2022-07-15 00:52:44 -04:00
/*
* SPDX - FileCopyrightText : 2016 - 2022 Espressif Systems ( Shanghai ) CO LTD
*
* SPDX - License - Identifier : Apache - 2.0
*/
# include <esp_types.h>
# include <stdlib.h>
# include <ctype.h>
# include <string.h>
# include "sdkconfig.h"
# include "esp_intr_alloc.h"
# include "esp_log.h"
# include "esp_pm.h"
# include "esp_check.h"
# include "esp_heap_caps.h"
# include "freertos/FreeRTOS.h"
# include "freertos/semphr.h"
# include "freertos/timers.h"
# include "freertos/ringbuf.h"
# include "esp_private/periph_ctrl.h"
# include "esp_private/adc_private.h"
2022-07-20 23:47:09 -04:00
# include "esp_private/adc_share_hw_ctrl.h"
2022-07-15 00:52:44 -04:00
# include "driver/gpio.h"
# include "esp_adc/adc_continuous.h"
# include "hal/adc_types.h"
# include "hal/adc_hal.h"
# include "hal/dma_types.h"
2022-07-21 07:14:41 -04:00
# include "esp_memory_utils.h"
2022-07-15 00:52:44 -04:00
//For DMA
# if SOC_GDMA_SUPPORTED
# include "esp_private/gdma.h"
# elif CONFIG_IDF_TARGET_ESP32S2
# include "hal/spi_types.h"
# include "esp_private/spi_common_internal.h"
# elif CONFIG_IDF_TARGET_ESP32
# include "hal/i2s_types.h"
# include "driver/i2s_types.h"
# include "soc/i2s_periph.h"
# include "esp_private/i2s_platform.h"
# endif
static const char * ADC_TAG = " adc_continuous " ;
# define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel])
extern portMUX_TYPE rtc_spinlock ; //TODO: Will be placed in the appropriate position after the rtc module is finished.
# define ADC_ENTER_CRITICAL() portENTER_CRITICAL(&rtc_spinlock)
# define ADC_EXIT_CRITICAL() portEXIT_CRITICAL(&rtc_spinlock)
# define INTERNAL_BUF_NUM 5
typedef enum {
ADC_FSM_INIT ,
ADC_FSM_STARTED ,
} adc_fsm_t ;
/*---------------------------------------------------------------
Continuous Mode Driverr Context
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
typedef struct adc_continuous_ctx_t {
uint8_t * rx_dma_buf ; //dma buffer
adc_hal_dma_ctx_t hal ; //hal context
# if SOC_GDMA_SUPPORTED
gdma_channel_handle_t rx_dma_channel ; //dma rx channel handle
# elif CONFIG_IDF_TARGET_ESP32S2
spi_host_device_t spi_host ; //ADC uses this SPI DMA
# elif CONFIG_IDF_TARGET_ESP32
i2s_port_t i2s_host ; //ADC uses this I2S DMA
# endif
intr_handle_t dma_intr_hdl ; //DMA Interrupt handler
RingbufHandle_t ringbuf_hdl ; //RX ringbuffer handler
void * ringbuf_storage ; //Ringbuffer storage buffer
void * ringbuf_struct ; //Ringbuffer structure buffer
intptr_t rx_eof_desc_addr ; //eof descriptor address of RX channel
adc_fsm_t fsm ; //ADC continuous mode driver internal states
bool use_adc1 ; //1: ADC unit1 will be used; 0: ADC unit1 won't be used.
bool use_adc2 ; //1: ADC unit2 will be used; 0: ADC unit2 won't be used. This determines whether to acquire sar_adc2_mutex lock or not.
adc_atten_t adc1_atten ; //Attenuation for ADC1. On this chip each ADC can only support one attenuation.
adc_atten_t adc2_atten ; //Attenuation for ADC2. On this chip each ADC can only support one attenuation.
