ESP-IDF makes these components explicit and configurable. To do that,
when a project is compiled, the build environment will look up all the
components in the ESP-IDF directories, the project directories and
(optionally) in additional custom component directories. It then
allows the user to configure the ESP-IDF project using a a text-based
menu system to customize each component. After the components in the
project are configured, the build process will compile the project.
Concepts
--------
- A "project" is a directory that contains all the files and configuration to build a single "app" (executable), as well as additional supporting output such as a partition table, data/filesystem partitions, and a bootloader.
- "Project configuration" is held in a single file called sdkconfig in the root directory of the project. This configuration file is modified via ``make menuconfig`` to customise the configuration of the project. A single project contains exactly one project configuration.
- An "app" is an executable which is built by esp-idf. A single project will usually build two apps - a "project app" (the main executable, ie your custom firmware) and a "bootloader app" (the initial bootloader program which launches the project app).
- "components" are modular pieces of standalone code which are compiled into static libraries (.a files) and linked into an app. Some are provided by esp-idf itself, others may be sourced from other places.
Some things are not part of the project:
- "ESP-IDF" is not part of the project. Instead it is standalone, and linked to the project via the ``IDF_PATH`` environment variable which holds the path of the ``esp-idf`` directory. This allows the IDF framework to be decoupled from your project.
- The toolchain for compilation is not part of the project. The toolchain should be installed in the system command line PATH, or the path to the toolchain can be set as part of the compiler prefix in the project configuration.
- "sdkconfig" project configuration file. This file is created/updated when "make menuconfig" runs, and holds configuration for all of the components in the project (including esp-idf itself). The "sdkconfig" file may or may not be added to the source control system of the project.
- Optional "components" directory contains components that are part of the project. A project does not have to contain custom components of this kind, but it can be useful for structuring reusable code or including third party components that aren't part of ESP-IDF.
- "main" directory is a special "pseudo-component" that contains source code for the project itself. "main" is a default name, the Makefile variable ``COMPONENT_DIRS`` includes this component but you can modify this variable (or set ``EXTRA_COMPONENT_DIRS``) to look for components in other places.
- "build" directory is where build output is created. After the make process is run, this directory will contain interim object files and libraries as well as final binary output files. This directory is usually not added to source control or distributed with the project source code.
Component directories contain a component makefile - ``component.mk``. This may contain variable definitions
to control the build process of the component, and its integration into the overall project. See `Component Makefiles` for more details.
Each component may also include a ``Kconfig`` file defining the `component configuration` options that can be set via the project configuration. Some components may also include ``Kconfig.projbuild`` and ``Makefile.projbuild`` files, which are special files for `overriding parts of the project`.
These variables all have default values that can be overridden for custom behaviour. Look in ``make/project.mk`` for all of the implementation details.
-``PROJECT_PATH``: Top-level project directory. Defaults to the directory containing the Makefile. Many other project variables are based on this variable. The project path cannot contain spaces.
-``BUILD_DIR_BASE``: The build directory for all objects/libraries/binaries. Defaults to ``$(PROJECT_PATH)/build``.
-``COMPONENT_DIRS``: Directories to search for components. Defaults to `$(IDF_PATH)/components`, `$(PROJECT_PATH)/components`, ``$(PROJECT_PATH)/main`` and ``EXTRA_COMPONENT_DIRS``. Override this variable if you don't want to search for components in these places.
-``EXTRA_COMPONENT_DIRS``: Optional list of additional directories to search for components.
Any paths in these Makefile variables should be absolute paths. You can convert relative paths using ``$(PROJECT_PATH)/xxx``, ``$(IDF_PATH)/xxx``, or use the Make function ``$(abspath xxx)``.
These variables should all be set before the line ``include $(IDF_PATH)/make/project.mk`` in the Makefile.
The list of directories in ``COMPONENT_DIRS`` is searched for the project's components. Directories in this list can either be components themselves (ie they contain a `component.mk` file), or they can be top-level directories whose subdirectories are components.
Running the ``make list-components`` target dumps many of these variables and can help debug the discovery of component directories.
When esp-idf is collecting all the components to compile, it will do this in the order specified by ``COMPONENT_DIRS``; by default, this means the
idf components first, the project components second and optionally the components in ``EXTRA_COMPONENT_DIRS`` last. If two or more of these directories
contain component subdirectories with the same name, the component in the last place searched is used. This allows, for example, overriding esp-idf components
with a modified version by simply copying the component from the esp-idf component directory to the project component tree and then modifying it there.
If used in this way, the esp-idf directory itself can remain untouched.
Note that there is a difference between an empty ``component.mk`` file (which invokes default component build behaviour) and no ``component.mk`` file (which means no default component build behaviour will occur.) It is possible for a component to have no `component.mk` file, if it only contains other files which influence the project configuration or build process.
