esp-idf/components/efuse/src/esp32s2beta/esp_efuse_utility.c

179 lines
8.6 KiB
C
Raw Normal View History

// Copyright 2017-2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp_efuse_utility.h"
#include "soc/efuse_periph.h"
#include "esp32s2beta/clk.h"
#include "esp_log.h"
#include "assert.h"
#include "sdkconfig.h"
#include <sys/param.h>
#include "esp32s2beta/rom/efuse.h"
static const char *TAG = "efuse";
#ifdef CONFIG_EFUSE_VIRTUAL
extern uint32_t virt_blocks[COUNT_EFUSE_BLOCKS][COUNT_EFUSE_REG_PER_BLOCK];
#endif // CONFIG_EFUSE_VIRTUAL
/*Range addresses to read blocks*/
const esp_efuse_range_addr_t range_read_addr_blocks[] = {
{EFUSE_RD_WR_DIS_REG, EFUSE_RD_REPEAT_DATA4_REG}, // range address of EFUSE_BLK0 REPEAT
{EFUSE_RD_MAC_SPI_8M_0_REG, EFUSE_RD_MAC_SPI_8M_5_REG}, // range address of EFUSE_BLK1 MAC_SPI_8M
{EFUSE_RD_SYS_DATA0_REG, EFUSE_RD_SYS_DATA7_REG}, // range address of EFUSE_BLK2 SYS_DATA
{EFUSE_RD_USR_DATA0_REG, EFUSE_RD_USR_DATA7_REG}, // range address of EFUSE_BLK3 USR_DATA
{EFUSE_RD_KEY0_DATA0_REG, EFUSE_RD_KEY0_DATA7_REG}, // range address of EFUSE_BLK4 KEY0
{EFUSE_RD_KEY1_DATA0_REG, EFUSE_RD_KEY1_DATA7_REG}, // range address of EFUSE_BLK5 KEY1
{EFUSE_RD_KEY2_DATA0_REG, EFUSE_RD_KEY2_DATA7_REG}, // range address of EFUSE_BLK6 KEY2
{EFUSE_RD_KEY3_DATA0_REG, EFUSE_RD_KEY3_DATA7_REG}, // range address of EFUSE_BLK7 KEY3
{EFUSE_RD_KEY4_DATA0_REG, EFUSE_RD_KEY4_DATA7_REG}, // range address of EFUSE_BLK8 KEY4
{EFUSE_RD_KEY5_DATA0_REG, EFUSE_RD_KEY5_DATA7_REG}, // range address of EFUSE_BLK9 KEY5
{EFUSE_RD_KEY6_DATA0_REG, EFUSE_RD_KEY6_DATA7_REG} // range address of EFUSE_BLK10 KEY6
};
static uint32_t write_mass_blocks[COUNT_EFUSE_BLOCKS][COUNT_EFUSE_REG_PER_BLOCK] = { 0 };
/*Range addresses to write blocks (it is not real regs, it is buffer) */
const esp_efuse_range_addr_t range_write_addr_blocks[] = {
{(uint32_t)&write_mass_blocks[EFUSE_BLK0][0], (uint32_t)&write_mass_blocks[EFUSE_BLK0][5]},
{(uint32_t)&write_mass_blocks[EFUSE_BLK1][0], (uint32_t)&write_mass_blocks[EFUSE_BLK1][5]},
{(uint32_t)&write_mass_blocks[EFUSE_BLK2][0], (uint32_t)&write_mass_blocks[EFUSE_BLK2][7]},
{(uint32_t)&write_mass_blocks[EFUSE_BLK3][0], (uint32_t)&write_mass_blocks[EFUSE_BLK3][7]},
{(uint32_t)&write_mass_blocks[EFUSE_BLK4][0], (uint32_t)&write_mass_blocks[EFUSE_BLK4][7]},
{(uint32_t)&write_mass_blocks[EFUSE_BLK5][0], (uint32_t)&write_mass_blocks[EFUSE_BLK5][7]},
{(uint32_t)&write_mass_blocks[EFUSE_BLK6][0], (uint32_t)&write_mass_blocks[EFUSE_BLK6][7]},
{(uint32_t)&write_mass_blocks[EFUSE_BLK7][0], (uint32_t)&write_mass_blocks[EFUSE_BLK7][7]},
{(uint32_t)&write_mass_blocks[EFUSE_BLK8][0], (uint32_t)&write_mass_blocks[EFUSE_BLK8][7]},
{(uint32_t)&write_mass_blocks[EFUSE_BLK9][0], (uint32_t)&write_mass_blocks[EFUSE_BLK9][7]},
{(uint32_t)&write_mass_blocks[EFUSE_BLK10][0], (uint32_t)&write_mass_blocks[EFUSE_BLK10][7]},
};
#ifndef CONFIG_EFUSE_VIRTUAL
// Update Efuse timing configuration
static esp_err_t esp_efuse_set_timing(void)
{
uint32_t clock = esp_clk_apb_freq();
// ets_efuse_set_timing(clock);
uint32_t clk_div, power_on;
//uint32_t power_off; // Support for 7.2.3 chip
uint32_t tsup_a = 1, thp_a = 1, tpgm, tpgm_inact;
uint32_t tsur_a = 1, thr_a = 1, trd;
if (clock == 20000000 || clock == 5000000 || clock == 10000000) {
clk_div = 0x28;
power_on = 0x2880;
//power_off = 0x40;
tpgm = 0xc8;
tpgm_inact = 1;
trd = 1;
} else if (clock == 40000000) {
clk_div = 0x50;
power_on = 0x5100;
//power_off = 0x80;
tpgm = 0x190;
tpgm_inact = 2;
trd = 2;