adc_hal_digi_ctrlr_cfg_t hal_digi_ctrlr_cfg ; //Hal digital controller configuration
adc_continuous_evt_cbs_t cbs ; //Callbacks
void * user_data ; //User context
esp_pm_lock_handle_t pm_lock ; //For power management
} adc_continuous_ctx_t ;
# ifdef CONFIG_PM_ENABLE
//Only for deprecated API
extern esp_pm_lock_handle_t adc_digi_arbiter_lock ;
# endif //CONFIG_PM_ENABLE
/*---------------------------------------------------------------
ADC Continuous Read Mode ( via DMA )
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
//Function to address transaction
static bool s_adc_dma_intr ( adc_continuous_ctx_t * adc_digi_ctx ) ;
# if SOC_GDMA_SUPPORTED
static bool adc_dma_in_suc_eof_callback ( gdma_channel_handle_t dma_chan , gdma_event_data_t * event_data , void * user_data ) ;
# else
static void adc_dma_intr_handler ( void * arg ) ;
# endif
static int8_t adc_digi_get_io_num ( adc_unit_t adc_unit , uint8_t adc_channel )
{
assert ( adc_unit < = SOC_ADC_PERIPH_NUM ) ;
uint8_t adc_n = ( adc_unit = = ADC_UNIT_1 ) ? 0 : 1 ;
return adc_channel_io_map [ adc_n ] [ adc_channel ] ;
}
static esp_err_t adc_digi_gpio_init ( adc_unit_t adc_unit , uint16_t channel_mask )
{
esp_err_t ret = ESP_OK ;
uint64_t gpio_mask = 0 ;
uint32_t n = 0 ;
int8_t io = 0 ;
while ( channel_mask ) {
if ( channel_mask & 0x1 ) {
io = adc_digi_get_io_num ( adc_unit , n ) ;
if ( io < 0 ) {
return ESP_ERR_INVALID_ARG ;
}
gpio_mask | = BIT64 ( io ) ;
}
channel_mask = channel_mask > > 1 ;
n + + ;
}
gpio_config_t cfg = {
. pin_bit_mask = gpio_mask ,
. mode = GPIO_MODE_DISABLE ,
} ;
ret = gpio_config ( & cfg ) ;
return ret ;
}
esp_err_t adc_continuous_new_handle ( const adc_continuous_handle_cfg_t * hdl_config , adc_continuous_handle_t * ret_handle )
{
esp_err_t ret = ESP_OK ;
ESP_RETURN_ON_FALSE ( ( hdl_config - > conv_frame_size % SOC_ADC_DIGI_DATA_BYTES_PER_CONV = = 0 ) , ESP_ERR_INVALID_ARG , ADC_TAG , " conv_frame_size should be in multiples of `SOC_ADC_DIGI_DATA_BYTES_PER_CONV` " ) ;
adc_continuous_ctx_t * adc_ctx = heap_caps_calloc ( 1 , sizeof ( adc_continuous_ctx_t ) , MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT ) ;
if ( adc_ctx = = NULL ) {
ret = ESP_ERR_NO_MEM ;
goto cleanup ;
}
//ringbuffer storage/struct buffer
adc_ctx - > ringbuf_storage = heap_caps_calloc ( 1 , hdl_config - > max_store_buf_size , MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT ) ;
adc_ctx - > ringbuf_struct = heap_caps_calloc ( 1 , sizeof ( StaticRingbuffer_t ) , MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT ) ;
if ( ! adc_ctx - > ringbuf_storage | | ! adc_ctx - > ringbuf_struct ) {
ret = ESP_ERR_NO_MEM ;
goto cleanup ;
}
//ringbuffer
adc_ctx - > ringbuf_hdl = xRingbufferCreateStatic ( hdl_config - > max_store_buf_size , RINGBUF_TYPE_BYTEBUF , adc_ctx - > ringbuf_storage , adc_ctx - > ringbuf_struct ) ;
