esp-idf/components/esp_hw_support/sleep_retention.c

866 lines
38 KiB
C
Raw Normal View History

/*
* SPDX-FileCopyrightText: 2022-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stddef.h>
#include <string.h>
#include <sys/lock.h>
#include <sys/param.h>
#include "esp_err.h"
#include "esp_attr.h"
#include "esp_log.h"
#include "esp_heap_caps.h"
#include "esp_sleep.h"
#include "soc/soc_caps.h"
#include "esp_private/esp_regdma.h"
#include "esp_private/esp_pau.h"
#include "esp_private/sleep_retention.h"
#include "sdkconfig.h"
#include "esp_pmu.h"
#if SOC_PM_PAU_REGDMA_UPDATE_CACHE_BEFORE_WAIT_COMPARE
#include "soc/pmu_reg.h" // for PMU_DATE_REG, it can provide full 32 bit read and write access
#endif
#if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
#include "hal/cache_ll.h"
#endif
static __attribute__((unused)) const char *TAG = "sleep";
struct sleep_retention_module_object {
sleep_retention_module_callbacks_t cbs; /* A callback list that can extend more sleep retention event callbacks */
sleep_retention_module_bitmap_t dependents; /* A bitmap identifying all modules that the current module depends on */
sleep_retention_module_bitmap_t references; /* A bitmap indicating all other modules that depend on (or reference) the current module,
* It will update at runtime based on whether the module is referenced by other modules */
sleep_retention_module_attribute_t attributes; /* A bitmap indicating attribute of the current module */
};
static inline void sleep_retention_module_object_ctor(struct sleep_retention_module_object * const self, sleep_retention_module_callbacks_t *cbs)
{
self->cbs = *cbs;
self->dependents = 0;
self->references = 0;
self->attributes = 0;
}
static inline void sleep_retention_module_object_dtor(struct sleep_retention_module_object * const self)
{
self->cbs = (sleep_retention_module_callbacks_t) { .create = { .handle = NULL, .arg = NULL } };
}
static inline void set_dependencies(struct sleep_retention_module_object * const self, sleep_retention_module_bitmap_t depends)
{
self->dependents = depends;
}
static inline void clr_dependencies(struct sleep_retention_module_object * const self)
{
self->dependents = 0;
}
static inline sleep_retention_module_bitmap_t get_dependencies(struct sleep_retention_module_object * const self)
{
return self->dependents;
}
static inline void set_reference(struct sleep_retention_module_object * const self, sleep_retention_module_t module)
{
self->references |= BIT(module);
}
static inline void clr_reference(struct sleep_retention_module_object * const self, sleep_retention_module_t module)
{
self->references &= ~BIT(module);
}
static inline sleep_retention_module_bitmap_t get_references(struct sleep_retention_module_object * const self)
{
return self->references;
}
static inline bool references_exist(struct sleep_retention_module_object * const self)
{
return (get_references(self) != 0);
}
static inline void set_attributes(struct sleep_retention_module_object * const self, sleep_retention_module_attribute_t attributes)
{
self->attributes = attributes;
}
static inline void clr_attributes(struct sleep_retention_module_object * const self)
{
self->attributes = 0;
}
static inline sleep_retention_module_attribute_t get_attributes(struct sleep_retention_module_object * const self)
{
return self->attributes;
}
static inline bool module_is_passive(struct sleep_retention_module_object * const self)
{
return (get_attributes(self) & SLEEP_RETENTION_MODULE_ATTR_PASSIVE) ? true : false;
}
static inline bool module_is_inited(sleep_retention_module_t module)
{
return (sleep_retention_get_inited_modules() & BIT(module)) ? true : false;
}
static inline bool module_is_created(sleep_retention_module_t module)
{
return (sleep_retention_get_created_modules() & BIT(module)) ? true : false;
}
/**
* Internal structure which holds all requested sleep retention parameters
*/
typedef struct {
/* The hardware retention module (REGDMA and PMU) uses 4 linked lists to
* record the hardware context information that needs to be backed up and
* restored when switching between different power states. The 4 linked
* lists are linked by 8 types of nodes. The 4 linked lists can reuse some
* nodes with each other, or separate their own unique nodes after branch
* type nodes.
* The REGDMA module iterates the entire linked list from the head of a
* linked list and backs up and restores the corresponding register context
* information according to the configuration information of the linked list
* nodes.
