esp-idf/components/fatfs/test/test_fatfs_rawflash.c

350 lines
10 KiB
C
Raw Normal View History

/*
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <sys/time.h>
#include <sys/unistd.h>
#include "unity.h"
#include "test_utils.h"
#include "esp_log.h"
#include "esp_system.h"
#include "esp_vfs.h"
#include "esp_vfs_fat.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "test_fatfs_common.h"
#include "esp_partition.h"
#include "ff.h"
#include "esp_rom_sys.h"
#include "spi_flash_mmap.h"
#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32C2)
//IDF-5136
static void test_setup(size_t max_files)
{
extern const char fatfs_start[] asm("_binary_fatfs_img_start");
extern const char fatfs_end[] asm("_binary_fatfs_img_end");
esp_vfs_fat_sdmmc_mount_config_t mount_config = {
.format_if_mount_failed = false,
.max_files = max_files
};
const esp_partition_t* part = get_test_data_partition();
TEST_ASSERT(part->size == (fatfs_end - fatfs_start - 1));
spi_flash_mmap_handle_t mmap_handle;
const void* mmap_ptr;
TEST_ESP_OK(esp_partition_mmap(part, 0, part->size, SPI_FLASH_MMAP_DATA, &mmap_ptr, &mmap_handle));
bool content_valid = memcmp(fatfs_start, mmap_ptr, part->size) == 0;
spi_flash_munmap(mmap_handle);
if (!content_valid) {
printf("Copying fatfs.img into test partition...\n");
esp_partition_erase_range(part, 0, part->size);
for (int i = 0; i < part->size; i+= SPI_FLASH_SEC_SIZE) {
ESP_ERROR_CHECK( esp_partition_write(part, i, fatfs_start + i, SPI_FLASH_SEC_SIZE) );
}
}
TEST_ESP_OK(esp_vfs_fat_spiflash_mount_ro("/spiflash", "flash_test", &mount_config));
}
static void test_teardown(void)
{
TEST_ESP_OK(esp_vfs_fat_spiflash_unmount_ro("/spiflash","flash_test"));
}
TEST_CASE("(raw) can read file", "[fatfs]")
{
test_setup(5);
FILE* f = fopen("/spiflash/hello.txt", "r");
TEST_ASSERT_NOT_NULL(f);
char buf[32] = { 0 };
int cb = fread(buf, 1, sizeof(buf), f);
TEST_ASSERT_EQUAL(strlen(fatfs_test_hello_str), cb);
TEST_ASSERT_EQUAL(0, strcmp(fatfs_test_hello_str, buf));
TEST_ASSERT_EQUAL(0, fclose(f));
test_teardown();
}
TEST_CASE("(raw) can open maximum number of files", "[fatfs]")
{
size_t max_files = FOPEN_MAX - 3; /* account for stdin, stdout, stderr */
test_setup(max_files);
FILE** files = calloc(max_files, sizeof(FILE*));
for (size_t i = 0; i < max_files; ++i) {
char name[32];
snprintf(name, sizeof(name), "/spiflash/f/%d.txt", i + 1);
files[i] = fopen(name, "r");
TEST_ASSERT_NOT_NULL(files[i]);
}
/* close everything and clean up */
for (size_t i = 0; i < max_files; ++i) {
fclose(files[i]);
}
free(files);
test_teardown();
}
TEST_CASE("(raw) can lseek", "[fatfs]")
{
test_setup(5);
FILE* f = fopen("/spiflash/hello.txt", "r");
TEST_ASSERT_NOT_NULL(f);
TEST_ASSERT_EQUAL(0, fseek(f, 2, SEEK_CUR));
TEST_ASSERT_EQUAL('l', fgetc(f));
TEST_ASSERT_EQUAL(0, fseek(f, 4, SEEK_SET));
TEST_ASSERT_EQUAL('o', fgetc(f));
TEST_ASSERT_EQUAL(0, fseek(f, -5, SEEK_END));
TEST_ASSERT_EQUAL('r', fgetc(f));
TEST_ASSERT_EQUAL(0, fseek(f, 3, SEEK_END));