if ( ! adc_ctx - > ringbuf_hdl ) {
ret = ESP_ERR_NO_MEM ;
goto cleanup ;
}
//malloc internal buffer used by DMA
adc_ctx - > rx_dma_buf = heap_caps_calloc ( 1 , hdl_config - > conv_frame_size * INTERNAL_BUF_NUM , MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA ) ;
if ( ! adc_ctx - > rx_dma_buf ) {
ret = ESP_ERR_NO_MEM ;
goto cleanup ;
}
//malloc dma descriptor
adc_ctx - > hal . rx_desc = heap_caps_calloc ( 1 , ( sizeof ( dma_descriptor_t ) ) * INTERNAL_BUF_NUM , MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA ) ;
if ( ! adc_ctx - > hal . rx_desc ) {
ret = ESP_ERR_NO_MEM ;
goto cleanup ;
}
//malloc pattern table
adc_ctx - > hal_digi_ctrlr_cfg . adc_pattern = calloc ( 1 , SOC_ADC_PATT_LEN_MAX * sizeof ( adc_digi_pattern_config_t ) ) ;
if ( ! adc_ctx - > hal_digi_ctrlr_cfg . adc_pattern ) {
ret = ESP_ERR_NO_MEM ;
goto cleanup ;
}
# if CONFIG_PM_ENABLE
ret = esp_pm_lock_create ( ESP_PM_APB_FREQ_MAX , 0 , " adc_dma " , & adc_ctx - > pm_lock ) ;
if ( ret ! = ESP_OK ) {
goto cleanup ;
}
# endif //CONFIG_PM_ENABLE
# if SOC_GDMA_SUPPORTED
//alloc rx gdma channel
gdma_channel_alloc_config_t rx_alloc_config = {
. direction = GDMA_CHANNEL_DIRECTION_RX ,
} ;
ret = gdma_new_channel ( & rx_alloc_config , & adc_ctx - > rx_dma_channel ) ;
if ( ret ! = ESP_OK ) {
goto cleanup ;
}
gdma_connect ( adc_ctx - > rx_dma_channel , GDMA_MAKE_TRIGGER ( GDMA_TRIG_PERIPH_ADC , 0 ) ) ;
gdma_strategy_config_t strategy_config = {
. auto_update_desc = true ,
. owner_check = true
} ;
gdma_apply_strategy ( adc_ctx - > rx_dma_channel , & strategy_config ) ;
gdma_rx_event_callbacks_t cbs = {
. on_recv_eof = adc_dma_in_suc_eof_callback
} ;
gdma_register_rx_event_callbacks ( adc_ctx - > rx_dma_channel , & cbs , adc_ctx ) ;
int dma_chan ;
gdma_get_channel_id ( adc_ctx - > rx_dma_channel , & dma_chan ) ;
# elif CONFIG_IDF_TARGET_ESP32S2
//ADC utilises SPI3 DMA on ESP32S2
bool spi_success = false ;
uint32_t dma_chan = 0 ;
spi_success = spicommon_periph_claim ( SPI3_HOST , " adc " ) ;
ret = spicommon_dma_chan_alloc ( SPI3_HOST , SPI_DMA_CH_AUTO , & dma_chan , & dma_chan ) ;
if ( ret = = ESP_OK ) {
adc_ctx - > spi_host = SPI3_HOST ;
}
if ( ! spi_success | | ( adc_ctx - > spi_host ! = SPI3_HOST ) ) {
goto cleanup ;
}
ret = esp_intr_alloc ( spicommon_irqdma_source_for_host ( adc_ctx - > spi_host ) , ESP_INTR_FLAG_IRAM , adc_dma_intr_handler ,
( void * ) adc_ctx , & adc_ctx - > dma_intr_hdl ) ;
if ( ret ! = ESP_OK ) {
goto cleanup ;
}
# elif CONFIG_IDF_TARGET_ESP32
//ADC utilises I2S0 DMA on ESP32
uint32_t dma_chan = 0 ;
ret = i2s_platform_acquire_occupation ( I2S_NUM_0 , " adc " ) ;
if ( ret ! = ESP_OK ) {
ret = ESP_ERR_NOT_FOUND ;
goto cleanup ;