* The PMU module triggers REGDMA to use the corresponding linked list when
* switching between different power states. For example:
*
* +---------------+---------------+-------------------+-----------+
* | Current | The next | The entry will be | Retention |
* | PMU state | PMU state | used by REGDMA | clock |
* +---------------+---------------+-------------------+-----------+
* | PMU_HP_ACTIVE | PMU_HP_SLEEP | entry0 | XTAL |
* | PMU_HP_SLEEP | PMU_HP_ACTIVE | entry0 | XTAL |
* | PMU_HP_MODEM | PMU_HP_SLEEP | ------ | XTAL |
* | PMU_HP_SLEEP | PMU_HP_MODEM | entry1 | XTAL |
* | PMU_HP_MODEM | PMU_HP_ACTIVE | entry2 | PLL |
* |---------------------------------------------------------------|
* | PMU_HP_ACTIVE | PMU_HP_ACTIVE | entry3 | PLL | (Clock BUG)
* +---------------+---------------+-------------------+-----------+
*
* +--------+ +-------------------------+ +-------------+ +-----------+ +--------+ +-----+
* entry2 -> | | -> | WiFi MAC Minimum System | -> | | -------------------------> | ######### | -> | ###### | -> | End |
* | SOC | +-------------------------+ | Digital | | Bluetooth | | Zigbee | +-----+
* | System | +--------+ | Peripherals | +------+ +------+ | / BLE | | | +-----+
* entry0 -> | | ----------> | | ---------> | | -> | | -> | | -> | | -> | | -> | End |
* +--------+ | Modem | +-------------+ | WiFi | | WiFi | +-----------+ +--------+ +-----+
* | System | | MAC | | BB | +-----+
* entry1 ------------------------> | |-----------------------------> | | -> | | -> | End |
* +--------+ +------+ +------+ +-----+
*
* The entry3 (alias: extra linked list) is used for backup and restore of
* modules (such as BLE or 15.4 modules) with retention clock bugs.
*
* +---------+ +----------+ +-------------+ +-----+
* entry3 -> | BLE MAC | -> | 15.4 MAC | -> | BLE/15.4 BB | -> | End |
* +---------+ +----------+ +-------------+ +-----+
*
* Using it (extra linked list) for retention has the following constraints:
* 1. The PLL clock must be enabled (can be done with esp_pm_lock_acquire()
* interface to acquire a pm lock of type ESP_PM_APB_FREQ_MAX.
* 2. When using the sleep_retention_entries_create() interface to create an
* extra linked list, the node owner must be equal to BIT(3).
* 3. Use the sleep_retention_do_extra_retention() interface to backup or
* restore the register context, which ensures only one backup or restore
* when multiple modules (BLE and 15.4) exists.
*/
#define SLEEP_RETENTION_REGDMA_LINK_NR_PRIORITIES (8u)
#define SLEEP_RETENTION_REGDMA_LINK_HIGHEST_PRIORITY (0)
#define SLEEP_RETENTION_REGDMA_LINK_LOWEST_PRIORITY (SLEEP_RETENTION_REGDMA_LINK_NR_PRIORITIES - 1)
#define SLEEP_RETENTION_MODULE_INVALID ((sleep_retention_module_t)(-1)) /* the final node does not belong to any module */
struct {
sleep_retention_entries_t entries;
uint32_t entries_bitmap: REGDMA_LINK_ENTRY_NUM;
uint32_t runtime_bitmap: REGDMA_LINK_ENTRY_NUM;
#if REGDMA_LINK_ENTRY_NUM < 16
uint32_t reserved: 32-(2*REGDMA_LINK_ENTRY_NUM);
#endif
void *entries_tail;
} lists[SLEEP_RETENTION_REGDMA_LINK_NR_PRIORITIES];
_lock_t lock;
regdma_link_priority_t highpri;
uint32_t inited_modules;
uint32_t created_modules;
struct sleep_retention_module_object instance[32];
#define EXTRA_LINK_NUM (REGDMA_LINK_ENTRY_NUM - 1)
} sleep_retention_t;
static DRAM_ATTR __attribute__((unused)) sleep_retention_t s_retention = {
.highpri = (uint8_t)-1, .inited_modules = 0, .created_modules = 0
};
#define SLEEP_RETENTION_ENTRY_BITMAP_MASK (BIT(REGDMA_LINK_ENTRY_NUM) - 1)
#define SLEEP_RETENTION_ENTRY_BITMAP(bitmap) ((bitmap) & SLEEP_RETENTION_ENTRY_BITMAP_MASK)
static esp_err_t sleep_retention_entries_create_impl(const sleep_retention_entries_config_t retent[], int num, regdma_link_priority_t priority, sleep_retention_module_t module);
static void sleep_retention_entries_join(void);
static inline sleep_retention_module_bitmap_t module_num2map(sleep_retention_module_t module)
{
return (module == SLEEP_RETENTION_MODULE_INVALID) ? 0 : BIT(module);
}
static inline bool sleep_retention_entries_require_branch(uint32_t owner, uint32_t runtime_bitmap)
{
bool use_new_entry = SLEEP_RETENTION_ENTRY_BITMAP(owner & ~runtime_bitmap) ? true : false;
bool intersection_exist = SLEEP_RETENTION_ENTRY_BITMAP(owner & runtime_bitmap) ? true : false;
return use_new_entry && intersection_exist;
}
