esp-idf/components/tinyusb/port/common/src/usbd.c

831 lines
27 KiB
C
Raw Normal View History

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org),
* 2020 Espressif Systems (Shanghai) Co. Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED
#include "tusb.h"
#include "usbd.h"
#include "device/usbd_pvt.h"
#include "dcd.h"
#include "esp_log.h"
static const char *TAG = "TUSB:device";
#ifndef CFG_TUD_TASK_QUEUE_SZ
#define CFG_TUD_TASK_QUEUE_SZ 16
#endif
//--------------------------------------------------------------------+
// Device Data
//--------------------------------------------------------------------+
typedef struct {
struct TU_ATTR_PACKED {
volatile uint8_t connected : 1;
volatile uint8_t configured : 1;
volatile uint8_t suspended : 1;
uint8_t remote_wakeup_en : 1; // enable/disable by host
uint8_t remote_wakeup_support : 1; // configuration descriptor's attribute
uint8_t self_powered : 1; // configuration descriptor's attribute
};
uint8_t ep_busy_map[2]; // bit mask for busy endpoint
uint8_t ep_stall_map[2]; // bit map for stalled endpoint
uint8_t itf2drv[16]; // map interface number to driver (0xff is invalid)
uint8_t ep2drv[8][2]; // map endpoint to driver ( 0xff is invalid )
} usbd_device_t;
static usbd_device_t _usbd_dev = {0};
//--------------------------------------------------------------------+
// Class Driver
//--------------------------------------------------------------------+
typedef struct {
uint8_t class_code;
void (*init)(void);
bool (*open)(uint8_t rhport, tusb_desc_interface_t const *desc_intf, uint16_t *p_length);
bool (*control_request)(uint8_t rhport, tusb_control_request_t const *request);
bool (*control_request_complete)(uint8_t rhport, tusb_control_request_t const *request);
bool (*xfer_cb)(uint8_t rhport, uint8_t ep_addr, xfer_result_t, uint32_t);
void (*sof)(uint8_t rhport);
void (*reset)(uint8_t);
} usbd_class_driver_t;
static usbd_class_driver_t const usbd_class_drivers[] = {
#if CFG_TUD_CDC
{
.class_code = TUSB_CLASS_CDC,
.init = cdcd_init,
.open = cdcd_open,
.control_request = cdcd_control_request,
.control_request_complete = cdcd_control_request_complete,
.xfer_cb = cdcd_xfer_cb,
.sof = NULL,
.reset = cdcd_reset
},
#endif
#if CFG_TUD_MSC
{
.class_code = TUSB_CLASS_MSC,
.init = mscd_init,
.open = mscd_open,
.control_request = mscd_control_request,
.control_request_complete = mscd_control_request_complete,
.xfer_cb = mscd_xfer_cb,
.sof = NULL,
.reset = mscd_reset
},
#endif
#if CFG_TUD_HID
{
.class_code = TUSB_CLASS_HID,
.init = hidd_init,
.open = hidd_open,
.control_request = hidd_control_request,
.control_request_complete = hidd_control_request_complete,
.xfer_cb = hidd_xfer_cb,
.sof = NULL,
.reset = hidd_reset
},
#endif
#if CFG_TUD_MIDI
{
.class_code = TUSB_CLASS_AUDIO,
.init = midid_init,
.open = midid_open,
.control_request = midid_control_request,
.control_request_complete = midid_control_request_complete,
.xfer_cb = midid_xfer_cb,
.sof = NULL,
.reset = midid_reset
},
#endif
#if CFG_TUD_CUSTOM_CLASS
{
.class_code = TUSB_CLASS_VENDOR_SPECIFIC,
.init = cusd_init,
.open = cusd_open,
.control_request = cusd_control_request,
.control_request_complete = cusd_control_request_complete,