}
adc_ctx - > i2s_host = I2S_NUM_0 ;
ret = esp_intr_alloc ( i2s_periph_signal [ adc_ctx - > i2s_host ] . irq , ESP_INTR_FLAG_IRAM , adc_dma_intr_handler ,
( void * ) adc_ctx , & adc_ctx - > dma_intr_hdl ) ;
if ( ret ! = ESP_OK ) {
goto cleanup ;
}
# endif
adc_hal_dma_config_t config = {
# if SOC_GDMA_SUPPORTED
. dev = ( void * ) GDMA_LL_GET_HW ( 0 ) ,
# elif CONFIG_IDF_TARGET_ESP32S2
. dev = ( void * ) SPI_LL_GET_HW ( adc_ctx - > spi_host ) ,
# elif CONFIG_IDF_TARGET_ESP32
. dev = ( void * ) I2S_LL_GET_HW ( adc_ctx - > i2s_host ) ,
# endif
. desc_max_num = INTERNAL_BUF_NUM ,
. dma_chan = dma_chan ,
. eof_num = hdl_config - > conv_frame_size / SOC_ADC_DIGI_DATA_BYTES_PER_CONV
} ;
adc_hal_dma_ctx_config ( & adc_ctx - > hal , & config ) ;
adc_ctx - > fsm = ADC_FSM_INIT ;
* ret_handle = adc_ctx ;
//enable ADC digital part
periph_module_enable ( PERIPH_SARADC_MODULE ) ;
//reset ADC digital part
periph_module_reset ( PERIPH_SARADC_MODULE ) ;
# if SOC_ADC_CALIBRATION_V1_SUPPORTED
adc_hal_calibration_init ( ADC_UNIT_1 ) ;
adc_hal_calibration_init ( ADC_UNIT_2 ) ;
# endif //#if SOC_ADC_CALIBRATION_V1_SUPPORTED
return ret ;
cleanup :
adc_continuous_deinit ( adc_ctx ) ;
return ret ;
}
# if SOC_GDMA_SUPPORTED
static IRAM_ATTR bool adc_dma_in_suc_eof_callback ( gdma_channel_handle_t dma_chan , gdma_event_data_t * event_data , void * user_data )
{
assert ( event_data ) ;
adc_continuous_ctx_t * ctx = ( adc_continuous_ctx_t * ) user_data ;
ctx - > rx_eof_desc_addr = event_data - > rx_eof_desc_addr ;
return s_adc_dma_intr ( user_data ) ;
}
# else
static IRAM_ATTR void adc_dma_intr_handler ( void * arg )
{
adc_continuous_ctx_t * ctx = ( adc_continuous_ctx_t * ) arg ;
bool need_yield = false ;
bool conversion_finish = adc_hal_check_event ( & ctx - > hal , ADC_HAL_DMA_INTR_MASK ) ;
if ( conversion_finish ) {
adc_hal_digi_clr_intr ( & ctx - > hal , ADC_HAL_DMA_INTR_MASK ) ;
intptr_t desc_addr = adc_hal_get_desc_addr ( & ctx - > hal ) ;
ctx - > rx_eof_desc_addr = desc_addr ;
need_yield = s_adc_dma_intr ( ctx ) ;
}
if ( need_yield ) {
portYIELD_FROM_ISR ( ) ;
}
}
# endif
static IRAM_ATTR bool s_adc_dma_intr ( adc_continuous_ctx_t * adc_digi_ctx )
{
portBASE_TYPE taskAwoken = 0 ;
bool need_yield = false ;
BaseType_t ret ;
adc_hal_dma_desc_status_t status = false ;
dma_descriptor_t * current_desc = NULL ;
while ( 1 ) {
status = adc_hal_get_reading_result ( & adc_digi_ctx - > hal , adc_digi_ctx - > rx_eof_desc_addr , & current_desc ) ;
if ( status ! = ADC_HAL_DMA_DESC_VALID ) {
break ;
}
ret = xRingbufferSendFromISR ( adc_digi_ctx - > ringbuf_hdl , current_desc - > buffer , current_desc - > dw0 . length , & taskAwoken ) ;
need_yield | = ( taskAwoken = = pdTRUE ) ;
if ( adc_digi_ctx - > cbs . on_conv_done ) {