static esp_err_t sleep_retention_entries_check_and_create_default(uint32_t owner, uint32_t runtime_bitmap, uint32_t entries_bitmap, regdma_link_priority_t priority, sleep_retention_module_t module)
{
assert(sleep_retention_entries_require_branch(owner, runtime_bitmap));
static sleep_retention_entries_config_t dummy = { REGDMA_LINK_WAIT_INIT(0xffff, 0, 0, 0, 1, 1), 0 };
dummy.owner = SLEEP_RETENTION_ENTRY_BITMAP(owner & ~entries_bitmap);
if (dummy.owner) {
return sleep_retention_entries_create_impl(&dummy, 1, priority, module);
}
return ESP_OK;
}
static esp_err_t sleep_retention_entries_check_and_create_final_default(void)
{
static const sleep_retention_entries_config_t final_dummy = { REGDMA_LINK_WAIT_INIT(0xffff, 0, 0, 0, 1, 1), SLEEP_RETENTION_ENTRY_BITMAP_MASK };
esp_err_t err = ESP_OK;
_lock_acquire_recursive(&s_retention.lock);
if (s_retention.lists[SLEEP_RETENTION_REGDMA_LINK_LOWEST_PRIORITY].entries_bitmap == 0) {
err = sleep_retention_entries_create_impl(&final_dummy, 1, SLEEP_RETENTION_REGDMA_LINK_LOWEST_PRIORITY, SLEEP_RETENTION_MODULE_INVALID);
}
_lock_release_recursive(&s_retention.lock);
return err;
}
static void sleep_retention_entries_update(uint32_t owner, void *new_link, regdma_link_priority_t priority)
{
_lock_acquire_recursive(&s_retention.lock);
sleep_retention_entries_t retention_entries = {
(owner & BIT(0)) ? new_link : s_retention.lists[priority].entries[0],
(owner & BIT(1)) ? new_link : s_retention.lists[priority].entries[1],
(owner & BIT(2)) ? new_link : s_retention.lists[priority].entries[2],
(owner & BIT(3)) ? new_link : s_retention.lists[priority].entries[3]
#if (REGDMA_LINK_ENTRY_NUM == 5)
, (owner & BIT(4)) ? new_link : s_retention.lists[priority].entries[4]
#endif
};
if (s_retention.lists[priority].entries_bitmap == 0) {
s_retention.lists[priority].entries_tail = new_link;
}
memcpy(s_retention.lists[priority].entries, retention_entries, sizeof(sleep_retention_entries_t));
s_retention.lists[priority].runtime_bitmap = owner;
s_retention.lists[priority].entries_bitmap |= owner;
_lock_release_recursive(&s_retention.lock);
}
static void * sleep_retention_entries_try_create(const regdma_link_config_t *config, uint32_t owner, regdma_link_priority_t priority, sleep_retention_module_t module)
{
void *link = NULL;
assert(owner > 0 && owner < BIT(REGDMA_LINK_ENTRY_NUM));
_lock_acquire_recursive(&s_retention.lock);
if (sleep_retention_entries_require_branch(owner, s_retention.lists[priority].runtime_bitmap)) {
if (sleep_retention_entries_check_and_create_default(owner, s_retention.lists[priority].runtime_bitmap,
s_retention.lists[priority].entries_bitmap, priority, module_num2map(module)) == ESP_OK) { /* branch node can't as tail node */
link = regdma_link_init_safe(
config, true, module_num2map(module),
(owner & BIT(0)) ? s_retention.lists[priority].entries[0] : NULL,
(owner & BIT(1)) ? s_retention.lists[priority].entries[1] : NULL,
(owner & BIT(2)) ? s_retention.lists[priority].entries[2] : NULL,
(owner & BIT(3)) ? s_retention.lists[priority].entries[3] : NULL
#if (REGDMA_LINK_ENTRY_NUM == 5)
, (owner & BIT(4)) ? s_retention.lists[priority].entries[4] : NULL
#endif
);
}
} else {
link = regdma_link_init_safe(config, false, module_num2map(module), s_retention.lists[priority].entries[__builtin_ffs(owner) - 1]);
}
_lock_release_recursive(&s_retention.lock);
return link;
}
static void * sleep_retention_entries_try_create_bonding(const regdma_link_config_t *config, uint32_t owner, regdma_link_priority_t priority, sleep_retention_module_t module)
{
assert(owner > 0 && owner < BIT(REGDMA_LINK_ENTRY_NUM));
_lock_acquire_recursive(&s_retention.lock);
void *link = regdma_link_init_safe(
config, true, module_num2map(module),
(owner & BIT(0)) ? s_retention.lists[priority].entries[0] : NULL,
(owner & BIT(1)) ? s_retention.lists[priority].entries[1] : NULL,
(owner & BIT(2)) ? s_retention.lists[priority].entries[2] : NULL,
(owner & BIT(3)) ? s_retention.lists[priority].entries[3] : NULL
#if (REGDMA_LINK_ENTRY_NUM == 5)
, (owner & BIT(4)) ? s_retention.lists[priority].entries[4] : NULL
#endif
);
_lock_release_recursive(&s_retention.lock);
return link;
}
static void sleep_retention_entries_stats(void)
{
_lock_acquire_recursive(&s_retention.lock);
if (s_retention.highpri >= SLEEP_RETENTION_REGDMA_LINK_HIGHEST_PRIORITY && s_retention.highpri <= SLEEP_RETENTION_REGDMA_LINK_LOWEST_PRIORITY) {
for (int entry = 0; entry < ARRAY_SIZE(s_retention.lists[s_retention.highpri].entries); entry++) {