The following component-specific variables are available for use inside ``component.mk``, but should not be modified:
-``COMPONENT_PATH``: The component directory. Evaluates to the absolute path of the directory containing ``component.mk``. The component path cannot contain spaces.
-``COMPONENT_NAME``: Name of the component. Defaults to the name of the component directory.
-``COMPONENT_BUILD_DIR``: The component build directory. Evaluates to the absolute path of a directory inside `$(BUILD_DIR_BASE)` where this component's source files are to be built. This is also the Current Working Directory any time the component is being built, so relative paths in make targets, etc. will be relative to this directory.
-``COMPONENT_LIBRARY``: Name of the static library file (relative to the component build directory) that will be built for this component. Defaults to ``$(COMPONENT_NAME).a``.
The following variables are set at the project level, but exported for use in the component build:
-``PROJECT_NAME``: Name of the project, as set in project Makefile
-``PROJECT_PATH``: Absolute path of the project directory containing the project Makefile.
-``COMPONENTS``: Name of all components that are included in this build.
-``CONFIG_*``: Each value in the project configuration has a corresponding variable available in make. All names begin with ``CONFIG_``.
-``CC``, ``LD``, ``AR``, ``OBJCOPY``: Full paths to each tool from the gcc xtensa cross-toolchain.
-``HOSTCC``, ``HOSTLD``, ``HOSTAR``: Full names of each tool from the host native toolchain.
If you modify any of these variables inside ``component.mk`` then this will not prevent other components from building but it may make your component hard to build and/or debug.
Optional Project-Wide Component Variables
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following variables can be set inside ``component.mk`` to control build settings across the entire project:
-``COMPONENT_ADD_INCLUDEDIRS``: Paths, relative to the component
directory, which will be added to the include search path for
all components in the project. Defaults to ``include`` if not overridden. If an include directory is only needed to compile
this specific component, add it to ``COMPONENT_PRIV_INCLUDEDIRS`` instead.
-``COMPONENT_ADD_LDFLAGS``: Add linker arguments to the LDFLAGS for
the app executable. Defaults to ``-l$(COMPONENT_NAME)``. If
adding pre-compiled libraries to this directory, add them as
- "make" is always run from the project directory and the project makefile, typically named Makefile.
- The project makefile sets ``PROJECT_NAME`` and optionally customises other `optional project variables`
- The project makefile includes ``$(IDF_PATH)/make/project.mk`` which contains the project-level Make logic.
-``project.mk`` fills in default project-level make variables and includes make variables from the project configuration. If the generated makefile containing project configuration is out of date, then it is regenerated (via targets in ``project_config.mk``) and then the make process restarts from the top.
-``project.mk`` builds a list of components to build, based on the default component directories or a custom list of components set in `optional project variables`.
- Each component can set some `optional project-wide component variables`. These are included via generated makefiles named ``component_project_vars.mk`` - there is one per component. These generated makefiles are included into ``project.mk``. If any are missing or out of date, they are regenerated (via a recursive make call to the component makefile) and then the make process restarts from the top.
-`Makefile.projbuild` files from components are included into the make process, to add extra targets or configuration.
- By default, the project makefile also generates top-level build & clean targets for each component and sets up `app` and `clean` targets to invoke all of these sub-targets.
- In order to compile each component, a recursive make is performed for the component makefile.
To better understand the project make process, have a read through the ``project.mk`` file itself.
Second Level: Component Makefiles
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Each call to a component makefile goes via the ``$(IDF_PATH)/make/component_wrapper.mk`` wrapper makefile.
- The ``component_wrapper.mk`` is called with the current directory set to the component build directory, and the ``COMPONENT_MAKEFILE`` variable is set to the absolute path to ``component.mk``.
-``component_wrapper.mk`` sets default values for all `component variables`, then includes the `component.mk` file which can override or modify these.
- If ``COMPONENT_OWNBUILDTARGET`` and ``COMPONENT_OWNCLEANTARGET`` are not defined, default build and clean targets are created for the component's source files and the prerequisite ``COMPONENT_LIBRARY`` static library file.
- The ``component_project_vars.mk`` file has its own target in ``component_wrapper.mk``, which is evaluated from ``project.mk`` if this file needs to be rebuilt due to changes in the component makefile or the project configuration.
To better understand the component make process, have a read through the ``component_wrapper.mk`` file and some of the ``component.mk`` files included with esp-idf.
When running ``make`` in a situation where you don't want interactive prompts (for example: inside an IDE or an automated build system) append ``BATCH_BUILD=1`` to the make arguments (or set it as an environment variable).
Setting ``BATCH_BUILD`` implies the following:
- Verbose output (same as ``V=1``, see below). If you don't want verbose output, also set ``V=0``.
