2017-01-25 11:35:28 -05:00
// Copyright 2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Hot It Works
// ************
// 1. Components Overview
// ======================
// Xtensa has useful feature: TRAX debug module. It allows recording program execution flow during run-time without disturbing CPU commands flow.
// Exectution flow data are written to configurable Trace RAM block. Besides accessing Trace RAM itself TRAX module also allows to read/write
// trace memory via its registers by means of JTAG, APB or ERI transactions.
// ESP32 has two Xtensa cores with separate TRAX modules on them and provides two special memory regions to be used as trace memory.
// ESP32 allows muxing access to trace memory blocks in such a way that while one block is accessed by CPUs another can be accessed via JTAG by host
// via reading/writing TRAX registers. Block muxing is configurable at run-time and allows switching trace memory blocks between
// accessors in round-robin fashion so they can read/write separate memory blocks without disturbing each other.
// This moduile implements application tracing feature based on above mechanisms. This feature allows to transfer arbitrary user data to
// host via JTAG with minimal impact on system performance. This module is implied to be used in the following tracing scheme.
// ------>------ ----- (host components) -----
// | | | |
// --------------- ----------------------- ----------------------- ---------------- ------ --------- -----------------
// |apptrace user|-->|target tracing module|<--->|TRAX_MEM0 | TRAX_MEM1|---->|TRAX_DATA_REGS|<-->|JTAG|<--->|OpenOCD|-->|trace data file|
// --------------- ----------------------- ----------------------- ---------------- ------ --------- -----------------
// | | | |
// | ------<------ ---------------- |
// |<------------------------------------------->|TRAX_CTRL_REGS|<---->|
// ----------------
// In general tracing happens in the following way. User aplication requests tracing module to send some data by calling esp_apptrace_buffer_get(),
// moduile allocates necessary buffer in current input trace block. Then user fills received buffer with data and calls esp_apptrace_buffer_put().
// When current input trace block is filled with app data it is exposed to host and the second block becomes input one and buffer filling restarts.
// While target application fills one memory block host reads another block via JTAG.
// To control buffer switching and for other communication purposes this implementation uses some TRAX registers. It is safe since HW TRAX tracing
// can not be used along with application tracing feature so these registers are freely readable/writeable via JTAG from host and via ERI from ESP32 cores.
// So this implementation's target CPU overhead is produced only by calls to allocate/manage buffers and data copying.
// On host special OpenOCD command must be used to read trace data.
// 2.1.1.1 TRAX Registers layout
// =============================
// This module uses two TRAX HW registers to communicate with host SW (OpenOCD).
// - Control register uses TRAX_DELAYCNT as storage. Only lower 24 bits of TRAX_DELAYCNT are writable. Control register has the following bitfields:
// | 31..XXXXXX..24 | 23 .(host_connect). 23| 22..(block_id)..15 | 14..(block_len)..0 |
// 14..0 bits - actual length of user data in trace memory block. Target updates it every time it fills memory block and exposes it to host.
// Host writes zero to this field when it finishes reading exposed block;
// 22..15 bits - trace memory block transfer ID. Block counter. It can overflow. Updated by target, host should not modify it. Actually can be 1-2 bits;
// 23 bit - 'host connected' flag. If zero then host is not connected and tracing module works in post-mortem mode, otherwise in streaming mode;
// - Status register uses TRAX_TRIGGERPC as storage. If this register is not zero then currentlly CPU is changing TRAX registers and
// this register holds address of the instruction which application will execute when it finishes with those registers modifications.
// See 'Targets Connection' setion for details.
// 3. Modes of operation
// =====================
// This module supports two modes of operation:
// - Post-mortem mode. This is the default mode. In this mode application tracing module does not check whether host has read all the data from block
// exposed to it and switches block in any case. The mode does not need host interaction for operation and so can be useful when only the latest
// trace data are necessary, e.g. for analyzing crashes. On panic the latest data from current input block are exposed to host and host can read them.
// There is menuconfig option CONFIG_ESP32_APPTRACE_ONPANIC_HOST_FLUSH_TRAX_THRESH which control the threshold for flushing data on panic.
// - Streaming mode. Tracing module enters this mode when host connects to targets and sets respective bit in control register. In this mode tracing
// module waits for specified time until host read all the data from exposed block.
// On panic tracing module waits (timeout is configured via menuconfig via ESP32_APPTRACE_ONPANIC_HOST_FLUSH_TMO) for the host to read all data
// from the previously exposed block.
// 4. Communication Protocol
// =========================
// 4.1 Trace Memory Blocks
// ^^^^^^^^^^^^^^^^^^^^^^^^^
// Communication is controlled via special register. Host periodically polls control register on each core to find out if there are any data avalable.
// When current input trace memory block is filled tracing module exposes block to host and updates block_len and block_id fields in control register.
// Host reads new register value and according to it starts reading data from exposed block. Meanwhile target starts filling another trace block.
// When host finishes reading the block it clears block_len field in control register indicating to target that it is ready to accept the next block.
// 4.2 User Data Chunks Level
// --------------------------
// Since trace memory block is shared between user data chunks and data copying is performed on behalf of the API user (in its normal context) in
// multithreading environment it can happen that task/ISR which copies data is preempted by another high prio task/ISR. So it is possible situation
// that task/ISR will fail to complete filling its data chunk before the whole trace block is exposed to the host. To handle such conditions tracing
// module prepends all user data chunks with 4 bytes header which contains allocated buffer size and actual data length within it. OpenOCD command
// which reads application traces will report error when it will read incompleted user data block.
// 4.3 Targets Connection/Disconnection
// ------------------------------------
// When host is going to start tracing in streaming mode it needs to put both ESP32 cores into initial state when 'host connected' bit is set
// on both cores. To accomplish this host halts both cores and sets this bit in TRAX registers. But target code can be halted in state when it has read control
// register but has not updated its value. To handle such situations target code indicates to the host that it is updating control register by writing
// non-zero value to status register. Actually it writes address of the instruction which it will execute when it finishes with
// the registers update. When target is halted during control register update host sets breakpoint at the address from status register and resumes CPU.
// After target code finishes with register update it is halted on breakpoint, host detects it and safely sets 'host connected' bit. When both cores
// are set up they are resumed. Tracing starts without further intrusion into CPUs work.