.xfer_cb = cusd_xfer_cb,
.sof = NULL,
.reset = cusd_reset
},
#endif
};
enum {
USBD_CLASS_DRIVER_COUNT = TU_ARRAY_SZIE(usbd_class_drivers)
};
//--------------------------------------------------------------------+
// DCD Event
//--------------------------------------------------------------------+
// Event queue
// OPT_MODE_DEVICE is used by OS NONE for mutex (disable usb isr)
OSAL_QUEUE_DEF(OPT_MODE_DEVICE, _usbd_qdef, CFG_TUD_TASK_QUEUE_SZ, dcd_event_t);
static osal_queue_t _usbd_q;
//--------------------------------------------------------------------+
// Prototypes
//--------------------------------------------------------------------+
static void mark_interface_endpoint(uint8_t ep2drv[8][2], uint8_t const *p_desc, uint16_t desc_len, uint8_t driver_id);
static bool process_control_request(uint8_t rhport, tusb_control_request_t const *p_request);
static bool process_set_config(uint8_t rhport, uint8_t cfg_num);
static bool process_get_descriptor(uint8_t rhport, tusb_control_request_t const *p_request);
void usbd_control_reset(uint8_t rhport);
bool usbd_control_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
void usbd_control_set_complete_callback(bool (*fp)(uint8_t, tusb_control_request_t const *));
//--------------------------------------------------------------------+
// Application API
//--------------------------------------------------------------------+
bool tud_mounted(void)
{
return _usbd_dev.configured;
}
bool tud_suspended(void)
{
return _usbd_dev.suspended;
}
bool tud_remote_wakeup(void)
{
// only wake up host if this feature is supported and enabled and we are suspended
TU_VERIFY(_usbd_dev.suspended && _usbd_dev.remote_wakeup_support && _usbd_dev.remote_wakeup_en);
dcd_remote_wakeup(TUD_OPT_RHPORT);
return true;
}
//--------------------------------------------------------------------+
// USBD Task
//--------------------------------------------------------------------+
bool usbd_init(void)
{
tu_varclr(&_usbd_dev);
// Init device queue & task
ESP_LOGV(TAG, "Init device queue & task...");
_usbd_q = osal_queue_create(&_usbd_qdef);
TU_ASSERT(_usbd_q != NULL);
ESP_LOGV(TAG, "Init device queue & task: Done");
// Init class drivers
# if USBD_CLASS_DRIVER_COUNT
for (uint8_t i = 0; i < USBD_CLASS_DRIVER_COUNT; i++) {
usbd_class_drivers[i].init();
}
# endif
// Init device controller driver
ESP_LOGV(TAG, "dcd_init...");
dcd_init(TUD_OPT_RHPORT);
ESP_LOGV(TAG, "dcd_init: Done");
ESP_LOGV(TAG, "dcd_int_enable...");
dcd_int_enable(TUD_OPT_RHPORT);
ESP_LOGV(TAG, "dcd_int_enable: Done");
return true;
}
static void usbd_reset(uint8_t rhport)
{
tu_varclr(&_usbd_dev);
memset(_usbd_dev.itf2drv, 0xff, sizeof(_usbd_dev.itf2drv)); // invalid mapping
memset(_usbd_dev.ep2drv, 0xff, sizeof(_usbd_dev.ep2drv)); // invalid mapping
usbd_control_reset(rhport);
# if USBD_CLASS_DRIVER_COUNT
for (uint8_t i = 0; i < USBD_CLASS_DRIVER_COUNT; i++) {
if (usbd_class_drivers[i].reset) {
usbd_class_drivers[i].reset(rhport);
}
}
# endif
}
/* USB Device Driver task
* This top level thread manages all device controller event and delegates events to class-specific drivers.
* This should be called periodically within the mainloop or rtos thread.