- If the project configuration is missing new configuration items (from new components or esp-idf updates) then the project use the default values, instead of prompting the user for each item.
- If the build system needs to invoke ``menuconfig``, an error is printed and the build fails.
- Appending ``V=1`` to the make arguments (or setting it as an environment variable) will cause make to echo all commands executed, and also each directory as it is entered for a sub-make.
- Running ``make -w`` will cause make to echo each directory as it is entered for a sub-make - same as ``V=1`` but without also echoing all commands.
- Running ``make --trace`` (possibly in addition to one of the above arguments) will print out every target as it is built, and the dependency which caused it to be built.
- Running ``make -p`` prints a (very verbose) summary of every generated target in each makefile.
For more debugging tips and general make information, see the `GNU Make Manual`.
For components that have build requirements that must be evaluated in the top-level
project make pass, you can create a file called ``Makefile.projbuild`` in the
component directory. This makefile is included when ``project.mk`` is evaluated.
For example, if your component needs to add to CFLAGS for the entire
project (not just for its own source files) then you can set
``CFLAGS +=`` in Makefile.projbuild.
``Makefile.projbuild`` files are used heavily inside esp-idf, for defining project-wide build features such as ``esptool.py`` command line arguments and the ``bootloader`` "special app".
Note that ``Makefile.projbuild`` isn't necessary for the most common component uses - such as adding include directories to the project, or LDFLAGS to the final linking step. These values can be customised via the ``component.mk`` file itself. See `Optional Project-Wide Component Variables` for details.
Take care when setting variables or targets in this file. As the values are included into the top-level project makefile pass, they can influence or break functionality across all components!
configuration options at the top-level of menuconfig, rather than inside the "Component Configuration" sub-menu, then these can be defined in the KConfig.projbuild file alongside the ``component.mk`` file.
Take care when adding configuration values in this file, as they will be included across the entire project configuration. Where possible, it's generally better to create a KConfig file for `component configuration`.
Some special components which contain no source files, only ``Kconfig.projbuild`` and ``Makefile.projbuild``, may set the flag ``COMPONENT_CONFIG_ONLY`` in the component.mk file. If this flag is set, most other component variables are ignored and no build step is run for the component.
Because the build environment tries to set reasonable defaults that will work most
of the time, component.mk can be very small or even empty (see `Minimal Component Makefile`). However, overriding `component variables` is usually required for some functionality.
Here are some more advanced examples of ``component.mk`` makefiles:
Sometimes you have a file with some binary or text data that you'd like to make available to your component - but you don't want to reformat the file as C source.
You can set a variable COMPONENT_EMBED_FILES in component.mk, giving the names of the files to embed in this way::
COMPONENT_EMBED_FILES := server_root_cert.der
Or if the file is a string, you can use the variable COMPONENT_EMBED_TXTFILES. This will embed the contents of the text file as a null-terminated string::
COMPONENT_EMBED_TXTFILES := server_root_cert.pem
The file's contents will be added to the .rodata section in flash, and are available via symbol names as follows::
The names are generated from the full name of the file, as given in COMPONENT_EMBED_FILES. Characters /, ., etc. are replaced with underscores. The _binary prefix in the symbol name is added by objcopy and is the same for both text and binary files.
For an example of using this technique, see :example:`protocols/https_request` - the certificate file contents are loaded from the text .pem file at compile time.
For example projects or other projects where you don't want to specify a full sdkconfig configuration, but you do want to override some key values from the esp-idf defaults, it is possible to create a file ``sdkconfig.defaults`` in the project directory. This file will be used when running ``make defconfig``, or creating a new config from scratch.
To override the name of this file, set the ``SDKCONFIG_DEFAULTS`` environment variable.
There're some scenarios that we want to flash the target board without IDF. For this case we want to save the built binaries, esptool.py and esptool write_flash arguments. It's simple to write a script to save binaries and esptool.py. For flash arguments, we can add the following code to application project makefile::
the original ESPTOOL_ALL_FLASH_ARGS are absolute file name. Usually we want to save relative file name so we can move the bin folder to somewhere else. For this case we can use ``sed`` to convert to relative file name, like what we did in the example above.
The bootloader is built by default as part of "make all", or can be built standalone via "make bootloader-clean". There is also "make bootloader-list-components" to see the components included in the bootloader build.
The component in IDF components/bootloader is special, as the second stage bootloader is a separate .ELF and .BIN file to the main project. However it shares its configuration and build directory with the main project.
This is accomplished by adding a subproject under components/bootloader/subproject. This subproject has its own Makefile, but it expects to be called from the project's own Makefile via some glue in the components/bootloader/Makefile.projectbuild file. See these files for more details.