// When host is going to stop tracing in streaming mode it needs to disconnect targets. Disconnection process is done using the same algorithm
// as for connecting, but 'host connected' bits are cleared on ESP32 cores.
// 5. Module Access Synchronization
// ================================
// Access to internal module's data is synchronized with custom mutex. Mutex is a wrapper for portMUX_TYPE and uses almost the same sync mechanism as in
// vPortCPUAcquireMutex/vPortCPUReleaseMutex. The mechanism uses S32C1I Xtensa instruction to implement exclusive access to module's data from tasks and
// ISRs running on both cores. Also custom mutex allows specifying timeout for locking operation. Locking routine checks underlaying mutex in cycle until
// it gets its ownership or timeout expires. The differences of application tracing module's mutex implementation from vPortCPUAcquireMutex/vPortCPUReleaseMutex are:
// - Support for timeouts.
// - Local IRQs for CPU which owns the mutex are disabled till the call to unlocking routine. This is made to avoid possible task's prio inversion.
// When low prio task takes mutex and enables local IRQs gets preempted by high prio task which in its turn can try to acquire mutex using infinite timeout.
// So no local task switch occurs when mutex is locked. But this does not apply to tasks on another CPU.
// WARNING: Priority inversion can happen when low prio task works on one CPU and medium and high prio tasks work on another.
// There are some differences how mutex behaves when it is used from task and ISR context when timeout is non-zero:
// - In task context when mutex can not be locked portYIELD() is called before check for timeout condition to alow othet tasks work on the same CPU.
// - In ISR context when mutex can not be locked nothing is done before expired time check.
// WARNING: Care must be taken when selecting timeout values for trace calls from ISRs. Tracing module does not care about watchdogs when waiting on internal locks
// and when waiting for host to complete previous block reading, so if wating timeout value exceedes watchdog's one it can lead to system reboot.
// 6. Timeouts
// ------------
// Timeout mechanism is based on xthal_get_ccount() routine and supports timeout values in micorseconds.
// There are two situations when task/ISR can be delayed by tracing API call. Timeout mechanism takes into account both conditions:
// - Trace data are locked by another task/ISR. When wating on trace data lock.
// - Current TRAX memory input block is full when working in streaming mode (host is connected). When waiting for host to complete previous block reading.
// When wating for any of above conditions xthal_get_ccount() is called periodically to calculate time elapsed from trace API routine entry. When elapsed
// time exceeds specified timeout value operation is canceled and ESP_ERR_TIMEOUT code is returned.
// ALSO SEE example usage of application tracing module in 'components/log/README.rst'
# include <string.h>
# include "soc/soc.h"
# include "soc/dport_reg.h"
# include "eri.h"
# include "trax.h"
# include "freertos/FreeRTOS.h"
# include "freertos/portmacro.h"
# include "freertos/semphr.h"
# include "freertos/task.h"
# include "soc/timer_group_struct.h"
# include "soc/timer_group_reg.h"
# include "esp_app_trace.h"
# if CONFIG_ESP32_APPTRACE_ENABLE
# define ESP_APPTRACE_DEBUG_STATS_ENABLE 0
# define ESP_APPTRACE_BUF_HISTORY_DEPTH (16*100)
# define ESP_APPTRACE_MAX_VPRINTF_ARGS 256
# define ESP_APPTRACE_PRINT_LOCK_NONE 0
# define ESP_APPTRACE_PRINT_LOCK_SEM 1
# define ESP_APPTRACE_PRINT_LOCK_MUX 2
# define ESP_APPTRACE_PRINT_LOCK ESP_APPTRACE_PRINT_LOCK_NONE //ESP_APPTRACE_PRINT_LOCK_SEM
# define ESP_APPTRACE_USE_LOCK_SEM 0 // 1 - semaphore (now may be broken), 0 - portMUX_TYPE
# define LOG_LOCAL_LEVEL ESP_LOG_VERBOSE
# include "esp_log.h"
const static char * TAG = " esp_apptrace " ;
# if ESP_APPTRACE_PRINT_LOCK != ESP_APPTRACE_PRINT_LOCK_NONE
# define ESP_APPTRACE_LOG( format, ... ) \
do { \
esp_apptrace_log_lock ( ) ; \
ets_printf ( format , # # __VA_ARGS__ ) ; \
esp_apptrace_log_unlock ( ) ; \
} while ( 0 )
# else
# define ESP_APPTRACE_LOG( format, ... ) \
do { \
ets_printf ( format , # # __VA_ARGS__ ) ; \
} while ( 0 )
# endif
# define ESP_APPTRACE_LOG_LEV( _L_, level, format, ... ) \
do { \
if ( LOG_LOCAL_LEVEL > = level ) { \
ESP_APPTRACE_LOG ( LOG_FORMAT ( _L_ , format ) , esp_log_early_timestamp ( ) , TAG , # # __VA_ARGS__ ) ; \
} \
} while ( 0 )