regdma_link_stats(s_retention.lists[s_retention.highpri].entries[entry], entry);
}
}
_lock_release_recursive(&s_retention.lock);
}
void sleep_retention_dump_entries(FILE *out)
{
_lock_acquire_recursive(&s_retention.lock);
if (s_retention.highpri >= SLEEP_RETENTION_REGDMA_LINK_HIGHEST_PRIORITY && s_retention.highpri <= SLEEP_RETENTION_REGDMA_LINK_LOWEST_PRIORITY) {
for (int entry = 0; entry < ARRAY_SIZE(s_retention.lists[s_retention.highpri].entries); entry++) {
fprintf(out, "\nsleep retention entries[%d] context:\n", entry);
regdma_link_dump(out, s_retention.lists[s_retention.highpri].entries[entry], entry);
}
}
fflush(out);
_lock_release_recursive(&s_retention.lock);
}
void * sleep_retention_find_link_by_id(int id)
{
void *link = NULL;
_lock_acquire_recursive(&s_retention.lock);
if (s_retention.highpri >= SLEEP_RETENTION_REGDMA_LINK_HIGHEST_PRIORITY &&
s_retention.highpri <= SLEEP_RETENTION_REGDMA_LINK_LOWEST_PRIORITY) {
for (int entry = 0; (link == NULL && entry < ARRAY_SIZE(s_retention.lists[s_retention.highpri].entries)); entry++) {
link = regdma_find_link_by_id(s_retention.lists[s_retention.highpri].entries[entry], entry, id);
}
}
_lock_release_recursive(&s_retention.lock);
return link;
}
static uint32_t sleep_retention_entries_owner_bitmap(sleep_retention_entries_t *entries, sleep_retention_entries_t *tails)
{
uint32_t owner = 0;
_lock_acquire_recursive(&s_retention.lock);
for (int entry = 0; entry < ARRAY_SIZE(*entries); entry++) {
owner |= regdma_link_get_owner_bitmap((*entries)[entry], (*tails)[entry], entry);
}
_lock_release_recursive(&s_retention.lock);
return owner;
}
static bool sleep_retention_entries_get_destroy_context(regdma_link_priority_t priority, sleep_retention_module_t module, sleep_retention_entries_t *destroy_entries, void **destroy_tail, sleep_retention_entries_t *next_entries, void **prev_tail)
{
bool exist = false;
sleep_retention_entries_t destroy_tails, prev_tails;
memset(&destroy_tails, 0, sizeof(sleep_retention_entries_t));
memset(&prev_tails, 0, sizeof(sleep_retention_entries_t));
_lock_acquire_recursive(&s_retention.lock);
for (int entry = 0; entry < ARRAY_SIZE(s_retention.lists[priority].entries); entry++) {
(*destroy_entries)[entry] = regdma_find_module_link_head(
s_retention.lists[priority].entries[entry], s_retention.lists[priority].entries_tail, entry, module_num2map(module));
destroy_tails [entry] = regdma_find_module_link_tail(
s_retention.lists[priority].entries[entry], s_retention.lists[priority].entries_tail, entry, module_num2map(module));
(*next_entries) [entry] = regdma_find_next_module_link_head(
s_retention.lists[priority].entries[entry], s_retention.lists[priority].entries_tail, entry, module_num2map(module));
prev_tails [entry] = regdma_find_prev_module_link_tail(
s_retention.lists[priority].entries[entry], s_retention.lists[priority].entries_tail, entry, module_num2map(module));
if ((*destroy_entries)[entry] && destroy_tails[entry]) {
exist = true;
}
assert(destroy_tails[entry] == destroy_tails[0]);
assert(prev_tails[entry] == prev_tails[0]);
}
*destroy_tail = destroy_tails[0];
*prev_tail = prev_tails[0];
_lock_release_recursive(&s_retention.lock);
return exist;
}
static void sleep_retention_entries_context_update(regdma_link_priority_t priority)
{
_lock_acquire_recursive(&s_retention.lock);
sleep_retention_entries_t tails = {
s_retention.lists[priority].entries_tail, s_retention.lists[priority].entries_tail,
s_retention.lists[priority].entries_tail, s_retention.lists[priority].entries_tail
};
s_retention.lists[priority].entries_bitmap = sleep_retention_entries_owner_bitmap(&s_retention.lists[priority].entries, &tails);
s_retention.lists[priority].runtime_bitmap = sleep_retention_entries_owner_bitmap(&s_retention.lists[priority].entries, &s_retention.lists[priority].entries);
_lock_release_recursive(&s_retention.lock);
}
static bool sleep_retention_entries_dettach(regdma_link_priority_t priority, sleep_retention_entries_t *destroy_entries, void *destroy_tail, sleep_retention_entries_t *next_entries, void *prev_tail)
{
_lock_acquire_recursive(&s_retention.lock);
bool is_head = (memcmp(destroy_entries, &s_retention.lists[priority].entries, sizeof(sleep_retention_entries_t)) == 0);
bool is_tail = (destroy_tail == s_retention.lists[priority].entries_tail);
if (is_head && is_tail) {
memset(s_retention.lists[priority].entries, 0, sizeof(sleep_retention_entries_t));