adc_continuous_evt_data_t edata = {
. conv_frame_buffer = current_desc - > buffer ,
. size = current_desc - > dw0 . length ,
} ;
if ( adc_digi_ctx - > cbs . on_conv_done ( adc_digi_ctx , & edata , adc_digi_ctx - > user_data ) ) {
need_yield | = true ;
}
}
if ( ret = = pdFALSE ) {
//ringbuffer overflow
if ( adc_digi_ctx - > cbs . on_pool_ovf ) {
adc_continuous_evt_data_t edata = { } ;
2022-07-19 23:29:23 -04:00
if ( adc_digi_ctx - > cbs . on_pool_ovf ( adc_digi_ctx , & edata , adc_digi_ctx - > user_data ) ) {
2022-07-15 00:52:44 -04:00
need_yield | = true ;
}
}
}
}
if ( status = = ADC_HAL_DMA_DESC_NULL ) {
//start next turns of dma operation
adc_hal_digi_start ( & adc_digi_ctx - > hal , adc_digi_ctx - > rx_dma_buf ) ;
}
return need_yield ;
}
esp_err_t adc_continuous_start ( adc_continuous_handle_t handle )
{
ESP_RETURN_ON_FALSE ( handle , ESP_ERR_INVALID_STATE , ADC_TAG , " The driver isn't initialised " ) ;
ESP_RETURN_ON_FALSE ( handle - > fsm = = ADC_FSM_INIT , ESP_ERR_INVALID_STATE , ADC_TAG , " ADC continuous mode isn't in the init state, it's started already " ) ;
if ( handle - > pm_lock ) {
ESP_RETURN_ON_ERROR ( esp_pm_lock_acquire ( handle - > pm_lock ) , ADC_TAG , " acquire pm_lock failed " ) ;
}
handle - > fsm = ADC_FSM_STARTED ;
adc_power_acquire ( ) ;
//reset flags
if ( handle - > use_adc1 ) {
adc_lock_acquire ( ADC_UNIT_1 ) ;
}
if ( handle - > use_adc2 ) {
adc_lock_acquire ( ADC_UNIT_2 ) ;
}
# if SOC_ADC_CALIBRATION_V1_SUPPORTED
if ( handle - > use_adc1 ) {
adc_set_hw_calibration_code ( ADC_UNIT_1 , handle - > adc1_atten ) ;
}
if ( handle - > use_adc2 ) {
adc_set_hw_calibration_code ( ADC_UNIT_2 , handle - > adc2_atten ) ;
}
# endif //#if SOC_ADC_CALIBRATION_V1_SUPPORTED
# if SOC_ADC_ARBITER_SUPPORTED
if ( handle - > use_adc2 ) {
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT ( ) ;
adc_hal_arbiter_config ( & config ) ;
}
# endif //#if SOC_ADC_ARBITER_SUPPORTED
if ( handle - > use_adc1 ) {
adc_hal_set_controller ( ADC_UNIT_1 , ADC_HAL_CONTINUOUS_READ_MODE ) ;
}
if ( handle - > use_adc2 ) {
adc_hal_set_controller ( ADC_UNIT_2 , ADC_HAL_CONTINUOUS_READ_MODE ) ;
}
adc_hal_digi_init ( & handle - > hal ) ;
adc_hal_digi_controller_config ( & handle - > hal , & handle - > hal_digi_ctrlr_cfg ) ;
//start conversion
adc_hal_digi_start ( & handle - > hal , handle - > rx_dma_buf ) ;
return ESP_OK ;
}
esp_err_t adc_continuous_stop ( adc_continuous_handle_t handle )
{
ESP_RETURN_ON_FALSE ( handle , ESP_ERR_INVALID_STATE , ADC_TAG , " The driver isn't initialised " ) ;
ESP_RETURN_ON_FALSE ( handle - > fsm = = ADC_FSM_STARTED , ESP_ERR_INVALID_STATE , ADC_TAG , " The driver is already stopped " ) ;
handle - > fsm = ADC_FSM_INIT ;
//disable the in suc eof intrrupt