*
@code
int main(void)
{
application_init();
tusb_init();
while(1) // the mainloop
{
application_code();
tud_task(); // tinyusb device task
}
}
@endcode
*/
void tud_task(void)
{
// Skip if stack is not initialized
bool tusb_ready = tusb_inited();
if (!tusb_ready) {
ESP_LOGV(TAG, "is not ready");
return;
}
ESP_LOGV(TAG, "started");
// Loop until there is no more events in the queue
while (1) {
dcd_event_t event;
volatile bool ev = osal_queue_receive(_usbd_q, &event);
if (!ev) {
ESP_LOGV(TAG, "USB EVENT ...empty...");
return;
}
ESP_LOGV(TAG, "USB EVENT: %u", event.event_id);
switch (event.event_id) {
case DCD_EVENT_BUS_RESET:
ESP_LOGV(TAG, "USB EVENT bus_reset");
usbd_reset(event.rhport);
break;
case DCD_EVENT_UNPLUGGED:
ESP_LOGV(TAG, "USB EVENT unplugged");
usbd_reset(event.rhport);
// invoke callback
if (tud_umount_cb) {
tud_umount_cb();
}
break;
case DCD_EVENT_SETUP_RECEIVED:
ESP_LOGV(TAG, "USB EVENT setup_received");
// Mark as connected after receiving 1st setup packet.
// But it is easier to set it every time instead of wasting time to check then set
_usbd_dev.connected = 1;
// Process control request
if (!process_control_request(event.rhport, &event.setup_received)) {
// Failed -> stall both control endpoint IN and OUT
dcd_edpt_stall(event.rhport, 0);
dcd_edpt_stall(event.rhport, 0 | TUSB_DIR_IN_MASK);
}
break;
case DCD_EVENT_XFER_COMPLETE:
// Only handle xfer callback in ready state
// if (_usbd_dev.connected && !_usbd_dev.suspended)
ESP_LOGV(TAG, "USB EVENT xfer_complete");
{
// Invoke the class callback associated with the endpoint address
uint8_t const ep_addr = event.xfer_complete.ep_addr;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
_usbd_dev.ep_busy_map[dir] = (uint8_t)tu_bit_clear(_usbd_dev.ep_busy_map[dir], epnum);
if (0 == tu_edpt_number(ep_addr)) {
// control transfer DATA stage callback
usbd_control_xfer_cb(event.rhport, ep_addr, event.xfer_complete.result, event.xfer_complete.len);
} else {
uint8_t const drv_id = _usbd_dev.ep2drv[tu_edpt_number(ep_addr)][tu_edpt_dir(ep_addr)];
# if USBD_CLASS_DRIVER_COUNT
TU_ASSERT(drv_id < USBD_CLASS_DRIVER_COUNT, );
# endif
usbd_class_drivers[drv_id].xfer_cb(event.rhport, ep_addr, event.xfer_complete.result, event.xfer_complete.len);
}
}
break;
case DCD_EVENT_SUSPEND:
ESP_LOGV(TAG, "USB EVENT suspend");
if (tud_suspend_cb) {
tud_suspend_cb(_usbd_dev.remote_wakeup_en);
}
break;
case DCD_EVENT_RESUME:
ESP_LOGV(TAG, "USB EVENT resume");
if (tud_resume_cb) {
tud_resume_cb();
}
break;
case DCD_EVENT_SOF:
ESP_LOGV(TAG, "USB EVENT sof");
# if USBD_CLASS_DRIVER_COUNT
for (uint8_t i = 0; i < USBD_CLASS_DRIVER_COUNT; i++) {
if (usbd_class_drivers[i].sof) {
usbd_class_drivers[i].sof(event.rhport);
}
}
# endif
break;
case USBD_EVENT_FUNC_CALL:
ESP_LOGV(TAG, "USB EVENT func_call");
if (event.func_call.func) {
event.func_call.func(event.func_call.param);
}
break;
default:
ESP_LOGV(TAG, "USB EVENT unknown");
TU_BREAKPOINT();
break;
}
}
}
//--------------------------------------------------------------------+
// Control Request Parser & Handling
//--------------------------------------------------------------------+
// This handles the actual request and its response.