s_retention.lists[priority].entries_tail = NULL;
} else if (is_head) {
memcpy(&s_retention.lists[priority].entries, next_entries, sizeof(sleep_retention_entries_t));
} else if (is_tail) {
s_retention.lists[priority].entries_tail = prev_tail;
} else {
#if (REGDMA_LINK_ENTRY_NUM == 5)
regdma_link_update_next_safe(prev_tail, (*next_entries)[0], (*next_entries)[1], (*next_entries)[2], (*next_entries)[3], (*next_entries)[4]);
#else
regdma_link_update_next_safe(prev_tail, (*next_entries)[0], (*next_entries)[1], (*next_entries)[2], (*next_entries)[3]);
#endif
}
sleep_retention_entries_context_update(priority);
#if (REGDMA_LINK_ENTRY_NUM == 5)
regdma_link_update_next_safe(destroy_tail, NULL, NULL, NULL, NULL, NULL);
#else
regdma_link_update_next_safe(destroy_tail, NULL, NULL, NULL, NULL);
#endif
_lock_release_recursive(&s_retention.lock);
return (is_head || is_tail);
}
static void sleep_retention_entries_destroy_wrapper(sleep_retention_entries_t *destroy_entries)
{
for (int entry = 0; entry < ARRAY_SIZE(*destroy_entries); entry++) {
regdma_link_destroy((*destroy_entries)[entry], entry);
}
}
static void sleep_retention_entries_check_and_distroy_final_default(void)
{
_lock_acquire_recursive(&s_retention.lock);
assert(s_retention.highpri == SLEEP_RETENTION_REGDMA_LINK_LOWEST_PRIORITY);
assert(s_retention.created_modules == 0);
sleep_retention_entries_destroy_wrapper(&s_retention.lists[SLEEP_RETENTION_REGDMA_LINK_LOWEST_PRIORITY].entries);
_lock_release_recursive(&s_retention.lock);
}
static void sleep_retention_entries_all_destroy_wrapper(sleep_retention_module_t module)
{
void *destroy_tail = NULL, *prev_tail = NULL;
sleep_retention_entries_t destroy_entries, next_entries;
memset(&destroy_entries, 0, sizeof(sleep_retention_entries_t));
memset(&next_entries, 0, sizeof(sleep_retention_entries_t));
_lock_acquire_recursive(&s_retention.lock);
regdma_link_priority_t priority = 0;
do {
bool exist = sleep_retention_entries_get_destroy_context(priority, module, &destroy_entries, &destroy_tail, &next_entries, &prev_tail);
if (s_retention.lists[priority].entries_bitmap && exist) {
if (sleep_retention_entries_dettach(priority, &destroy_entries, destroy_tail, &next_entries, prev_tail)) {
sleep_retention_entries_join();
}
sleep_retention_entries_destroy_wrapper(&destroy_entries);
} else {
priority++;
}
} while (priority < SLEEP_RETENTION_REGDMA_LINK_NR_PRIORITIES);
s_retention.created_modules &= ~module_num2map(module);
_lock_release_recursive(&s_retention.lock);
}
static void sleep_retention_entries_do_destroy(sleep_retention_module_t module)
{
assert(SLEEP_RETENTION_MODULE_MIN <= module && module <= SLEEP_RETENTION_MODULE_MAX);
_lock_acquire_recursive(&s_retention.lock);
sleep_retention_entries_join();
sleep_retention_entries_stats();
sleep_retention_entries_all_destroy_wrapper(module);
_lock_release_recursive(&s_retention.lock);
}
static void sleep_retention_entries_destroy(sleep_retention_module_t module)
{
assert(SLEEP_RETENTION_MODULE_MIN <= module && module <= SLEEP_RETENTION_MODULE_MAX);
_lock_acquire_recursive(&s_retention.lock);
sleep_retention_entries_do_destroy(module);
if (s_retention.created_modules == 0) {
sleep_retention_entries_check_and_distroy_final_default();
pmu_sleep_disable_regdma_backup();
memset((void *)s_retention.lists, 0, sizeof(s_retention.lists));
s_retention.highpri = (uint8_t)-1;
}
_lock_release_recursive(&s_retention.lock);
}
static esp_err_t sleep_retention_entries_create_impl(const sleep_retention_entries_config_t retent[], int num, regdma_link_priority_t priority, sleep_retention_module_t module)
{
esp_err_t err = ESP_OK;
_lock_acquire_recursive(&s_retention.lock);
for (int i = num - 1; (i >= 0) && (err == ESP_OK); i--) {
#if SOC_PM_RETENTION_HAS_CLOCK_BUG
if ((retent[i].owner > BIT(EXTRA_LINK_NUM)) && (retent[i].config.id != 0xffff)) {
_lock_release_recursive(&s_retention.lock);
sleep_retention_entries_do_destroy(module);
return ESP_ERR_NOT_SUPPORTED;
}
#endif
#if SOC_PM_PAU_REGDMA_UPDATE_CACHE_BEFORE_WAIT_COMPARE
/* There is a bug in REGDMA wait mode, when two wait nodes need to wait for the
* same value (_val & _mask), the second wait node will immediately return to
* wait done, The reason is that the wait mode comparison output logic immediate
* compares the value of the previous wait register cached inside the
* digital logic before reading out he register contents specified by _backup.