# define ESP_APPTRACE_LOGE( format, ... ) ESP_APPTRACE_LOG_LEV(E, ESP_LOG_ERROR, format, ##__VA_ARGS__)
# define ESP_APPTRACE_LOGW( format, ... ) ESP_APPTRACE_LOG_LEV(W, ESP_LOG_WARN, format, ##__VA_ARGS__)
# define ESP_APPTRACE_LOGI( format, ... ) ESP_APPTRACE_LOG_LEV(I, ESP_LOG_INFO, format, ##__VA_ARGS__)
# define ESP_APPTRACE_LOGD( format, ... ) ESP_APPTRACE_LOG_LEV(D, ESP_LOG_DEBUG, format, ##__VA_ARGS__)
# define ESP_APPTRACE_LOGV( format, ... ) ESP_APPTRACE_LOG_LEV(V, ESP_LOG_VERBOSE, format, ##__VA_ARGS__)
# define ESP_APPTRACE_LOGO( format, ... ) ESP_APPTRACE_LOG_LEV(E, ESP_LOG_NONE, format, ##__VA_ARGS__)
# define ESP_APPTRACE_CPUTICKS2US(_t_) ((_t_) / (XT_CLOCK_FREQ / 1000000))
// TODO: move these (and same definitions in trax.c to dport_reg.h)
# define TRACEMEM_MUX_PROBLK0_APPBLK1 0
# define TRACEMEM_MUX_BLK0_ONLY 1
# define TRACEMEM_MUX_BLK1_ONLY 2
# define TRACEMEM_MUX_PROBLK1_APPBLK0 3
// TRAX is disabled, so we use its registers for our own purposes
// | 31..XXXXXX..24 | 23 .(host_connect). 23| 22..(block_id)..15 | 14..(block_len)..0 |
# define ESP_APPTRACE_TRAX_CTRL_REG ERI_TRAX_DELAYCNT
# define ESP_APPTRACE_TRAX_STAT_REG ERI_TRAX_TRIGGERPC
# define ESP_APPTRACE_TRAX_BLOCK_LEN_MSK 0x7FFFUL
# define ESP_APPTRACE_TRAX_BLOCK_LEN(_l_) ((_l_) & ESP_APPTRACE_TRAX_BLOCK_LEN_MSK)
# define ESP_APPTRACE_TRAX_BLOCK_LEN_GET(_v_) ((_v_) & ESP_APPTRACE_TRAX_BLOCK_LEN_MSK)
# define ESP_APPTRACE_TRAX_BLOCK_ID_MSK 0xFFUL
# define ESP_APPTRACE_TRAX_BLOCK_ID(_id_) (((_id_) & ESP_APPTRACE_TRAX_BLOCK_ID_MSK) << 15)
# define ESP_APPTRACE_TRAX_BLOCK_ID_GET(_v_) (((_v_) >> 15) & ESP_APPTRACE_TRAX_BLOCK_ID_MSK)
# define ESP_APPTRACE_TRAX_HOST_CONNECT (1 << 23)
static volatile uint8_t * s_trax_blocks [ ] = {
( volatile uint8_t * ) 0x3FFFC000 ,
( volatile uint8_t * ) 0x3FFF8000
} ;
# define ESP_APPTRACE_TRAX_BLOCKS_NUM (sizeof(s_trax_blocks) / sizeof(s_trax_blocks[0]))
//#define ESP_APPTRACE_TRAX_BUFFER_SIZE (ESP_APPTRACE_TRAX_BLOCK_SIZE/4)
# define ESP_APPTRACE_TRAX_INBLOCK_START 0 //(ESP_APPTRACE_TRAX_BLOCK_ID_MSK - 4)
# define ESP_APPTRACE_TRAX_INBLOCK_MARKER_PTR_GET() (&s_trace_buf.trax.state.markers[s_trace_buf.trax.state.in_block % 2])
# define ESP_APPTRACE_TRAX_INBLOCK_GET() (&s_trace_buf.trax.blocks[s_trace_buf.trax.state.in_block % 2])
# if ESP_APPTRACE_DEBUG_STATS_ENABLE == 1
/** keeps info about apptrace API (write/get buffer) caller and internal module's data related to that call
* NOTE : used for module debug purposes , currently this functionality is partially broken ,
* but can be useful in future
*/
typedef struct {
uint32_t hnd ; // task/ISR handle
uint32_t ts ; // timestamp
uint32_t stamp ; // test (user) trace buffer stamp
uint32_t in_block ; // TRAX input block ID
uint32_t eri_len [ 2 ] ; // contents of ERI control register upon entry to / exit from API routine
uint32_t wr_err ; // number of trace write errors
} esp_trace_buffer_wr_hitem_t ;
/** apptrace API calls history. History is organized as ring buffer*/
typedef struct {
uint32_t hist_rd ; // the first history entry index
uint32_t hist_wr ; // the last history entry index
esp_trace_buffer_wr_hitem_t hist [ ESP_APPTRACE_BUF_HISTORY_DEPTH ] ; // history data
} esp_trace_buffer_wr_stats_t ;
/** trace module stats */
typedef struct {
esp_trace_buffer_wr_stats_t wr ;
} esp_trace_buffer_stats_t ;
# endif
/** Trace data header. Every user data chunk is prepended with this header.
* User allocates block with esp_apptrace_buffer_get and then fills it with data ,
* in multithreading environment it can happen that tasks gets buffer and then gets interrupted ,
* so it is possible that user data are incomplete when TRAX memory block is exposed to the host .
* In this case host SW will see that wr_sz < block_sz and will report error .
*/
typedef struct {
uint16_t block_sz ; // size of allocated block for user data
uint16_t wr_sz ; // size of actually written data
} esp_tracedata_hdr_t ;
/** TRAX HW transport state */
typedef struct {
uint32_t in_block ; // input block ID
uint32_t markers [ ESP_APPTRACE_TRAX_BLOCKS_NUM ] ; // block filling level markers
# if ESP_APPTRACE_DEBUG_STATS_ENABLE == 1
esp_trace_buffer_stats_t stats ; // stats
# endif
} esp_apptrace_trax_state_t ;
/** memory block parameters */
typedef struct {
uint8_t * start ; // start address
uint32_t sz ; // size
} esp_apptrace_mem_block_t ;
/** TRAX HW transport data */
typedef struct {
volatile esp_apptrace_trax_state_t state ; // state
esp_apptrace_mem_block_t blocks [ ESP_APPTRACE_TRAX_BLOCKS_NUM ] ; // memory blocks
} esp_apptrace_trax_data_t ;
/** tracing module synchronization lock */