// return false will cause its caller to stall control endpoint
static bool process_control_request(uint8_t rhport, tusb_control_request_t const *p_request)
{
usbd_control_set_complete_callback(NULL);
switch (p_request->bmRequestType_bit.recipient) {
//------------- Device Requests e.g in enumeration -------------//
case TUSB_REQ_RCPT_DEVICE:
if (TUSB_REQ_TYPE_STANDARD != p_request->bmRequestType_bit.type) {
// Non standard request is not supported
TU_BREAKPOINT();
return false;
}
switch (p_request->bRequest) {
case TUSB_REQ_SET_ADDRESS:
ESP_LOGV(TAG, "TUSB_REQ_SET_ADDRESS");
// Depending on mcu, status phase could be sent either before or after changing device address
// Therefore DCD must include zero-length status response
dcd_set_address(rhport, (uint8_t)p_request->wValue);
return true; // skip status
break;
case TUSB_REQ_GET_CONFIGURATION: {
ESP_LOGV(TAG, "TUSB_REQ_GET_CONFIGURATION");
uint8_t cfgnum = _usbd_dev.configured ? 1 : 0;
usbd_control_xfer(rhport, p_request, &cfgnum, 1);
}
break;
case TUSB_REQ_SET_CONFIGURATION: {
ESP_LOGV(TAG, "TUSB_REQ_SET_CONFIGURATION");
uint8_t const cfg_num = (uint8_t)p_request->wValue;
dcd_set_config(rhport, cfg_num);
_usbd_dev.configured = cfg_num ? 1 : 0;
if (cfg_num) {
TU_ASSERT(process_set_config(rhport, cfg_num));
}
usbd_control_status(rhport, p_request);
}
break;
case TUSB_REQ_GET_DESCRIPTOR:
ESP_LOGV(TAG, "TUSB_REQ_GET_DESCRIPTOR");
TU_VERIFY(process_get_descriptor(rhport, p_request));
break;
case TUSB_REQ_SET_FEATURE:
ESP_LOGV(TAG, "TUSB_REQ_SET_FEATURE");
// Only support remote wakeup for device feature
TU_VERIFY(TUSB_REQ_FEATURE_REMOTE_WAKEUP == p_request->wValue);
// Host may enable remote wake up before suspending especially HID device
_usbd_dev.remote_wakeup_en = true;
usbd_control_status(rhport, p_request);
break;
case TUSB_REQ_CLEAR_FEATURE:
ESP_LOGV(TAG, "TUSB_REQ_CLEAR_FEATURE");
// Only support remote wakeup for device feature
TU_VERIFY(TUSB_REQ_FEATURE_REMOTE_WAKEUP == p_request->wValue);
// Host may disable remote wake up after resuming
_usbd_dev.remote_wakeup_en = false;
usbd_control_status(rhport, p_request);
break;
case TUSB_REQ_GET_STATUS: {
ESP_LOGV(TAG, "TUSB_REQ_GET_STATUS");
// Device status bit mask
// - Bit 0: Self Powered
// - Bit 1: Remote Wakeup enabled
uint16_t status = (_usbd_dev.self_powered ? 1 : 0) | (_usbd_dev.remote_wakeup_en ? 2 : 0);
usbd_control_xfer(rhport, p_request, &status, 2);
}
break;
// Unknown/Unsupported request
default:
TU_BREAKPOINT();
return false;
}
break;
//------------- Class/Interface Specific Request -------------//
case TUSB_REQ_RCPT_INTERFACE: {
uint8_t const itf = tu_u16_low(p_request->wIndex);
uint8_t const drvid = _usbd_dev.itf2drv[itf];
# if USBD_CLASS_DRIVER_COUNT
TU_VERIFY(drvid < USBD_CLASS_DRIVER_COUNT);
# endif
usbd_control_set_complete_callback(usbd_class_drivers[drvid].control_request_complete);
// stall control endpoint if driver return false
return usbd_class_drivers[drvid].control_request(rhport, p_request);