} else if (clock == 80000000) {
clk_div = 0xa0;
power_on = 0xa200;
//power_off = 0x100;
tpgm = 0x320;
tpgm_inact = 3;
trd = 3;
} else {
ESP_LOGE(TAG, "Efuse does not support this %d Hz APB clock", clock);
return ESP_ERR_NOT_SUPPORTED;
}
REG_SET_FIELD(EFUSE_DAC_CONF_REG, EFUSE_DAC_CLK_DIV, clk_div);
REG_SET_FIELD(EFUSE_WR_TIM_CONF0_REG, EFUSE_TPGM, tpgm);
REG_SET_FIELD(EFUSE_WR_TIM_CONF0_REG, EFUSE_TPGM_INACTIVE, tpgm_inact);
REG_SET_FIELD(EFUSE_WR_TIM_CONF0_REG, EFUSE_THP_A, thp_a);
REG_SET_FIELD(EFUSE_WR_TIM_CONF1_REG, EFUSE_PWR_ON_NUM, power_on);
REG_SET_FIELD(EFUSE_WR_TIM_CONF1_REG, EFUSE_TSUP_A, tsup_a);
//REG_SET_FIELD(EFUSE_WR_TIM_CONF2_REG, EFUSE_PWR_OFF_NUM, power_off);
REG_SET_FIELD(EFUSE_RD_TIM_CONF_REG, EFUSE_TSUR_A, tsur_a);
REG_SET_FIELD(EFUSE_RD_TIM_CONF_REG, EFUSE_TRD, trd);
REG_SET_FIELD(EFUSE_RD_TIM_CONF_REG, EFUSE_THR_A, thr_a);
return ESP_OK;
}
#endif // ifndef CONFIG_EFUSE_VIRTUAL
// Efuse read operation: copies data from physical efuses to efuse read registers.
void esp_efuse_utility_clear_program_registers(void)
{
ets_efuse_read();
ets_efuse_clear_program_registers();
}
// Burn values written to the efuse write registers
void esp_efuse_utility_burn_efuses(void)
{
#ifdef CONFIG_EFUSE_VIRTUAL
ESP_LOGW(TAG, "Virtual efuses enabled: Not really burning eFuses");
for (int num_block = 0; num_block < COUNT_EFUSE_BLOCKS; num_block++) {
int subblock = 0;
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
virt_blocks[num_block][subblock++] |= REG_READ(addr_wr_block);
}
}
#else
if (esp_efuse_set_timing() != ESP_OK) {
ESP_LOGE(TAG, "Efuse fields are not burnt");
} else {
// Permanently update values written to the efuse write registers
for (int num_block = 0; num_block < COUNT_EFUSE_BLOCKS; num_block++) {
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
if (REG_READ(addr_wr_block) != 0) {
if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) {
uint8_t block_rs[12];
ets_efuse_rs_calculate((void *)range_write_addr_blocks[num_block].start, block_rs);
memcpy((void *)EFUSE_PGM_CHECK_VALUE0_REG, block_rs, sizeof(block_rs));
}
int data_len = (range_write_addr_blocks[num_block].end - range_write_addr_blocks[num_block].start) + sizeof(uint32_t);
memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)range_write_addr_blocks[num_block].start, data_len);
ets_efuse_program(num_block);
break;
}
}
}
}
#endif // CONFIG_EFUSE_VIRTUAL
esp_efuse_utility_reset();
}
// After esp_efuse_write.. functions EFUSE_BLKx_WDATAx_REG were filled is not coded values.
// This function reads EFUSE_BLKx_WDATAx_REG registers, and checks possible to write these data with RS coding scheme.
// The RS coding scheme does not require data changes for the encoded data. esp32s2beta has special registers for this.
// They will be filled during the burn operation.
esp_err_t esp_efuse_utility_apply_new_coding_scheme()
{
// start with EFUSE_BLK1. EFUSE_BLK0 - always uses EFUSE_CODING_SCHEME_NONE.
for (int num_block = 1; num_block < COUNT_EFUSE_BLOCKS; num_block++) {
if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) {
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
if (REG_READ(addr_wr_block)) {
int num_reg = 0;
for (uint32_t addr_rd_block = range_read_addr_blocks[num_block].start; addr_rd_block <= range_read_addr_blocks[num_block].end; addr_rd_block += 4, ++num_reg) {
if (esp_efuse_utility_read_reg(num_block, num_reg)) {
ESP_LOGE(TAG, "Bits are not empty. Write operation is forbidden.");
return ESP_ERR_CODING;
}
}
break;
}
}
}
}
return ESP_OK;
}