typedef struct {
volatile unsigned int irq_stat ; // local (on 1 CPU) IRQ state
portMUX_TYPE portmux ; // mux for synchronization
} esp_apptrace_lock_t ;
# define ESP_APPTRACE_MUX_GET(_m_) (&(_m_)->portmux)
/** tracing module internal data */
typedef struct {
# if ESP_APPTRACE_USE_LOCK_SEM == 1
SemaphoreHandle_t lock ;
# else
esp_apptrace_lock_t lock ; // sync lock
# endif
uint8_t inited ; // module initialization state flag
esp_apptrace_trax_data_t trax ; // TRAX HW transport data
} esp_apptrace_buffer_t ;
/** waiting timeout data */
typedef struct {
uint32_t start ; // waiting start (in ticks)
uint32_t tmo ; // timeout (in us)
} esp_apptrace_tmo_t ;
static esp_apptrace_buffer_t s_trace_buf ;
# if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_SEM
static SemaphoreHandle_t s_log_lock ;
# elif ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_MUX
static esp_apptrace_lock_t s_log_lock ;
# endif
static inline void esp_apptrace_tmo_init ( esp_apptrace_tmo_t * tmo , uint32_t user_tmo )
{
tmo - > start = xthal_get_ccount ( ) ;
tmo - > tmo = user_tmo ;
}
static esp_err_t esp_apptrace_tmo_check ( esp_apptrace_tmo_t * tmo )
{
unsigned cur , elapsed ;
if ( tmo - > tmo ! = ESP_APPTRACE_TMO_INFINITE ) {
cur = xthal_get_ccount ( ) ;
if ( tmo - > start < = cur ) {
elapsed = cur - tmo - > start ;
} else {
elapsed = 0xFFFFFFFF - tmo - > start + cur ;
}
if ( ESP_APPTRACE_CPUTICKS2US ( elapsed ) > = tmo - > tmo ) {
return ESP_ERR_TIMEOUT ;
}
}
return ESP_OK ;
}
# if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_MUX || ESP_APPTRACE_USE_LOCK_SEM == 0
static inline void esp_apptrace_mux_init ( esp_apptrace_lock_t * mux )
{
ESP_APPTRACE_MUX_GET ( mux ) - > mux = portMUX_FREE_VAL ;
mux - > irq_stat = 0 ;
}
static esp_err_t esp_apptrace_lock_take ( esp_apptrace_lock_t * mux , uint32_t tmo )
{
uint32_t res = ~ portMUX_FREE_VAL ;
esp_apptrace_tmo_t sleeping_tmo ;
esp_apptrace_tmo_init ( & sleeping_tmo , tmo ) ;
while ( 1 ) {
res = ( xPortGetCoreID ( ) < < portMUX_VAL_SHIFT ) | portMUX_MAGIC_VAL ;
// first disable IRQs on this CPU, this will prevent current task from been
// preempted by higher prio tasks, otherwise deadlock can happen:
// when lower prio task took mux and then preempted by higher prio one which also tries to
// get mux with INFINITE timeout
unsigned int irq_stat = portENTER_CRITICAL_NESTED ( ) ;
// Now try to lock mux
uxPortCompareSet ( & ESP_APPTRACE_MUX_GET ( mux ) - > mux , portMUX_FREE_VAL , & res ) ;
if ( res = = portMUX_FREE_VAL ) {
// do not enable IRQs, we will held them disabled until mux is unlocked
// we do not need to flush cache region for mux->irq_stat because it is used
// to hold and restore IRQ state only for CPU which took mux, other CPUs will not use this value
mux - > irq_stat = irq_stat ;
break ;
}
// if mux is locked by other task/ISR enable IRQs and let other guys work
portEXIT_CRITICAL_NESTED ( irq_stat ) ;
if ( ! xPortInIsrContext ( ) ) {
portYIELD ( ) ;
}
int err = esp_apptrace_tmo_check ( & sleeping_tmo ) ;
if ( err ! = ESP_OK ) {
return err ;
}
}
return ESP_OK ;
}
esp_err_t esp_apptrace_mux_give ( esp_apptrace_lock_t * mux )
{
esp_err_t ret = ESP_OK ;
uint32_t res = 0 ;
unsigned int irq_stat ;
res = portMUX_FREE_VAL ;
// first of all save a copy of IRQ status for this locker because uxPortCompareSet will unlock mux and tasks/ISRs
// from other core can overwrite mux->irq_stat
irq_stat = mux - > irq_stat ;
uxPortCompareSet ( & ESP_APPTRACE_MUX_GET ( mux ) - > mux , ( xPortGetCoreID ( ) < < portMUX_VAL_SHIFT ) | portMUX_MAGIC_VAL , & res ) ;
// enable local interrupts
portEXIT_CRITICAL_NESTED ( irq_stat ) ;
if ( ( ( res & portMUX_VAL_MASK ) > > portMUX_VAL_SHIFT ) = = xPortGetCoreID ( ) ) {
// nothing to do
} else if ( res = = portMUX_FREE_VAL ) {
ret = ESP_FAIL ; // should never get here
} else {
ret = ESP_FAIL ; // should never get here
}
return ret ;
}
# endif
static inline esp_err_t esp_apptrace_log_init ( )
{
# if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_SEM
s_log_lock = xSemaphoreCreateBinary ( ) ;
if ( ! s_log_lock ) {
ets_printf ( " %s: Failed to create print lock sem! " , TAG ) ;
return ESP_FAIL ;
}
xSemaphoreGive ( s_log_lock ) ;
# elif ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_MUX
esp_apptrace_mux_init ( & s_log_lock ) ;
# endif
return ESP_OK ;
}
static inline void esp_apptrace_log_cleanup ( )
{
# if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_SEM
vSemaphoreDelete ( s_log_lock ) ;
# endif
}
static inline int esp_apptrace_log_lock ( )
{