*/
#define config_is_wait_mode(_config) (regdma_link_get_config_mode(_config) == REGDMA_LINK_MODE_WAIT)
if ((retent[i].config.id != 0xffff) && config_is_wait_mode(&(retent[i].config)) && (retent[i].config.id != 0xfffe)) {
uint32_t value = retent[i].config.write_wait.value;
uint32_t mask = retent[i].config.write_wait.mask;
bool skip_b = retent[i].config.head.skip_b;
bool skip_r = retent[i].config.head.skip_r;
sleep_retention_entries_config_t wait_bug_workaround[] = {
[0] = { .config = REGDMA_LINK_WRITE_INIT(0xfffe, PMU_DATE_REG, ~value, mask, skip_b, skip_r), .owner = retent[i].owner },
[1] = { .config = REGDMA_LINK_WAIT_INIT (0xfffe, PMU_DATE_REG, ~value, mask, skip_b, skip_r), .owner = retent[i].owner }
};
err = sleep_retention_entries_create_impl(wait_bug_workaround, ARRAY_SIZE(wait_bug_workaround), priority, module);
}
#endif
if (err == ESP_OK) {
void *link = sleep_retention_entries_try_create(&retent[i].config, retent[i].owner, priority, module);
if (link == NULL) {
_lock_release_recursive(&s_retention.lock);
sleep_retention_entries_do_destroy(module);
return ESP_ERR_NO_MEM;
}
sleep_retention_entries_update(retent[i].owner, link, priority);
} else {
break;
}
}
_lock_release_recursive(&s_retention.lock);
return err;
}
static esp_err_t sleep_retention_entries_create_bonding(regdma_link_priority_t priority, sleep_retention_module_t module)
{
static const sleep_retention_entries_config_t bonding_dummy = { REGDMA_LINK_WAIT_INIT(0xffff, 0, 0, 0, 1, 1), SLEEP_RETENTION_ENTRY_BITMAP_MASK };
_lock_acquire_recursive(&s_retention.lock);
void *link = sleep_retention_entries_try_create_bonding(&bonding_dummy.config, bonding_dummy.owner, priority, module);
if (link == NULL) {
_lock_release_recursive(&s_retention.lock);
sleep_retention_entries_do_destroy(module);
return ESP_ERR_NO_MEM;
}
sleep_retention_entries_update(bonding_dummy.owner, link, priority);
_lock_release_recursive(&s_retention.lock);
return ESP_OK;
}
static void sleep_retention_entries_join(void)
{
void *entries_tail = NULL;
_lock_acquire_recursive(&s_retention.lock);
s_retention.highpri = SLEEP_RETENTION_REGDMA_LINK_LOWEST_PRIORITY;
for (regdma_link_priority_t priority = 0; priority < SLEEP_RETENTION_REGDMA_LINK_NR_PRIORITIES; priority++) {
if (s_retention.lists[priority].entries_bitmap == 0) continue;
if (priority < s_retention.highpri) { s_retention.highpri = priority; }
if (entries_tail) {
regdma_link_update_next_safe(
entries_tail,
s_retention.lists[priority].entries[0],
s_retention.lists[priority].entries[1],
s_retention.lists[priority].entries[2],
s_retention.lists[priority].entries[3]
#if (REGDMA_LINK_ENTRY_NUM == 5)
, s_retention.lists[priority].entries[4]
#endif
);
}
entries_tail = s_retention.lists[priority].entries_tail;
}
pau_regdma_set_entry_link_addr(&(s_retention.lists[s_retention.highpri].entries));
_lock_release_recursive(&s_retention.lock);
}
static esp_err_t sleep_retention_entries_create_wrapper(const sleep_retention_entries_config_t retent[], int num, regdma_link_priority_t priority, sleep_retention_module_t module)
{
_lock_acquire_recursive(&s_retention.lock);
esp_err_t err = sleep_retention_entries_create_bonding(priority, module);
if(err) goto error;
err = sleep_retention_entries_create_impl(retent, num, priority, module);
if(err) goto error;
err = sleep_retention_entries_create_bonding(priority, module);
if(err) goto error;
s_retention.created_modules |= module_num2map(module);
sleep_retention_entries_join();
error:
_lock_release_recursive(&s_retention.lock);
return err;
}
esp_err_t sleep_retention_entries_create(const sleep_retention_entries_config_t retent[], int num, regdma_link_priority_t priority, sleep_retention_module_t module)
{
if (retent == NULL || num <= 0) {
return ESP_ERR_INVALID_ARG;
}
if (priority >= SLEEP_RETENTION_REGDMA_LINK_NR_PRIORITIES) {
return ESP_ERR_INVALID_ARG;
}
if (module < SLEEP_RETENTION_MODULE_MIN || module > SLEEP_RETENTION_MODULE_MAX) {
return ESP_ERR_INVALID_ARG;
}
esp_err_t err = sleep_retention_entries_check_and_create_final_default();
if (err) goto error;
err = sleep_retention_entries_create_wrapper(retent, num, priority, module);