}
break;
//------------- Endpoint Request -------------//
case TUSB_REQ_RCPT_ENDPOINT:
// Non standard request is not supported
TU_VERIFY(TUSB_REQ_TYPE_STANDARD == p_request->bmRequestType_bit.type);
switch (p_request->bRequest) {
case TUSB_REQ_GET_STATUS: {
uint16_t status = usbd_edpt_stalled(rhport, tu_u16_low(p_request->wIndex)) ? 0x0001 : 0x0000;
usbd_control_xfer(rhport, p_request, &status, 2);
}
break;
case TUSB_REQ_CLEAR_FEATURE:
if (TUSB_REQ_FEATURE_EDPT_HALT == p_request->wValue) {
usbd_edpt_clear_stall(rhport, tu_u16_low(p_request->wIndex));
}
usbd_control_status(rhport, p_request);
break;
case TUSB_REQ_SET_FEATURE:
if (TUSB_REQ_FEATURE_EDPT_HALT == p_request->wValue) {
usbd_edpt_stall(rhport, tu_u16_low(p_request->wIndex));
}
usbd_control_status(rhport, p_request);
break;
// Unknown/Unsupported request
default:
TU_BREAKPOINT();
return false;
}
break;
// Unknown recipient
default:
TU_BREAKPOINT();
return false;
}
return true;
}
// Process Set Configure Request
// This function parse configuration descriptor & open drivers accordingly
static bool process_set_config(uint8_t rhport, uint8_t cfg_num)
{
tusb_desc_configuration_t const *desc_cfg = (tusb_desc_configuration_t const *)tud_descriptor_configuration_cb(cfg_num - 1); // index is cfg_num-1
TU_ASSERT(desc_cfg != NULL && desc_cfg->bDescriptorType == TUSB_DESC_CONFIGURATION);
// Parse configuration descriptor
_usbd_dev.remote_wakeup_support = (desc_cfg->bmAttributes & TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP) ? 1 : 0;
_usbd_dev.self_powered = (desc_cfg->bmAttributes & TUSB_DESC_CONFIG_ATT_SELF_POWERED) ? 1 : 0;
// Parse interface descriptor
uint8_t const *p_desc = ((uint8_t const *)desc_cfg) + sizeof(tusb_desc_configuration_t);
uint8_t const *desc_end = ((uint8_t const *)desc_cfg) + desc_cfg->wTotalLength;
while (p_desc < desc_end) {
// Each interface always starts with Interface or Association descriptor
if (TUSB_DESC_INTERFACE_ASSOCIATION == tu_desc_type(p_desc)) {
p_desc = tu_desc_next(p_desc); // ignore Interface Association
} else {
TU_ASSERT(TUSB_DESC_INTERFACE == tu_desc_type(p_desc));
tusb_desc_interface_t *desc_itf = (tusb_desc_interface_t *)p_desc;
// Check if class is supported
uint8_t drv_id = 0;
# if USBD_CLASS_DRIVER_COUNT
for (; drv_id < USBD_CLASS_DRIVER_COUNT; drv_id++) {
if (usbd_class_drivers[drv_id].class_code == desc_itf->bInterfaceClass) {
break;
}
}
# endif
// Interface number must not be used already TODO alternate interface
TU_ASSERT(0xff == _usbd_dev.itf2drv[desc_itf->bInterfaceNumber]);
_usbd_dev.itf2drv[desc_itf->bInterfaceNumber] = drv_id;
uint16_t itf_len = 0;
TU_ASSERT(usbd_class_drivers[drv_id].open(rhport, desc_itf, &itf_len));
TU_ASSERT(itf_len >= sizeof(tusb_desc_interface_t));
mark_interface_endpoint(_usbd_dev.ep2drv, p_desc, itf_len, drv_id);
p_desc += itf_len; // next interface
}
}
// invoke callback
if (tud_mount_cb) {
tud_mount_cb();
}
return true;
}
// Helper marking endpoint of interface belongs to class driver
