep current consumption.
- "External 32kHz oscillator" allows using 32kHz clock generated by an
external circuit. In this case, external clock signal must be connected
to 32K_XP pin. Amplitude should be <1.2V in case of sine wave signal,
and <1V in case of square wave signal. Common mode voltage should be
0.1 < Vcm < 0.5Vamp, where Vamp is the signal amplitude.
Additionally, 1nF capacitor must be connected between 32K_XN pin and
ground. 32K_XN pin can not be used as a GPIO in this case.
- "Internal 8.5MHz oscillator divided by 256" option results in higher
deep sleep current (by 5uA) but has better frequency stability than
the internal 150kHz oscillator. It does not require external components.
config ESP32_RTC_CLK_SRC_INT_RC
bool "Internal 150kHz RC oscillator"
config ESP32_RTC_CLK_SRC_EXT_CRYS
bool "External 32kHz crystal"
config ESP32_RTC_CLK_SRC_EXT_OSC
bool "External 32kHz oscillator at 32K_XP pin"
config ESP32_RTC_CLK_SRC_INT_8MD256
bool "Internal 8.5MHz oscillator, divided by 256 (~33kHz)"
endchoice
config ESP32_RTC_EXT_CRYST_ADDIT_CURRENT
2018-12-22 01:19:46 -05:00
bool "Additional current for external 32kHz crystal"
depends on ESP32_RTC_CLK_SRC_EXT_CRYS
2018-12-22 01:19:46 -05:00
default "n"
help
Choose which additional current is used for rtc external crystal.
- With some 32kHz crystal configurations, the X32N and X32P pins may not
have enough drive strength to keep the crystal oscillating during deep sleep.
If this option is enabled, additional current from touchpad 9 is provided
internally to drive the 32kHz crystal. If this option is enabled, deep sleep current
is slightly higher (4-5uA) and the touchpad and ULP wakeup sources are not available.
config ESP32_RTC_CLK_CAL_CYCLES
int "Number of cycles for RTC_SLOW_CLK calibration"
default 3000 if ESP32_RTC_CLK_SRC_EXT_CRYS
default 1024 if ESP32_RTC_CLK_SRC_INT_RC
range 0 27000 if ESP32_RTC_CLK_SRC_EXT_CRYS || ESP32_RTC_CLK_SRC_EXT_OSC || ESP32_RTC_CLK_SRC_INT_8MD256
range 0 32766 if ESP32_RTC_CLK_SRC_INT_RC
help
When the startup code initializes RTC_SLOW_CLK, it can perform
calibration by comparing the RTC_SLOW_CLK frequency with main XTAL
frequency. This option sets the number of RTC_SLOW_CLK cycles measured
by the calibration routine. Higher numbers increase calibration
precision, which may be important for applications which spend a lot of
time in deep sleep. Lower numbers reduce startup time.
When this option is set to 0, clock calibration will not be performed at
startup, and approximate clock frequencies will be assumed:
- 150000 Hz if internal RC oscillator is used as clock source. For this use value 1024.
- 32768 Hz if the 32k crystal oscillator is used. For this use value 3000 or more.
In case more value will help improve the definition of the launch of the crystal.
If the crystal could not start, it will be switched to internal RC.
config ESP32_RTC_XTAL_BOOTSTRAP_CYCLES
int "Bootstrap cycles for external 32kHz crystal"
depends on ESP32_RTC_CLK_SRC_EXT_CRYS
default 5
range 0 32768
help
To reduce the startup time of an external RTC crystal,
we bootstrap it with a 32kHz square wave for a fixed number of cycles.
Setting 0 will disable bootstrapping (if disabled, the crystal may take
longer to start up or fail to oscillate under some conditions).
If this value is too high, a faulty crystal may initially start and then fail.
If this value is too low, an otherwise good crystal may not start.
To accurately determine if the crystal has started,
set a larger "Number of cycles for RTC_SLOW_CLK calibration" (about 3000).
config ESP32_DEEP_SLEEP_WAKEUP_DELAY
int "Extra delay in deep sleep wake stub (in us)"
default 2000
range 0 5000
help
When ESP32 exits deep sleep, the CPU and the flash chip are powered on
at the same time. CPU will run deep sleep stub first, and then
proceed to load code from flash. Some flash chips need sufficient
time to pass between power on and first read operation. By default,
without any extra delay, this time is approximately 900us, although
some flash chip types need more than that.
By default extra delay is set to 2000us. When optimizing startup time
for applications which require it, this value may be reduced.