# if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_SEM
BaseType_t ret ;
if ( xPortInIsrContext ( ) ) {
ret = xSemaphoreTakeFromISR ( s_print_lock , NULL ) ;
} else {
ret = xSemaphoreTake ( s_print_lock , portMAX_DELAY ) ;
}
return ret ;
# elif ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_MUX
int ret = esp_apptrace_lock_take ( & s_log_lock , ESP_APPTRACE_TMO_INFINITE ) ;
return ret ;
# endif
return 0 ;
}
static inline void esp_apptrace_log_unlock ( )
{
# if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_SEM
if ( xPortInIsrContext ( ) ) {
xSemaphoreGiveFromISR ( s_log_lock , NULL ) ;
} else {
xSemaphoreGive ( s_log_lock ) ;
}
# elif ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_MUX
esp_apptrace_mux_give ( & s_log_lock ) ;
# endif
}
esp_err_t esp_apptrace_lock_init ( )
{
# if ESP_APPTRACE_USE_LOCK_SEM == 1
s_trace_buf . lock = xSemaphoreCreateBinary ( ) ;
if ( ! s_trace_buf . lock ) {
ESP_APPTRACE_LOGE ( " Failed to create lock! " ) ;
return ESP_FAIL ;
}
xSemaphoreGive ( s_trace_buf . lock ) ;
# else
esp_apptrace_mux_init ( & s_trace_buf . lock ) ;
# endif
return ESP_OK ;
}
esp_err_t esp_apptrace_lock_cleanup ( )
{
# if ESP_APPTRACE_USE_LOCK_SEM == 1
vSemaphoreDelete ( s_trace_buf . lock ) ;
# endif
return ESP_OK ;
}
esp_err_t esp_apptrace_lock ( uint32_t * tmo )
{
unsigned cur , elapsed , start = xthal_get_ccount ( ) ;
# if ESP_APPTRACE_USE_LOCK_SEM == 1
BaseType_t ret ;
if ( xPortInIsrContext ( ) ) {
ret = xSemaphoreTakeFromISR ( s_trace_buf . lock , NULL ) ;
} else {
ret = xSemaphoreTake ( s_trace_buf . lock , portTICK_PERIOD_MS * ( * tmo ) / 1000 ) ;
}
if ( ret ! = pdTRUE ) {
return ESP_FAIL ;
}
# else
esp_err_t ret = esp_apptrace_lock_take ( & s_trace_buf . lock , * tmo ) ;
if ( ret ! = ESP_OK ) {
return ESP_FAIL ;
}
# endif
// decrease tmo by actual waiting time
cur = xthal_get_ccount ( ) ;
if ( start < = cur ) {
elapsed = cur - start ;
} else {
elapsed = ULONG_MAX - start + cur ;
}
if ( ESP_APPTRACE_CPUTICKS2US ( elapsed ) > * tmo ) {
* tmo = 0 ;
} else {
* tmo - = ESP_APPTRACE_CPUTICKS2US ( elapsed ) ;
}
return ESP_OK ;
}
esp_err_t esp_apptrace_unlock ( )
{
esp_err_t ret = ESP_OK ;
# if ESP_APPTRACE_USE_LOCK_SEM == 1
if ( xPortInIsrContext ( ) ) {
xSemaphoreGiveFromISR ( s_trace_buf . lock , NULL ) ;
} else {
xSemaphoreGive ( s_trace_buf . lock ) ;
}
# else
ret = esp_apptrace_mux_give ( & s_trace_buf . lock ) ;
# endif
return ret ;
}
# if CONFIG_ESP32_APPTRACE_DEST_TRAX
static void esp_apptrace_trax_init ( )
{
// Stop trace, if any (on the current CPU)
eri_write ( ERI_TRAX_TRAXCTRL , TRAXCTRL_TRSTP ) ;
eri_write ( ERI_TRAX_TRAXCTRL , TRAXCTRL_TMEN ) ;
eri_write ( ESP_APPTRACE_TRAX_CTRL_REG , ESP_APPTRACE_TRAX_BLOCK_ID ( ESP_APPTRACE_TRAX_INBLOCK_START ) ) ;
eri_write ( ESP_APPTRACE_TRAX_STAT_REG , 0 ) ;
ESP_APPTRACE_LOGI ( " Initialized TRAX on CPU%d " , xPortGetCoreID ( ) ) ;
}
// assumed to be protected by caller from multi-core/thread access
static esp_err_t esp_apptrace_trax_block_switch ( )
{
int prev_block_num = s_trace_buf . trax . state . in_block % 2 ;
int new_block_num = prev_block_num ? ( 0 ) : ( 1 ) ;
int res = ESP_OK ;
extern uint32_t __esp_apptrace_trax_eri_updated ;
// indicate to host that we are about to update.
// this is used only to place CPU into streaming mode at tracing startup
// before starting streaming host can halt us after we read ESP_APPTRACE_TRAX_CTRL_REG and before we updated it
// HACK: in this case host will set breakpoint just after ESP_APPTRACE_TRAX_CTRL_REG update,
// here we set address to set bp at
// enter ERI update critical section
eri_write ( ESP_APPTRACE_TRAX_STAT_REG , ( uint32_t ) & __esp_apptrace_trax_eri_updated ) ;
uint32_t ctrl_reg = eri_read ( ESP_APPTRACE_TRAX_CTRL_REG ) ;
# if ESP_APPTRACE_DEBUG_STATS_ENABLE == 1
if ( s_trace_buf . state . stats . wr . hist_wr < ESP_APPTRACE_BUF_HISTORY_DEPTH ) {
esp_trace_buffer_wr_hitem_t * hi = ( esp_trace_buffer_wr_hitem_t * ) & s_trace_buf . state . stats . wr . hist [ s_trace_buf . state . stats . wr . hist_wr - 1 ] ;
hi - > eri_len [ 1 ] = ctrl_reg ;
}
# endif
uint32_t host_connected = ESP_APPTRACE_TRAX_HOST_CONNECT & ctrl_reg ;
if ( host_connected ) {
uint32_t acked_block = ESP_APPTRACE_TRAX_BLOCK_ID_GET ( ctrl_reg ) ;
uint32_t host_to_read = ESP_APPTRACE_TRAX_BLOCK_LEN_GET ( ctrl_reg ) ;
if ( host_to_read ! = 0 | | acked_block ! = ( s_trace_buf . trax . state . in_block & ESP_APPTRACE_TRAX_BLOCK_ID_MSK ) ) {
// ESP_APPTRACE_LOGE("HC[%d]: Can not switch %x %d %x %x/%lx", xPortGetCoreID(), ctrl_reg, host_to_read, acked_block,
