113 lines
4.8 KiB
Markdown
Raw Normal View History

| Supported Targets | ESP32 | ESP32-S3 |
| ----------------- | ----- | -------- |
# MCPWM Brushed DC Motor Example
(See the README.md file in the upper level 'examples' directory for more information about examples.)
This example mainly illustrates how to drive a brushed DC motor by generating two specific PWM signals. However the PWM signals from ESP32 can't drive motors directly as the motor usually consumes high current. So an H-bridge like [DRV8848](https://www.ti.com/product/DRV8848) should be used to provide the needed voltage and current for brushed DC motor. To measure the speed of motor, a photoelectric encoder is used to generate the "speed feedback" signals (e.g. a pair of quadrature signal). The example uses a simple PID control approach to keep the motor speed in a constant speed. The example provides a console command line interface for user to update the PID parameters according to actual situation.
## How to Use Example
Before project configuration and build, be sure to set the correct chip target using `idf.py set-target <chip_name>`.
### Hardware Required
* A development board with any Espressif SoC which features MCPWM and PCNT peripheral (e.g., ESP32-DevKitC, ESP-WROVER-KIT, etc.)
* A USB cable for Power supply and programming
* A separate 12V power supply for brushed DC motor and H-bridge (the voltage depends on the motor model used in the example)
* A motor driving board to transfer pwm signal into driving signal
* A brushed DC motor, e.g. [25GA370](http://www.tronsunmotor.com/data/upload/file/201807/e03b98802b5c5390d6570939def525ba.pdf)
* A quadrature encoder to detect speed
Connection :
```
Power(12V)
|
v
+----------------+ +--------------------+
| | | H-Bridge |
| GND +<----------->| GND | +--------------+
| | | | | |
| GENA_GPIO_NUM +----PWM0A--->| IN_A OUT_A +----->| Brushed |
| | | | | DC |
| GENB_GPIO_NUM +----PWM0B--->| IN_B OUT_B +----->| Motor |
| | | | | |
| ESP | +--------------------+ | |
| | +------+-------+
| | |
| | +--------------------+ |
| VCC3.3 +------------>| VCC Encoder | |
| | | | |
| GND +<----------->| |<------------+
| | | |
|PHASEA_GPIO_NUM |<---PhaseA---+ C1 |
| | | |
|PHASEB_GPIO_NUM |<---PhaseB---+ C2 |
| | | |
+----------------+ +--------------------+
```
### Build and Flash
Run `idf.py -p PORT flash monitor` to build, flash and monitor the project.
(To exit the serial monitor, type ``Ctrl-]``.)
See the [Getting Started Guide](https://idf.espressif.com/) for full steps to configure and use ESP-IDF to build projects.
## Example Output
Run the example, you will see the following output log:
```
I (0) cpu_start: Starting scheduler on APP CPU.
configure mcpwm gpio
init mcpwm driver
init and start rotary encoder
init PID control block
init motor control timer
D (561) gptimer: new group (0) @0x3fce0a24
D (561) gptimer: new gptimer (0,0) at 0x3fce0964, resolution=1000000Hz
create motor control task
start motor control timer
D (571) gptimer: install interrupt service for timer (0,0)
install console command line
Type 'help' to get the list of commands.
Use UP/DOWN arrows to navigate through command history.
Press TAB when typing command name to auto-complete.
dc-motor>
dc-motor> help
help
Print the list of registered commands
pid [-p <kp>] [-i <ki>] [-d <kd>]
Set PID parameters
-p <kp> Set Kp value of PID
-i <ki> Set Ki value of PID
-d <kd> Set Kd value of PID
```
### Set PID parameters
* Command: `pid -p <double> -i <double> -d <double> -t <loc/inc>`
* 'p' - proportion value
* 'i' - integral value
* 'd' - differential value
* 't' - PID calculation type (locational or incremental).
```bash
mcpwm-motor> pid -p 0.8 -i 0.02 -d 0.1 -t inc
pid: kp = 0.800
pid: ki = 0.020
pid: kd = 0.100
pid: type = increment
```
## Troubleshooting
* Make sure your ESP board and H-bridge module have been connected to the same GND panel.
For any technical queries, please open an [issue](https://github.com/espressif/esp-idf/issues) on GitHub. We will get back to you soon.