static void mark_interface_endpoint(uint8_t ep2drv[8][2], uint8_t const *p_desc, uint16_t desc_len, uint8_t driver_id)
{
uint16_t len = 0;
while (len < desc_len) {
if (TUSB_DESC_ENDPOINT == tu_desc_type(p_desc)) {
uint8_t const ep_addr = ((tusb_desc_endpoint_t const *)p_desc)->bEndpointAddress;
ep2drv[tu_edpt_number(ep_addr)][tu_edpt_dir(ep_addr)] = driver_id;
}
len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}
}
// return descriptor's buffer and update desc_len
static bool process_get_descriptor(uint8_t rhport, tusb_control_request_t const *p_request)
{
tusb_desc_type_t const desc_type = (tusb_desc_type_t)tu_u16_high(p_request->wValue);
uint8_t const desc_index = tu_u16_low(p_request->wValue);
switch (desc_type) {
case TUSB_DESC_DEVICE:
return usbd_control_xfer(rhport, p_request, (void *)tud_descriptor_device_cb(), sizeof(tusb_desc_device_t));
break;
case TUSB_DESC_CONFIGURATION: {
tusb_desc_configuration_t const *desc_config = (tusb_desc_configuration_t const *)tud_descriptor_configuration_cb(desc_index);
return usbd_control_xfer(rhport, p_request, (void *)desc_config, desc_config->wTotalLength);
}
break;
case TUSB_DESC_STRING:
// String Descriptor always uses the desc set from user
if (desc_index == 0xEE) {
// The 0xEE index string is a Microsoft USB extension.
// It can be used to tell Windows what driver it should use for the device !!!
return false;
} else {
uint8_t const *desc_str = (uint8_t const *)tud_descriptor_string_cb(desc_index);
TU_ASSERT(desc_str);
// first byte of descriptor is its size
return usbd_control_xfer(rhport, p_request, (void *)desc_str, desc_str[0]);
}
break;
case TUSB_DESC_DEVICE_QUALIFIER:
return false;
break;
default:
return false;
}
return true;
}
//--------------------------------------------------------------------+
// DCD Event Handler
//--------------------------------------------------------------------+
void dcd_event_handler(dcd_event_t const *event, bool in_isr)
{
switch (event->event_id) {
case DCD_EVENT_BUS_RESET:
osal_queue_send(_usbd_q, event, in_isr);
break;
case DCD_EVENT_UNPLUGGED:
_usbd_dev.connected = 0;
_usbd_dev.configured = 0;
_usbd_dev.suspended = 0;
osal_queue_send(_usbd_q, event, in_isr);
break;
case DCD_EVENT_SOF:
// nothing to do now
break;
case DCD_EVENT_SUSPEND:
// NOTE: When plugging/unplugging device, the D+/D- state are unstable and can accidentally meet the
// SUSPEND condition ( Idle for 3ms ). Some MCUs such as SAMD doesn't distinguish suspend vs disconnect as well.
// We will skip handling SUSPEND/RESUME event if not currently connected
if (_usbd_dev.connected) {
_usbd_dev.suspended = 1;
osal_queue_send(_usbd_q, event, in_isr);
}
break;
case DCD_EVENT_RESUME:
if (_usbd_dev.connected) {
_usbd_dev.suspended = 0;
osal_queue_send(_usbd_q, event, in_isr);
}
break;
case DCD_EVENT_SETUP_RECEIVED:
osal_queue_send(_usbd_q, event, in_isr);
break;
case DCD_EVENT_XFER_COMPLETE:
// skip zero-length control status complete event, should DCD notify us.