// s_trace_buf.trax.state.in_block & ESP_APPTRACE_TRAX_BLOCK_ID_MSK, s_trace_buf.trax.state.in_block);
res = ESP_ERR_NO_MEM ;
goto _on_func_exit ;
}
}
s_trace_buf . trax . state . markers [ new_block_num ] = 0 ;
// switch to new block
s_trace_buf . trax . state . in_block + + ;
2017-05-08 08:03:04 -04:00
DPORT_WRITE_PERI_REG ( DPORT_TRACEMEM_MUX_MODE_REG , new_block_num ? TRACEMEM_MUX_BLK0_ONLY : TRACEMEM_MUX_BLK1_ONLY ) ;
2017-01-25 11:35:28 -05:00
eri_write ( ESP_APPTRACE_TRAX_CTRL_REG , ESP_APPTRACE_TRAX_BLOCK_ID ( s_trace_buf . trax . state . in_block ) |
host_connected | ESP_APPTRACE_TRAX_BLOCK_LEN ( s_trace_buf . trax . state . markers [ prev_block_num ] ) ) ;
_on_func_exit :
// exit ERI update critical section
eri_write ( ESP_APPTRACE_TRAX_STAT_REG , 0x0 ) ;
asm volatile (
" .global __esp_apptrace_trax_eri_updated \n "
" __esp_apptrace_trax_eri_updated: \n " ) ; // host will set bp here to resolve collision at streaming start
return res ;
}
static esp_err_t esp_apptrace_trax_block_switch_waitus ( uint32_t tmo )
{
int res ;
esp_apptrace_tmo_t sleeping_tmo ;
esp_apptrace_tmo_init ( & sleeping_tmo , tmo ) ;
while ( ( res = esp_apptrace_trax_block_switch ( ) ) ! = ESP_OK ) {
res = esp_apptrace_tmo_check ( & sleeping_tmo ) ;
if ( res ! = ESP_OK ) {
break ;
}
}
return res ;
}
static uint8_t * esp_apptrace_trax_get_buffer ( size_t size , uint32_t * tmo )
{
uint8_t * buf_ptr = NULL ;
volatile uint32_t * cur_block_marker ;
esp_apptrace_mem_block_t * cur_block ;
int res = esp_apptrace_lock ( tmo ) ;
if ( res ! = ESP_OK ) {
return NULL ;
}
# if ESP_APPTRACE_DEBUG_STATS_ENABLE == 1
esp_trace_buffer_wr_hitem_t * hi = NULL ;
if ( s_trace_buf . state . stats . wr . hist_wr < ESP_APPTRACE_BUF_HISTORY_DEPTH ) {
hi = ( esp_trace_buffer_wr_hitem_t * ) & s_trace_buf . state . stats . wr . hist [ s_trace_buf . state . stats . wr . hist_wr + + ] ;
hi - > hnd = * ( uint32_t * ) ( buf + 0 ) ;
hi - > ts = * ( uint32_t * ) ( buf + sizeof ( uint32_t ) ) ;
hi - > stamp = * ( buf + 2 * sizeof ( uint32_t ) ) ;
hi - > in_block = s_trace_buf . state . in_block ;
hi - > wr_err = 0 ;
hi - > eri_len [ 0 ] = eri_read ( ESP_APPTRACE_TRAX_CTRL_REG ) ;
if ( s_trace_buf . state . stats . wr . hist_wr = = ESP_APPTRACE_BUF_HISTORY_DEPTH ) {
s_trace_buf . state . stats . wr . hist_wr = 0 ;
}
if ( s_trace_buf . state . stats . wr . hist_wr = = s_trace_buf . state . stats . wr . hist_rd ) {
s_trace_buf . state . stats . wr . hist_rd + + ;
if ( s_trace_buf . state . stats . wr . hist_rd = = ESP_APPTRACE_BUF_HISTORY_DEPTH ) {
s_trace_buf . state . stats . wr . hist_rd = 0 ;
}
}
}
# endif
cur_block_marker = ESP_APPTRACE_TRAX_INBLOCK_MARKER_PTR_GET ( ) ;
cur_block = ESP_APPTRACE_TRAX_INBLOCK_GET ( ) ;
if ( * cur_block_marker + size + sizeof ( esp_tracedata_hdr_t ) > = cur_block - > sz ) {
// flush data, we can not unlock apptrace until we have buffer for all user data
// otherwise other tasks/ISRs can get control and write their data between chunks of this data
res = esp_apptrace_trax_block_switch_waitus ( /*size + sizeof(esp_tracedata_hdr_t),*/ * tmo ) ;
if ( res ! = ESP_OK ) {
if ( esp_apptrace_unlock ( ) ! = ESP_OK ) {
ESP_APPTRACE_LOGE ( " Failed to unlock apptrace data! " ) ;
// there is a bug, should never get here
}
return NULL ;
}
// we switched to new block, update TRAX block pointers
cur_block_marker = ESP_APPTRACE_TRAX_INBLOCK_MARKER_PTR_GET ( ) ;
cur_block = ESP_APPTRACE_TRAX_INBLOCK_GET ( ) ;
}
buf_ptr = cur_block - > start + * cur_block_marker ;
( ( esp_tracedata_hdr_t * ) buf_ptr ) - > block_sz = size ;
( ( esp_tracedata_hdr_t * ) buf_ptr ) - > wr_sz = 0 ;
* cur_block_marker + = size + sizeof ( esp_tracedata_hdr_t ) ;
// now we can safely unlock apptrace to allow other tasks/ISRs to get other buffers and write their data
if ( esp_apptrace_unlock ( ) ! = ESP_OK ) {
ESP_APPTRACE_LOGE ( " Failed to unlock apptrace data! " ) ;
// there is a bug, should never get here
}
return buf_ptr + sizeof ( esp_tracedata_hdr_t ) ;
}
static esp_err_t esp_apptrace_trax_put_buffer ( uint8_t * ptr , uint32_t * tmo )
{
int res = ESP_OK ;
esp_tracedata_hdr_t * hdr = ( esp_tracedata_hdr_t * ) ( ptr - sizeof ( esp_tracedata_hdr_t ) ) ;
// update written size
hdr - > wr_sz = hdr - > block_sz ;
// TODO: mark block as busy in order not to re-use it for other tracing calls until it is completely written
// TODO: avoid potential situation when all memory is consumed by low prio tasks which can not complete writing due to
// higher prio tasks and the latter can not allocate buffers at all