adc_hal_digi_dis_intr ( & handle - > hal , ADC_HAL_DMA_INTR_MASK ) ;
//clear the in suc eof interrupt
adc_hal_digi_clr_intr ( & handle - > hal , ADC_HAL_DMA_INTR_MASK ) ;
//stop ADC
adc_hal_digi_stop ( & handle - > hal ) ;
adc_hal_digi_deinit ( & handle - > hal ) ;
# if CONFIG_PM_ENABLE
if ( handle - > pm_lock ) {
esp_pm_lock_release ( handle - > pm_lock ) ;
}
# endif //CONFIG_PM_ENABLE
if ( handle - > use_adc2 ) {
adc_lock_release ( ADC_UNIT_2 ) ;
}
if ( handle - > use_adc1 ) {
adc_lock_release ( ADC_UNIT_1 ) ;
}
adc_power_release ( ) ;
//release power manager lock
if ( handle - > pm_lock ) {
ESP_RETURN_ON_ERROR ( esp_pm_lock_release ( handle - > pm_lock ) , ADC_TAG , " release pm_lock failed " ) ;
}
return ESP_OK ;
}
esp_err_t adc_continuous_read ( adc_continuous_handle_t handle , uint8_t * buf , uint32_t length_max , uint32_t * out_length , uint32_t timeout_ms )
{
ESP_RETURN_ON_FALSE ( handle , ESP_ERR_INVALID_STATE , ADC_TAG , " The driver isn't initialised " ) ;
ESP_RETURN_ON_FALSE ( handle - > fsm = = ADC_FSM_STARTED , ESP_ERR_INVALID_STATE , ADC_TAG , " The driver is already stopped " ) ;
TickType_t ticks_to_wait ;
esp_err_t ret = ESP_OK ;
uint8_t * data = NULL ;
size_t size = 0 ;
ticks_to_wait = timeout_ms / portTICK_PERIOD_MS ;
if ( timeout_ms = = ADC_MAX_DELAY ) {
ticks_to_wait = portMAX_DELAY ;
}
data = xRingbufferReceiveUpTo ( handle - > ringbuf_hdl , & size , ticks_to_wait , length_max ) ;
if ( ! data ) {
ESP_LOGV ( ADC_TAG , " No data, increase timeout " ) ;
ret = ESP_ERR_TIMEOUT ;
* out_length = 0 ;
return ret ;
}
memcpy ( buf , data , size ) ;
vRingbufferReturnItem ( handle - > ringbuf_hdl , data ) ;
assert ( ( size % 4 ) = = 0 ) ;
* out_length = size ;
return ret ;
}
esp_err_t adc_continuous_deinit ( adc_continuous_handle_t handle )
{
ESP_RETURN_ON_FALSE ( handle , ESP_ERR_INVALID_STATE , ADC_TAG , " The driver isn't initialised " ) ;
ESP_RETURN_ON_FALSE ( handle - > fsm = = ADC_FSM_INIT , ESP_ERR_INVALID_STATE , ADC_TAG , " The driver is still running " ) ;
if ( handle - > ringbuf_hdl ) {
vRingbufferDelete ( handle - > ringbuf_hdl ) ;
handle - > ringbuf_hdl = NULL ;
free ( handle - > ringbuf_storage ) ;
free ( handle - > ringbuf_struct ) ;
}
# if CONFIG_PM_ENABLE
if ( handle - > pm_lock ) {
esp_pm_lock_delete ( handle - > pm_lock ) ;
}
# endif //CONFIG_PM_ENABLE
free ( handle - > rx_dma_buf ) ;
free ( handle - > hal . rx_desc ) ;
free ( handle - > hal_digi_ctrlr_cfg . adc_pattern ) ;
# if SOC_GDMA_SUPPORTED
gdma_disconnect ( handle - > rx_dma_channel ) ;
gdma_del_channel ( handle - > rx_dma_channel ) ;
# elif CONFIG_IDF_TARGET_ESP32S2
esp_intr_free ( handle - > dma_intr_hdl ) ;
spicommon_dma_chan_free ( handle - > spi_host ) ;
spicommon_periph_free ( handle - > spi_host ) ;