if (err) goto error;
pmu_sleep_enable_regdma_backup();
ESP_ERROR_CHECK(esp_deep_sleep_register_hook(&pmu_sleep_disable_regdma_backup));
error:
return err;
}
void sleep_retention_entries_get(sleep_retention_entries_t *entries)
{
memset(entries, 0, sizeof(sleep_retention_entries_t));
_lock_acquire_recursive(&s_retention.lock);
if (s_retention.highpri >= SLEEP_RETENTION_REGDMA_LINK_HIGHEST_PRIORITY &&
s_retention.highpri <= SLEEP_RETENTION_REGDMA_LINK_LOWEST_PRIORITY) {
memcpy(entries, &s_retention.lists[s_retention.highpri].entries, sizeof(sleep_retention_entries_t));
}
_lock_release_recursive(&s_retention.lock);
}
uint32_t IRAM_ATTR sleep_retention_get_inited_modules(void)
{
return s_retention.inited_modules;
}
uint32_t IRAM_ATTR sleep_retention_get_created_modules(void)
{
return s_retention.created_modules;
}
esp_err_t sleep_retention_module_init(sleep_retention_module_t module, sleep_retention_module_init_param_t *param)
{
if (module < SLEEP_RETENTION_MODULE_MIN || module > SLEEP_RETENTION_MODULE_MAX) {
return ESP_ERR_INVALID_ARG;
}
if (param == NULL || param->cbs.create.handle == NULL) {
return ESP_ERR_INVALID_ARG;
}
if (s_retention.lock == NULL) {
/* Passive modules will be initialized during the system startup, with the
* operating system scheduler not yet enabled. There is no risk of contention
* for lock initialization here. */
_lock_init_recursive(&s_retention.lock);
if (s_retention.lock == NULL) {
ESP_LOGE(TAG, "Create sleep retention lock failed");
return ESP_ERR_NO_MEM;
}
}
esp_err_t err = ESP_OK;
_lock_acquire_recursive(&s_retention.lock);
if (module_is_created(module) || module_is_inited(module)) {
err = ESP_ERR_INVALID_STATE;
} else {
sleep_retention_module_object_ctor(&s_retention.instance[module], &param->cbs);
set_dependencies(&s_retention.instance[module], param->depends);
set_attributes(&s_retention.instance[module], param->attribute);
s_retention.inited_modules |= module_num2map(module);
}
_lock_release_recursive(&s_retention.lock);
return err;
}
esp_err_t sleep_retention_module_deinit(sleep_retention_module_t module)
{
if (module < SLEEP_RETENTION_MODULE_MIN || module > SLEEP_RETENTION_MODULE_MAX) {
return ESP_ERR_INVALID_ARG;
}
esp_err_t err = ESP_OK;
bool do_lock_release = false;
_lock_acquire_recursive(&s_retention.lock);
if (module_is_created(module) || !module_is_inited(module)) {
err = ESP_ERR_INVALID_STATE;
} else {
clr_attributes(&s_retention.instance[module]);
clr_dependencies(&s_retention.instance[module]);
sleep_retention_module_object_dtor(&s_retention.instance[module]);
s_retention.inited_modules &= ~module_num2map(module);
do_lock_release = (sleep_retention_get_inited_modules() == 0);
}
_lock_release_recursive(&s_retention.lock);
if (do_lock_release) {
_lock_close_recursive(&s_retention.lock);
s_retention.lock = NULL;
}
return err;
}
static esp_err_t sleep_retention_passive_module_allocate(sleep_retention_module_t module)
{
assert(module >= SLEEP_RETENTION_MODULE_MIN && module <= SLEEP_RETENTION_MODULE_MAX);
esp_err_t err = ESP_OK;
_lock_acquire_recursive(&s_retention.lock);
assert(module_is_passive(&s_retention.instance[module]) && "Illegal dependency");
assert(module_is_inited(module) && "All passive module must be inited first!");
if (!module_is_created(module)) {
sleep_retention_module_bitmap_t depends = get_dependencies(&s_retention.instance[module]);
for (int i = 0; (err == ESP_OK) && depends; depends >>= 1, i++) {
if (depends & BIT(0)) {
set_reference(&s_retention.instance[i], module);
err = sleep_retention_passive_module_allocate(i);
}
}
if (err == ESP_OK) {
sleep_retention_callback_t fn = s_retention.instance[module].cbs.create.handle;
if (fn) {
err = (*fn)(s_retention.instance[module].cbs.create.arg);
}
}
}
_lock_release_recursive(&s_retention.lock);
return err;
}
esp_err_t sleep_retention_module_allocate(sleep_retention_module_t module)
{
if (module < SLEEP_RETENTION_MODULE_MIN || module > SLEEP_RETENTION_MODULE_MAX) {
return ESP_ERR_INVALID_ARG;
}
esp_err_t err = ESP_OK;
_lock_acquire_recursive(&s_retention.lock);
if (!module_is_passive(&s_retention.instance[module])) {