// this is abnormal situation can be detected on host which will receive only uncompleted buffers
// workaround: use own memcpy which will kick-off dead tracing calls
return res ;
}
static esp_err_t esp_apptrace_trax_flush ( uint32_t min_sz , uint32_t tmo )
{
volatile uint32_t * in_block_marker ;
int res = ESP_OK ;
in_block_marker = ESP_APPTRACE_TRAX_INBLOCK_MARKER_PTR_GET ( ) ;
if ( * in_block_marker > min_sz ) {
ESP_APPTRACE_LOGD ( " Wait until block switch for %u us " , tmo ) ;
res = esp_apptrace_trax_block_switch_waitus ( /*0 query any size,*/ tmo ) ;
if ( res ! = ESP_OK ) {
ESP_APPTRACE_LOGE ( " Failed to switch to another block " ) ;
return res ;
}
ESP_APPTRACE_LOGD ( " Flushed last block %u bytes " , * in_block_marker ) ;
* in_block_marker = 0 ;
}
return res ;
}
static esp_err_t esp_apptrace_trax_dest_init ( )
{
for ( int i = 0 ; i < ESP_APPTRACE_TRAX_BLOCKS_NUM ; i + + ) {
s_trace_buf . trax . blocks [ i ] . start = ( uint8_t * ) s_trax_blocks [ i ] ;
s_trace_buf . trax . blocks [ i ] . sz = ESP_APPTRACE_TRAX_BLOCK_SIZE ;
s_trace_buf . trax . state . markers [ i ] = 0 ;
}
s_trace_buf . trax . state . in_block = ESP_APPTRACE_TRAX_INBLOCK_START ;
2017-05-08 08:03:04 -04:00
DPORT_WRITE_PERI_REG ( DPORT_PRO_TRACEMEM_ENA_REG , DPORT_PRO_TRACEMEM_ENA_M ) ;
2017-01-25 11:35:28 -05:00
# if CONFIG_FREERTOS_UNICORE == 0
2017-05-08 08:03:04 -04:00
DPORT_WRITE_PERI_REG ( DPORT_APP_TRACEMEM_ENA_REG , DPORT_APP_TRACEMEM_ENA_M ) ;
2017-01-25 11:35:28 -05:00
# endif
// Expose block 1 to host, block 0 is current trace input buffer
2017-05-08 08:03:04 -04:00
DPORT_WRITE_PERI_REG ( DPORT_TRACEMEM_MUX_MODE_REG , TRACEMEM_MUX_BLK1_ONLY ) ;
2017-01-25 11:35:28 -05:00
return ESP_OK ;
}
# endif
esp_err_t esp_apptrace_init ( )
{
int res ;
if ( ! s_trace_buf . inited ) {
res = esp_apptrace_log_init ( ) ;
if ( res ! = ESP_OK ) {
ets_printf ( " %s: Failed to init log lock (%d)! " , TAG , res ) ;
return res ;
}
//memset(&s_trace_buf, 0, sizeof(s_trace_buf));
res = esp_apptrace_lock_init ( & s_trace_buf . lock ) ;
if ( res ! = ESP_OK ) {
ESP_APPTRACE_LOGE ( " Failed to init log lock (%d)! " , res ) ;
esp_apptrace_log_cleanup ( ) ;
return res ;
}
# if CONFIG_ESP32_APPTRACE_DEST_TRAX
res = esp_apptrace_trax_dest_init ( ) ;
if ( res ! = ESP_OK ) {
ESP_APPTRACE_LOGE ( " Failed to init TRAX dest data (%d)! " , res ) ;
esp_apptrace_lock_cleanup ( ) ;
esp_apptrace_log_cleanup ( ) ;
return res ;
}
# endif
}
# if CONFIG_ESP32_APPTRACE_DEST_TRAX
// init TRAX on this CPU
esp_apptrace_trax_init ( ) ;
# endif
s_trace_buf . inited | = 1 < < xPortGetCoreID ( ) ; // global and this CPU-specific data are inited
return ESP_OK ;
}
esp_err_t esp_apptrace_write ( esp_apptrace_dest_t dest , void * data , size_t size , uint32_t user_tmo )
{
uint8_t * ptr = NULL ;
uint32_t tmo = user_tmo ;
//TODO: use ptr to HW transport iface struct
uint8_t * ( * apptrace_get_buffer ) ( size_t , uint32_t * ) ;
esp_err_t ( * apptrace_put_buffer ) ( uint8_t * , uint32_t * ) ;
if ( dest = = ESP_APPTRACE_DEST_TRAX ) {
# if CONFIG_ESP32_APPTRACE_DEST_TRAX
apptrace_get_buffer = esp_apptrace_trax_get_buffer ;
apptrace_put_buffer = esp_apptrace_trax_put_buffer ;
# else
ESP_APPTRACE_LOGE ( " Application tracing via TRAX is disabled in menuconfig! " ) ;
return ESP_ERR_NOT_SUPPORTED ;
# endif
} else {
ESP_APPTRACE_LOGE ( " Trace destinations other then TRAX are not supported yet! " ) ;
return ESP_ERR_NOT_SUPPORTED ;
}
ptr = apptrace_get_buffer ( size , & tmo ) ;
if ( ptr = = NULL ) {
//ESP_APPTRACE_LOGE("Failed to get buffer!");
return ESP_ERR_NO_MEM ;
}
// actually can be suspended here by higher prio tasks/ISRs
//TODO: use own memcpy with dead trace calls kick-off algo, and tmo expiration check
memcpy ( ptr , data , size ) ;
// now indicate that this buffer is ready to be sent off to host
return apptrace_put_buffer ( ptr , & tmo ) ;
}
int esp_apptrace_vprintf_to ( esp_apptrace_dest_t dest , uint32_t user_tmo , const char * fmt , va_list ap )
{
uint16_t nargs = 0 ;
uint8_t * pout , * p = ( uint8_t * ) fmt ;
uint32_t tmo = user_tmo ;
//TODO: use ptr to HW transport iface struct
uint8_t * ( * apptrace_get_buffer ) ( size_t , uint32_t * ) ;
esp_err_t ( * apptrace_put_buffer ) ( uint8_t * , uint32_t * ) ;
if ( dest = = ESP_APPTRACE_DEST_TRAX ) {
# if CONFIG_ESP32_APPTRACE_DEST_TRAX
apptrace_get_buffer = esp_apptrace_trax_get_buffer ;
apptrace_put_buffer = esp_apptrace_trax_put_buffer ;
# else
ESP_APPTRACE_LOGE ( " Application tracing via TRAX is disabled in menuconfig! " ) ;
return ESP_ERR_NOT_SUPPORTED ;
# endif
} else {