if ((0 == tu_edpt_number(event->xfer_complete.ep_addr)) && (event->xfer_complete.len == 0)) {
break;
}
osal_queue_send(_usbd_q, event, in_isr);
TU_ASSERT(event->xfer_complete.result == XFER_RESULT_SUCCESS, );
break;
// Not an DCD event, just a convenient way to defer ISR function should we need to
case USBD_EVENT_FUNC_CALL:
osal_queue_send(_usbd_q, event, in_isr);
break;
default:
break;
}
}
// helper to send bus signal event
void dcd_event_bus_signal(uint8_t rhport, dcd_eventid_t eid, bool in_isr)
{
dcd_event_t event = {
.rhport = rhport,
.event_id = eid,
};
dcd_event_handler(&event, in_isr);
}
// helper to send setup received
void dcd_event_setup_received(uint8_t rhport, uint8_t const *setup, bool in_isr)
{
dcd_event_t event = {.rhport = rhport, .event_id = DCD_EVENT_SETUP_RECEIVED};
memcpy(&event.setup_received, setup, 8);
dcd_event_handler(&event, in_isr);
}
// helper to send transfer complete event
void dcd_event_xfer_complete(uint8_t rhport, uint8_t ep_addr, uint32_t xferred_bytes, uint8_t result, bool in_isr)
{
dcd_event_t event = {.rhport = rhport, .event_id = DCD_EVENT_XFER_COMPLETE};
event.xfer_complete.ep_addr = ep_addr;
event.xfer_complete.len = xferred_bytes;
event.xfer_complete.result = result;
dcd_event_handler(&event, in_isr);
}
//--------------------------------------------------------------------+
// Helper
//--------------------------------------------------------------------+
// Parse consecutive endpoint descriptors (IN & OUT)
bool usbd_open_edpt_pair(uint8_t rhport, uint8_t const *p_desc, uint8_t ep_count, uint8_t xfer_type, uint8_t *ep_out, uint8_t *ep_in)
{
for (int i = 0; i < ep_count; i++) {
tusb_desc_endpoint_t const *desc_ep = (tusb_desc_endpoint_t const *)p_desc;
TU_VERIFY(TUSB_DESC_ENDPOINT == desc_ep->bDescriptorType && xfer_type == desc_ep->bmAttributes.xfer);
TU_ASSERT(dcd_edpt_open(rhport, desc_ep));
if (tu_edpt_dir(desc_ep->bEndpointAddress) == TUSB_DIR_IN) {
(*ep_in) = desc_ep->bEndpointAddress;
} else {
(*ep_out) = desc_ep->bEndpointAddress;
}
p_desc = tu_desc_next(p_desc);
}
return true;
}
// Helper to defer an isr function
void usbd_defer_func(osal_task_func_t func, void *param, bool in_isr)
{
dcd_event_t event = {
.rhport = 0,
.event_id = USBD_EVENT_FUNC_CALL,
};
event.func_call.func = func;
event.func_call.param = param;
dcd_event_handler(&event, in_isr);
}
//--------------------------------------------------------------------+
// USBD Endpoint API
//--------------------------------------------------------------------+
bool usbd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
TU_VERIFY(dcd_edpt_xfer(rhport, ep_addr, buffer, total_bytes));
_usbd_dev.ep_busy_map[dir] = (uint8_t)tu_bit_set(_usbd_dev.ep_busy_map[dir], epnum);
return true;
}
bool usbd_edpt_busy(uint8_t rhport, uint8_t ep_addr)
{
(void)rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
return tu_bit_test(_usbd_dev.ep_busy_map[dir], epnum);
}
void usbd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
dcd_edpt_stall(rhport, ep_addr);
_usbd_dev.ep_stall_map[dir] = (uint8_t)tu_bit_set(_usbd_dev.ep_stall_map[dir], epnum);
}
void usbd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
dcd_edpt_clear_stall(rhport, ep_addr);
_usbd_dev.ep_stall_map[dir] = (uint8_t)tu_bit_clear(_usbd_dev.ep_stall_map[dir], epnum);
}
bool usbd_edpt_stalled(uint8_t rhport, uint8_t ep_addr)
{
(void)rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
return tu_bit_test(_usbd_dev.ep_stall_map[dir], epnum);
}
#endif