if (module_is_inited(module) && !module_is_created(module)) {
sleep_retention_module_bitmap_t depends = get_dependencies(&s_retention.instance[module]);
for (int i = 0; (err == ESP_OK) && depends; depends >>= 1, i++) {
if (depends & BIT(0)) {
set_reference(&s_retention.instance[i], module);
if (module_is_passive(&s_retention.instance[i])) { /* the callee ensures this module is inited */
err = sleep_retention_passive_module_allocate(i);
}
}
}
if (err == ESP_OK) {
sleep_retention_callback_t fn = s_retention.instance[module].cbs.create.handle;
if (fn) {
err = (*fn)(s_retention.instance[module].cbs.create.arg);
}
}
} else {
err = ESP_ERR_INVALID_STATE;
}
} else {
err = ESP_ERR_NOT_ALLOWED;
}
_lock_release_recursive(&s_retention.lock);
return err;
}
static esp_err_t sleep_retention_passive_module_free(sleep_retention_module_t module)
{
assert(module >= SLEEP_RETENTION_MODULE_MIN && module <= SLEEP_RETENTION_MODULE_MAX);
esp_err_t err = ESP_OK;
_lock_acquire_recursive(&s_retention.lock);
assert(module_is_passive(&s_retention.instance[module]) && "Illegal dependency");
assert(module_is_inited(module) && "All passive module must be inited first!");
if (module_is_created(module)) {
if (!references_exist(&s_retention.instance[module])) {
sleep_retention_entries_destroy(module);
sleep_retention_module_bitmap_t depends = get_dependencies(&s_retention.instance[module]);
for (int i = 0; (err == ESP_OK) && depends; depends >>= 1, i++) {
if (depends & BIT(0)) {
clr_reference(&s_retention.instance[i], module);
err = sleep_retention_passive_module_free(i);
}
}
}
}
_lock_release_recursive(&s_retention.lock);
return err;
}
esp_err_t sleep_retention_module_free(sleep_retention_module_t module)
{
if (module < SLEEP_RETENTION_MODULE_MIN || module > SLEEP_RETENTION_MODULE_MAX) {
return ESP_ERR_INVALID_ARG;
}
esp_err_t err = ESP_OK;
_lock_acquire_recursive(&s_retention.lock);
if (!module_is_passive(&s_retention.instance[module])) {
if (module_is_inited(module) && module_is_created(module)) {
sleep_retention_entries_destroy(module);
sleep_retention_module_bitmap_t depends = get_dependencies(&s_retention.instance[module]);
for (int i = 0; (err == ESP_OK) && depends; depends >>= 1, i++) {
if (depends & BIT(0)) {
clr_reference(&s_retention.instance[i], module);
if (module_is_passive(&s_retention.instance[i])) {
err = sleep_retention_passive_module_free(i);
}
}
}
} else {
err = ESP_ERR_INVALID_STATE;
}
} else {
err = ESP_ERR_NOT_ALLOWED;
}
_lock_release_recursive(&s_retention.lock);
return err;
}
2023-12-04 14:46:10 +08:00
void IRAM_ATTR sleep_retention_do_extra_retention(bool backup_or_restore)
{
if (s_retention.highpri < SLEEP_RETENTION_REGDMA_LINK_HIGHEST_PRIORITY ||
s_retention.highpri > SLEEP_RETENTION_REGDMA_LINK_LOWEST_PRIORITY) {
return;
}
#if SOC_PAU_IN_TOP_DOMAIN
pau_regdma_enable_aon_link_entry(false);
#endif
// Set extra linked list head pointer to hardware
pau_regdma_set_extra_link_addr(s_retention.lists[s_retention.highpri].entries[EXTRA_LINK_NUM]);
#if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
/* Data of retention link may be temporarily stored in L1 DCache, which is not accessible by
REGDMA, write it back to L2MEM before starting REGDMA. */
cache_ll_writeback_all(CACHE_LL_LEVEL_INT_MEM, CACHE_TYPE_DATA, CACHE_LL_ID_ALL);
#endif
if (backup_or_restore) {
pau_regdma_trigger_extra_link_backup();
} else {
pau_regdma_trigger_extra_link_restore();
}
}
#if SOC_PM_RETENTION_SW_TRIGGER_REGDMA
void IRAM_ATTR sleep_retention_do_system_retention(bool backup_or_restore)
{
#define SYSTEM_LINK_NUM (0)
if (s_retention.highpri >= SLEEP_RETENTION_REGDMA_LINK_HIGHEST_PRIORITY &&
s_retention.highpri <= SLEEP_RETENTION_REGDMA_LINK_LOWEST_PRIORITY) {
// Set extra linked list head pointer to hardware
pau_regdma_set_system_link_addr(s_retention.lists[s_retention.highpri].entries[SYSTEM_LINK_NUM]);
// When PD TOP, we need to prevent the PMU from triggering the REGDMA backup, because REGDMA will power off
pmu_sleep_disable_regdma_backup();
if (backup_or_restore) {
pau_regdma_trigger_system_link_backup();
} else {
pau_regdma_trigger_system_link_restore();
}
}
}
#endif