TEST_ASSERT_EQUAL(17, ftell(f));
TEST_ASSERT_EQUAL(0, fseek(f, 0, SEEK_END));
TEST_ASSERT_EQUAL(14, ftell(f));
TEST_ASSERT_EQUAL(0, fseek(f, 0, SEEK_SET));
test_teardown();
}
TEST_CASE("(raw) stat returns correct values", "[fatfs]")
{
test_setup(5);
struct tm tm;
tm.tm_year = 2018 - 1900;
tm.tm_mon = 5; // Note: month can be 0-11 & not 1-12
tm.tm_mday = 13;
tm.tm_hour = 11;
tm.tm_min = 2;
tm.tm_sec = 10;
time_t t = mktime(&tm);
printf("Reference time: %s", asctime(&tm));
struct stat st;
TEST_ASSERT_EQUAL(0, stat("/spiflash/stat.txt", &st));
time_t mtime = st.st_mtime;
struct tm mtm;
localtime_r(&mtime, &mtm);
printf("File time: %s", asctime(&mtm));
TEST_ASSERT(mtime > t); // Modification time should be in future wrt ref time
TEST_ASSERT(st.st_mode & S_IFREG);
TEST_ASSERT_FALSE(st.st_mode & S_IFDIR);
memset(&st, 0, sizeof(st));
TEST_ASSERT_EQUAL(0, stat("/spiflash", &st));
TEST_ASSERT(st.st_mode & S_IFDIR);
TEST_ASSERT_FALSE(st.st_mode & S_IFREG);
test_teardown();
}
TEST_CASE("(raw) can opendir root directory of FS", "[fatfs]")
{
test_setup(5);
DIR* dir = opendir("/spiflash");
TEST_ASSERT_NOT_NULL(dir);
bool found = false;
while (true) {
struct dirent* de = readdir(dir);
if (!de) {
break;
}
if (strcasecmp(de->d_name, "test_opd.txt") == 0) {
found = true;
break;
}
}
TEST_ASSERT_TRUE(found);
TEST_ASSERT_EQUAL(0, closedir(dir));
test_teardown();
}
TEST_CASE("(raw) opendir, readdir, rewinddir, seekdir work as expected", "[fatfs]")
{
test_setup(5);
DIR* dir = opendir("/spiflash/dir");
TEST_ASSERT_NOT_NULL(dir);
int count = 0;
const char* names[4];
while(count < 4) {
struct dirent* de = readdir(dir);
if (!de) {
break;
}
printf("found '%s'\n", de->d_name);
if (strcasecmp(de->d_name, "1.txt") == 0) {
TEST_ASSERT_TRUE(de->d_type == DT_REG);
names[count] = "1.txt";
++count;
} else if (strcasecmp(de->d_name, "2.txt") == 0) {
TEST_ASSERT_TRUE(de->d_type == DT_REG);
names[count] = "2.txt";
++count;
} else if (strcasecmp(de->d_name, "inner") == 0) {
TEST_ASSERT_TRUE(de->d_type == DT_DIR);
names[count] = "inner";
++count;
} else if (strcasecmp(de->d_name, "boo.bin") == 0) {
TEST_ASSERT_TRUE(de->d_type == DT_REG);
names[count] = "boo.bin";
++count;
} else {
TEST_FAIL_MESSAGE("unexpected directory entry");
}
}
TEST_ASSERT_EQUAL(count, 4);
rewinddir(dir);
struct dirent* de = readdir(dir);
TEST_ASSERT_NOT_NULL(de);
TEST_ASSERT_EQUAL(0, strcasecmp(de->d_name, names[0]));
seekdir(dir, 3);
de = readdir(dir);
TEST_ASSERT_NOT_NULL(de);
TEST_ASSERT_EQUAL(0, strcasecmp(de->d_name, names[3]));
seekdir(dir, 1);
de = readdir(dir);
TEST_ASSERT_NOT_NULL(de);
TEST_ASSERT_EQUAL(0, strcasecmp(de->d_name, names[1]));
seekdir(dir, 2);
de = readdir(dir);
TEST_ASSERT_NOT_NULL(de);
TEST_ASSERT_EQUAL(0, strcasecmp(de->d_name, names[2]));
TEST_ASSERT_EQUAL(0, closedir(dir));
test_teardown();
}
typedef struct {
const char* filename;
size_t word_count;
int seed;
int val;
SemaphoreHandle_t done;
int result;
} read_test_arg_t;
#define READ_TEST_ARG_INIT(name, seed_, val_) \
{ \