If you are seeing "flash read err, 1000" message printed to the
console after deep sleep reset, try increasing this value.
choice ESP32_XTAL_FREQ_SEL
prompt "Main XTAL frequency"
default ESP32_XTAL_FREQ_40
help
ESP32 currently supports the following XTAL frequencies:
- 26 MHz
- 40 MHz
Startup code can automatically estimate XTAL frequency. This feature
uses the internal 8MHz oscillator as a reference. Because the internal
oscillator frequency is temperature dependent, it is not recommended
to use automatic XTAL frequency detection in applications which need
to work at high ambient temperatures and use high-temperature
qualified chips and modules.
config ESP32_XTAL_FREQ_40
bool "40 MHz"
config ESP32_XTAL_FREQ_26
bool "26 MHz"
config ESP32_XTAL_FREQ_AUTO
bool "Autodetect"
endchoice
# Keep these values in sync with rtc_xtal_freq_t enum in soc/rtc.h
config ESP32_XTAL_FREQ
int
default 0 if ESP32_XTAL_FREQ_AUTO
default 40 if ESP32_XTAL_FREQ_40
default 26 if ESP32_XTAL_FREQ_26
config ESP32_DISABLE_BASIC_ROM_CONSOLE
bool "Permanently disable BASIC ROM Console"
default n
help
If set, the first time the app boots it will disable the BASIC ROM Console
permanently (by burning an eFuse).
Otherwise, the BASIC ROM Console starts on reset if no valid bootloader is
read from the flash.
(Enabling secure boot also disables the BASIC ROM Console by default.)
config ESP32_NO_BLOBS
bool "No Binary Blobs"
depends on !BT_ENABLED
default n
help
If enabled, this disables the linking of binary libraries in the application build. Note
that after enabling this Wi-Fi/Bluetooth will not work.
config ESP32_COMPATIBLE_PRE_V2_1_BOOTLOADERS
bool "App compatible with bootloaders before IDF v2.1"
default n
help
Bootloaders before IDF v2.1 did less initialisation of the
system clock. This setting needs to be enabled to build an app
which can be booted by these older bootloaders.
If this setting is enabled, the app can be booted by any bootloader
from IDF v1.0 up to the current version.
If this setting is disabled, the app can only be booted by bootloaders
from IDF v2.1 or newer.
Enabling this setting adds approximately 1KB to the app's IRAM usage.
config ESP32_RTCDATA_IN_FAST_MEM
bool "Place RTC_DATA_ATTR and RTC_RODATA_ATTR variables into RTC fast memory segment"
default n
depends on FREERTOS_UNICORE
help
This option allows to place .rtc_data and .rtc_rodata sections into
RTC fast memory segment to free the slow memory region for ULP programs.
This option depends on the CONFIG_FREERTOS_UNICORE option because RTC fast memory
can be accessed only by PRO_CPU core.
endmenu # ESP32-Specific
menu "Power Management"
config PM_ENABLE
bool "Support for power management"
default n
help
If enabled, application is compiled with support for power management.
This option has run-time overhead (increased interrupt latency,
longer time to enter idle state), and it also reduces accuracy of
RTOS ticks and timers used for timekeeping.
Enable this option if application uses power management APIs.
config PM_DFS_INIT_AUTO
bool "Enable dynamic frequency scaling (DFS) at startup"
depends on PM_ENABLE
default n
help
If enabled, startup code configures dynamic frequency scaling.
Max CPU frequency is set to CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ setting,
min frequency is set to XTAL frequency.
If disabled, DFS will not be active until the application
configures it using esp_pm_configure function.
config PM_USE_RTC_TIMER_REF
bool "Use RTC timer to prevent time drift (EXPERIMENTAL)"
depends on PM_ENABLE && (ESP32_TIME_SYSCALL_USE_RTC || ESP32_TIME_SYSCALL_USE_RTC_FRC1)
default n
help
When APB clock frequency changes, high-resolution timer (esp_timer)
scale and base value need to be adjusted. Each adjustment may cause
small error, and over time such small errors may cause time drift.
If this option is enabled, RTC timer will be used as a reference to
compensate for the drift.
It is recommended that this option is only used if 32k XTAL is selected
as RTC clock source.
config PM_PROFILING
bool "Enable profiling counters for PM locks"
depends on PM_ENABLE
default n
help
If enabled, esp_pm_* functions will keep track of the amount of time
each of the power management locks has been held, and esp_pm_dump_locks
function will print this information.
This feature can be used to analyze which locks are preventing the chip
from going into a lower power state, and see what time the chip spends
in each power saving mode. This feature does incur some run-time
overhead, so should typically be disabled in production builds.
config PM_TRACE
bool "Enable debug tracing of PM using GPIOs"
depends on PM_ENABLE
default n
help
If enabled, some GPIOs will be used to signal events such as RTOS ticks,
frequency switching, entry/exit from idle state. Refer to pm_trace.c
file for the list of GPIOs.
This feature is intended to be used when analyzing/debugging behavior
of power management implementation, and should be kept disabled in
applications.
endmenu # "Power Management"