esp-idf/components/fatfs/diskio/diskio_rawflash.c

141 lines
3.9 KiB
C
Raw Normal View History

/*
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <string.h>
#include "diskio_impl.h"
#include "ffconf.h"
#include "ff.h"
#include "esp_log.h"
#include "diskio_rawflash.h"
#include "esp_compiler.h"
static const char* TAG = "diskio_rawflash";
static const esp_partition_t* s_ff_raw_handles[FF_VOLUMES];
// Determine the sector size and sector count by parsing the boot sector
static size_t s_sector_size[FF_VOLUMES];
static size_t s_sectors_count[FF_VOLUMES];
static uint8_t s_initialized[FF_VOLUMES];
#define BPB_BytsPerSec 11
#define BPB_TotSec16 19
#define BPB_TotSec32 32
DSTATUS ff_raw_initialize (BYTE pdrv)
{
uint16_t sector_size_tmp;
uint16_t sectors_count_tmp_16;
uint32_t sectors_count_tmp_32;
const esp_partition_t* part = s_ff_raw_handles[pdrv];
assert(part);
esp_err_t err = esp_partition_read(part, BPB_BytsPerSec, &sector_size_tmp, sizeof(sector_size_tmp));
if (unlikely(err != ESP_OK)) {
ESP_LOGE(TAG, "esp_partition_read failed (0x%x)", err);
return RES_ERROR;
}
s_sector_size[pdrv] = sector_size_tmp;
err = esp_partition_read(part, BPB_TotSec16, &sectors_count_tmp_16, sizeof(sectors_count_tmp_16));
if (unlikely(err != ESP_OK)) {
ESP_LOGE(TAG, "esp_partition_read failed (0x%x)", err);
return RES_ERROR;
}
s_sectors_count[pdrv] = sectors_count_tmp_16;
// For FAT32, the number of sectors is stored in a different field
if (sectors_count_tmp_16 == 0){
err = esp_partition_read(part, BPB_TotSec32, &sectors_count_tmp_32, sizeof(sectors_count_tmp_32));
if (unlikely(err != ESP_OK)) {
ESP_LOGE(TAG, "esp_partition_read failed (0x%x)", err);
return RES_ERROR;
}
s_sectors_count[pdrv] = sectors_count_tmp_32;
}
s_initialized[pdrv] = true;
return STA_PROTECT;
}
DSTATUS ff_raw_status (BYTE pdrv)
{
DSTATUS status = STA_PROTECT;
if (!s_initialized[pdrv]) {
status |= STA_NOINIT | STA_NODISK;
}
return status;
}
DRESULT ff_raw_read (BYTE pdrv, BYTE *buff, DWORD sector, UINT count)
{
ESP_LOGV(TAG, "ff_raw_read - pdrv=%i, sector=%i, count=%in", (unsigned int)pdrv, (unsigned int)sector, (unsigned int)count);
const esp_partition_t* part = s_ff_raw_handles[pdrv];
assert(part);
esp_err_t err = esp_partition_read(part, sector * s_sector_size[pdrv], buff, count * s_sector_size[pdrv]);
components/esp_common: added esp_macros.h that aims to hold useful macros esp_common/esp_compiler: renamed esp_macros file to a more specific one esp_common/esp_compiler: removed CONTAINER_OF macro, it was a duplicate components/freertos: placed likely macros around port and critical sections component/freertos: placed likely macros on lists module components/freertos: placed unlikely macros inside of assertion points, they likely wont fail components/freertos: added likely macros on queue modules FreeRTOS queues are one of most hot code path, because to queues itself tend to be used a lot by the applications, besides that, queues are the basic primitive to form both mutexes and semaphores, The focus here is to place likely macros inside lowest level send and receive routines, since they're common from all kobjects: semaphores, queues, mutexes and FR internals (like timer queue) components/lwip: placed likely/unlikey on net-interfaces code components/fatfs: added unlikely macros on disk drivers code components/spiffs: added unlikely macros on low level fs driver components/freertos: added likely/unlikely macros on timers and ticker freertos/event_group: placed likely/unlikely macros on hot event group code paths components/sdmmc: placed likely / unlikely macros on lower level path of sdmmc components/bt: placed unlikely macros around bt HCI functions calling components/lwip: added likely/unlikely macros on OS port code section components/freertos: fix code style on tick handler
2019-10-15 18:01:05 -03:00
if (unlikely(err != ESP_OK)) {
ESP_LOGE(TAG, "esp_partition_read failed (0x%x)", err);
return RES_ERROR;
}
return RES_OK;
}
DRESULT ff_raw_write (BYTE pdrv, const BYTE *buff, DWORD sector, UINT count)
{
return RES_WRPRT;
}
DRESULT ff_raw_ioctl (BYTE pdrv, BYTE cmd, void *buff)
{
const esp_partition_t* part = s_ff_raw_handles[pdrv];
ESP_LOGV(TAG, "ff_raw_ioctl: cmd=%in", cmd);
assert(part);
switch (cmd) {
case CTRL_SYNC:
return RES_OK;
case GET_SECTOR_COUNT:
*((DWORD *) buff) = s_sectors_count[pdrv];
return RES_OK;
case GET_SECTOR_SIZE:
*((WORD *) buff) = s_sector_size[pdrv];
return RES_OK;
case GET_BLOCK_SIZE:
return RES_ERROR;
}
return RES_ERROR;
}
esp_err_t ff_diskio_register_raw_partition(BYTE pdrv, const esp_partition_t* part_handle)
{
if (pdrv >= FF_VOLUMES) {
return ESP_ERR_INVALID_ARG;
}
static const ff_diskio_impl_t raw_impl = {
.init = &ff_raw_initialize,
.status = &ff_raw_status,
.read = &ff_raw_read,
.write = &ff_raw_write,
.ioctl = &ff_raw_ioctl
};
ff_diskio_register(pdrv, &raw_impl);
s_ff_raw_handles[pdrv] = part_handle;
return ESP_OK;
}
BYTE ff_diskio_get_pdrv_raw(const esp_partition_t* part_handle)
{
for (int i = 0; i < FF_VOLUMES; i++) {
if (part_handle == s_ff_raw_handles[i]) {
return i;
}
}
return 0xff;
}