# elif CONFIG_IDF_TARGET_ESP32
esp_intr_free ( handle - > dma_intr_hdl ) ;
i2s_platform_release_occupation ( handle - > i2s_host ) ;
# endif
free ( handle ) ;
handle = NULL ;
periph_module_disable ( PERIPH_SARADC_MODULE ) ;
return ESP_OK ;
}
/*---------------------------------------------------------------
Digital controller setting
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
esp_err_t adc_continuous_config ( adc_continuous_handle_t handle , const adc_continuous_config_t * config )
{
ESP_RETURN_ON_FALSE ( handle , ESP_ERR_INVALID_STATE , ADC_TAG , " The driver isn't initialised " ) ;
ESP_RETURN_ON_FALSE ( handle - > fsm = = ADC_FSM_INIT , ESP_ERR_INVALID_STATE , ADC_TAG , " ADC continuous mode isn't in the init state, it's started already " ) ;
//Pattern related check
ESP_RETURN_ON_FALSE ( config - > pattern_num < = SOC_ADC_PATT_LEN_MAX , ESP_ERR_INVALID_ARG , ADC_TAG , " Max pattern num is %d " , SOC_ADC_PATT_LEN_MAX ) ;
# if CONFIG_IDF_TARGET_ESP32
for ( int i = 0 ; i < config - > pattern_num ; i + + ) {
ESP_RETURN_ON_FALSE ( ( config - > adc_pattern [ i ] . bit_width > = SOC_ADC_DIGI_MIN_BITWIDTH & & config - > adc_pattern - > bit_width < = SOC_ADC_DIGI_MAX_BITWIDTH ) , ESP_ERR_INVALID_ARG , ADC_TAG , " ADC bitwidth not supported " ) ;
ESP_RETURN_ON_FALSE ( config - > adc_pattern [ i ] . unit = = 0 , ESP_ERR_INVALID_ARG , ADC_TAG , " Only support using ADC1 DMA mode " ) ;
}
# else
for ( int i = 0 ; i < config - > pattern_num ; i + + ) {
ESP_RETURN_ON_FALSE ( ( config - > adc_pattern [ i ] . bit_width = = SOC_ADC_DIGI_MAX_BITWIDTH ) , ESP_ERR_INVALID_ARG , ADC_TAG , " ADC bitwidth not supported " ) ;
}
# endif
ESP_RETURN_ON_FALSE ( config - > sample_freq_hz < = SOC_ADC_SAMPLE_FREQ_THRES_HIGH & & config - > sample_freq_hz > = SOC_ADC_SAMPLE_FREQ_THRES_LOW , ESP_ERR_INVALID_ARG , ADC_TAG , " ADC sampling frequency out of range " ) ;
# if CONFIG_IDF_TARGET_ESP32
ESP_RETURN_ON_FALSE ( config - > format = = ADC_DIGI_OUTPUT_FORMAT_TYPE1 , ESP_ERR_INVALID_ARG , ADC_TAG , " Please use type1 " ) ;
# elif CONFIG_IDF_TARGET_ESP32S2
if ( config - > conv_mode = = ADC_CONV_BOTH_UNIT | | config - > conv_mode = = ADC_CONV_ALTER_UNIT ) {
ESP_RETURN_ON_FALSE ( config - > format = = ADC_DIGI_OUTPUT_FORMAT_TYPE2 , ESP_ERR_INVALID_ARG , ADC_TAG , " Please use type2 " ) ;
} else if ( config - > conv_mode = = ADC_CONV_SINGLE_UNIT_1 | | config - > conv_mode = = ADC_CONV_SINGLE_UNIT_2 ) {
ESP_RETURN_ON_FALSE ( config - > format = = ADC_DIGI_OUTPUT_FORMAT_TYPE1 , ESP_ERR_INVALID_ARG , ADC_TAG , " Please use type1 " ) ;
}
# else
ESP_RETURN_ON_FALSE ( config - > format = = ADC_DIGI_OUTPUT_FORMAT_TYPE2 , ESP_ERR_INVALID_ARG , ADC_TAG , " Please use type2 " ) ;
# endif
handle - > hal_digi_ctrlr_cfg . adc_pattern_len = config - > pattern_num ;