.filename = name, \
.seed = seed_, \
.word_count = 8000, \
.val = val_, \
.done = xSemaphoreCreateBinary() \
}
static void read_task(void* param)
{
read_test_arg_t* args = (read_test_arg_t*) param;
FILE* f = fopen(args->filename, "rb");
if (f == NULL) {
args->result = ESP_ERR_NOT_FOUND;
goto done;
}
srand(args->seed);
for (size_t i = 0; i < args->word_count; ++i) {
uint32_t rval;
int cnt = fread(&rval, sizeof(rval), 1, f);
if (cnt != 1 || rval != args->val) {
esp_rom_printf("E(r): i=%d, cnt=%d rval=%d val=%d\n\n", i, cnt, rval, args->val);
args->result = ESP_FAIL;
goto close;
}
}
args->result = ESP_OK;
close:
fclose(f);
done:
xSemaphoreGive(args->done);
vTaskDelay(1);
vTaskDelete(NULL);
}
TEST_CASE("(raw) multiple tasks can use same volume", "[fatfs]")
{
test_setup(5);
char names[4][64];
for (size_t i = 0; i < 4; ++i) {
snprintf(names[i], sizeof(names[i]), "/spiflash/ccrnt/%d.txt", i + 1);
}
read_test_arg_t args1 = READ_TEST_ARG_INIT(names[0], 1, 0x31313131);
read_test_arg_t args2 = READ_TEST_ARG_INIT(names[1], 2, 0x32323232);
read_test_arg_t args3 = READ_TEST_ARG_INIT(names[2], 3, 0x33333333);
read_test_arg_t args4 = READ_TEST_ARG_INIT(names[3], 4, 0x34343434);
const int cpuid_0 = 0;
const int cpuid_1 = portNUM_PROCESSORS - 1;
const int stack_size = 4096;
printf("reading files 1.txt 2.txt 3.txt 4.txt \n");
xTaskCreatePinnedToCore(&read_task, "r1", stack_size, &args1, 3, NULL, cpuid_1);
xTaskCreatePinnedToCore(&read_task, "r2", stack_size, &args2, 3, NULL, cpuid_0);
xTaskCreatePinnedToCore(&read_task, "r3", stack_size, &args3, 3, NULL, cpuid_0);
xTaskCreatePinnedToCore(&read_task, "r4", stack_size, &args4, 3, NULL, cpuid_1);
xSemaphoreTake(args1.done, portMAX_DELAY);
printf("1.txt done\n");
TEST_ASSERT_EQUAL(ESP_OK, args1.result);
xSemaphoreTake(args2.done, portMAX_DELAY);
printf("2.txt done\n");
TEST_ASSERT_EQUAL(ESP_OK, args2.result);
xSemaphoreTake(args3.done, portMAX_DELAY);
printf("3.txt done\n");
TEST_ASSERT_EQUAL(ESP_OK, args3.result);
xSemaphoreTake(args4.done, portMAX_DELAY);
printf("4.txt done\n");
TEST_ASSERT_EQUAL(ESP_OK, args4.result);
vSemaphoreDelete(args1.done);
vSemaphoreDelete(args2.done);
vSemaphoreDelete(args3.done);
vSemaphoreDelete(args4.done);
test_teardown();
}
TEST_CASE("(raw) read speed test", "[fatfs][timeout=60]")
{
test_setup(5);
const size_t buf_size = 16 * 1024;
uint32_t* buf = (uint32_t*) calloc(1, buf_size);
const size_t file_size = 256 * 1024;
const char* file = "/spiflash/256k.bin";
test_fatfs_rw_speed(file, buf, 4 * 1024, file_size, false);
test_fatfs_rw_speed(file, buf, 8 * 1024, file_size, false);
test_fatfs_rw_speed(file, buf, 16 * 1024, file_size, false);
free(buf);
test_teardown();
}
#else //!TEMPORARY_DISABLED_FOR_TARGETS(ESP32C2)
TEST_CASE("FATFS dummy test", "[spi_flash]")
{
printf("This test does nothing, just to make the UT build fatfs-fast-seek passed.\n");
printf("When any case above is supported, remove this test case\n");
}
#endif //!TEMPORARY_DISABLED_FOR_TARGETS(ESP32C2)