ESP_APPTRACE_LOGE ( " Trace destinations other then TRAX are not supported yet! " ) ;
return ESP_ERR_NOT_SUPPORTED ;
}
// ESP_APPTRACE_LOGI("fmt %x", fmt);
while ( ( p = ( uint8_t * ) strchr ( ( char * ) p , ' % ' ) ) & & nargs < ESP_APPTRACE_MAX_VPRINTF_ARGS ) {
p + + ;
if ( * p ! = ' % ' & & * p ! = 0 ) {
nargs + + ;
}
}
// ESP_APPTRACE_LOGI("nargs = %d", nargs);
if ( p ) {
ESP_APPTRACE_LOGE ( " Failed to store all printf args! " ) ;
}
pout = apptrace_get_buffer ( 1 + sizeof ( char * ) + nargs * sizeof ( uint32_t ) , & tmo ) ;
if ( pout = = NULL ) {
ESP_APPTRACE_LOGE ( " Failed to get buffer! " ) ;
return - 1 ;
}
p = pout ;
* pout = nargs ;
pout + + ;
* ( const char * * ) pout = fmt ;
pout + = sizeof ( char * ) ;
while ( nargs - - > 0 ) {
uint32_t arg = va_arg ( ap , uint32_t ) ;
* ( uint32_t * ) pout = arg ;
pout + = sizeof ( uint32_t ) ;
// ESP_APPTRACE_LOGI("arg %x", arg);
}
int ret = apptrace_put_buffer ( p , & tmo ) ;
if ( ret ! = ESP_OK ) {
ESP_APPTRACE_LOGE ( " Failed to put printf buf (%d)! " , ret ) ;
return - 1 ;
}
return ( pout - p ) ;
}
int esp_apptrace_vprintf ( const char * fmt , va_list ap )
{
return esp_apptrace_vprintf_to ( ESP_APPTRACE_DEST_TRAX , /*ESP_APPTRACE_TMO_INFINITE*/ 0 , fmt , ap ) ;
}
uint8_t * esp_apptrace_buffer_get ( esp_apptrace_dest_t dest , size_t size , uint32_t user_tmo )
{
uint32_t tmo = user_tmo ;
//TODO: use ptr to HW transport iface struct
uint8_t * ( * apptrace_get_buffer ) ( size_t , uint32_t * ) ;
if ( dest = = ESP_APPTRACE_DEST_TRAX ) {
# if CONFIG_ESP32_APPTRACE_DEST_TRAX
apptrace_get_buffer = esp_apptrace_trax_get_buffer ;
# else
ESP_APPTRACE_LOGE ( " Application tracing via TRAX is disabled in menuconfig! " ) ;
return NULL ;
# endif
} else {
ESP_APPTRACE_LOGE ( " Trace destinations other then TRAX are not supported yet! " ) ;
return NULL ;
}
return apptrace_get_buffer ( size , & tmo ) ;
}
esp_err_t esp_apptrace_buffer_put ( esp_apptrace_dest_t dest , uint8_t * ptr , uint32_t user_tmo )
{
uint32_t tmo = user_tmo ;
//TODO: use ptr to HW transport iface struct
esp_err_t ( * apptrace_put_buffer ) ( uint8_t * , uint32_t * ) ;
if ( dest = = ESP_APPTRACE_DEST_TRAX ) {
# if CONFIG_ESP32_APPTRACE_DEST_TRAX
apptrace_put_buffer = esp_apptrace_trax_put_buffer ;
# else
ESP_APPTRACE_LOGE ( " Application tracing via TRAX is disabled in menuconfig! " ) ;
return ESP_ERR_NOT_SUPPORTED ;
# endif
} else {
ESP_APPTRACE_LOGE ( " Trace destinations other then TRAX are not supported yet! " ) ;
return ESP_ERR_NOT_SUPPORTED ;
}
return apptrace_put_buffer ( ptr , & tmo ) ;
}
esp_err_t esp_apptrace_flush_nolock ( esp_apptrace_dest_t dest , uint32_t min_sz , uint32_t tmo )
{
//TODO: use ptr to HW transport iface struct
esp_err_t ( * apptrace_flush ) ( uint32_t , uint32_t ) ;
if ( dest = = ESP_APPTRACE_DEST_TRAX ) {
# if CONFIG_ESP32_APPTRACE_DEST_TRAX
apptrace_flush = esp_apptrace_trax_flush ;
# else
ESP_APPTRACE_LOGE ( " Application tracing via TRAX is disabled in menuconfig! " ) ;
return ESP_ERR_NOT_SUPPORTED ;
# endif
} else {
ESP_APPTRACE_LOGE ( " Trace destinations other then TRAX are not supported yet! " ) ;
return ESP_ERR_NOT_SUPPORTED ;
}
return apptrace_flush ( min_sz , tmo ) ;
}
esp_err_t esp_apptrace_flush ( esp_apptrace_dest_t dest , uint32_t tmo )
{
int res ;
res = esp_apptrace_lock ( & tmo ) ;
if ( res ! = ESP_OK ) {
ESP_APPTRACE_LOGE ( " Failed to lock apptrace data (%d)! " , res ) ;
return res ;
}
res = esp_apptrace_flush_nolock ( dest , 0 , tmo ) ;
if ( res ! = ESP_OK ) {
ESP_APPTRACE_LOGE ( " Failed to fluch apptrace data (%d)! " , res ) ;
}
if ( esp_apptrace_unlock ( ) ! = ESP_OK ) {
ESP_APPTRACE_LOGE ( " Failed to unlock apptrace data (%d)! " , res ) ;
}
return res ;
}
# if ESP_APPTRACE_DEBUG_STATS_ENABLE == 1
void esp_apptrace_print_stats ( )
{
uint32_t i ;
uint32_t tmo = ESP_APPTRACE_TMO_INFINITE ;
esp_apptrace_lock ( & tmo ) ;
for ( i = s_trace_buf . state . stats . wr . hist_rd ; ( i < s_trace_buf . state . stats . wr . hist_wr ) & & ( i < ESP_APPTRACE_BUF_HISTORY_DEPTH ) ; i + + ) {
esp_trace_buffer_wr_hitem_t * hi = ( esp_trace_buffer_wr_hitem_t * ) & s_trace_buf . state . stats . wr . hist [ i ] ;
ESP_APPTRACE_LOGO ( " hist[%u] = {%x, %x} " , i , hi - > hnd , hi - > ts ) ;
}
if ( i = = ESP_APPTRACE_BUF_HISTORY_DEPTH ) {
for ( i = 0 ; i < s_trace_buf . state . stats . wr . hist_wr ; i + + ) {
esp_trace_buffer_wr_hitem_t * hi = ( esp_trace_buffer_wr_hitem_t * ) & s_trace_buf . state . stats . wr . hist [ i ] ;
ESP_APPTRACE_LOGO ( " hist[%u] = {%x, %x} " , i , hi - > hnd , hi - > ts ) ;
}
}
esp_apptrace_unlock ( ) ;
}
# endif
# endif