handle - > hal_digi_ctrlr_cfg . sample_freq_hz = config - > sample_freq_hz ;
handle - > hal_digi_ctrlr_cfg . conv_mode = config - > conv_mode ;
memcpy ( handle - > hal_digi_ctrlr_cfg . adc_pattern , config - > adc_pattern , config - > pattern_num * sizeof ( adc_digi_pattern_config_t ) ) ;
const int atten_uninitialized = 999 ;
handle - > adc1_atten = atten_uninitialized ;
handle - > adc2_atten = atten_uninitialized ;
handle - > use_adc1 = 0 ;
handle - > use_adc2 = 0 ;
uint32_t adc1_chan_mask = 0 ;
uint32_t adc2_chan_mask = 0 ;
for ( int i = 0 ; i < config - > pattern_num ; i + + ) {
const adc_digi_pattern_config_t * pat = & config - > adc_pattern [ i ] ;
if ( pat - > unit = = ADC_UNIT_1 ) {
handle - > use_adc1 = 1 ;
adc1_chan_mask | = BIT ( pat - > channel ) ;
if ( handle - > adc1_atten = = atten_uninitialized ) {
handle - > adc1_atten = pat - > atten ;
} else if ( handle - > adc1_atten ! = pat - > atten ) {
return ESP_ERR_INVALID_ARG ;
}
} else if ( pat - > unit = = ADC_UNIT_2 ) {
handle - > use_adc2 = 1 ;
adc2_chan_mask | = BIT ( pat - > channel ) ;
if ( handle - > adc2_atten = = atten_uninitialized ) {
handle - > adc2_atten = pat - > atten ;
} else if ( handle - > adc2_atten ! = pat - > atten ) {
return ESP_ERR_INVALID_ARG ;
}
}
}
if ( handle - > use_adc1 ) {
adc_digi_gpio_init ( ADC_UNIT_1 , adc1_chan_mask ) ;
}
if ( handle - > use_adc2 ) {
adc_digi_gpio_init ( ADC_UNIT_2 , adc2_chan_mask ) ;
}
return ESP_OK ;
}
esp_err_t adc_continuous_register_event_callbacks ( adc_continuous_handle_t handle , const adc_continuous_evt_cbs_t * cbs , void * user_data )
{
ESP_RETURN_ON_FALSE ( handle & & cbs , ESP_ERR_INVALID_ARG , ADC_TAG , " invalid argument " ) ;
ESP_RETURN_ON_FALSE ( handle - > fsm = = ADC_FSM_INIT , ESP_ERR_INVALID_STATE , ADC_TAG , " ADC continuous mode isn't in the init state, it's started already " ) ;
# if CONFIG_ADC_CONTINUOUS_ISR_IRAM_SAFE
if ( cbs - > on_conv_done ) {
ESP_RETURN_ON_FALSE ( esp_ptr_in_iram ( cbs - > on_conv_done ) , ESP_ERR_INVALID_ARG , ADC_TAG , " on_conv_done callback not in IRAM " ) ;
}
if ( cbs - > on_pool_ovf ) {
ESP_RETURN_ON_FALSE ( esp_ptr_in_iram ( cbs - > on_pool_ovf ) , ESP_ERR_INVALID_ARG , ADC_TAG , " on_pool_ovf callback not in IRAM " ) ;
}
# endif
handle - > cbs . on_conv_done = cbs - > on_conv_done ;
handle - > cbs . on_pool_ovf = cbs - > on_pool_ovf ;
handle - > user_data = user_data ;
return ESP_OK ;
}
esp_err_t adc_continuous_io_to_channel ( int io_num , adc_unit_t * unit_id , adc_channel_t * channel )
{
return adc_io_to_channel ( io_num , unit_id , channel ) ;
}
esp_err_t adc_continuous_channel_to_io ( adc_unit_t unit_id , adc_channel_t channel , int * io_num )
{
return adc_channel_to_io ( unit_id , channel , io_num ) ;
}