esp-idf/tools/unit-test-app/components/unity/include/test_utils.h

110 lines
3.2 KiB
C
Raw Normal View History

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
// Utilities for esp-idf unit tests
#include <stdint.h>
#include <esp_partition.h>
/* Return the 'flash_test' custom data partition (type 0x55)
defined in the custom partition table.
*/
const esp_partition_t *get_test_data_partition();
/**
* @brief Initialize reference clock
*
* Reference clock provides timestamps at constant 1 MHz frequency, even when
* the APB frequency is changing.
*/
void ref_clock_init();
/**
* @brief Deinitialize reference clock
*/
void ref_clock_deinit();
/**
* @brief Get reference clock timestamp
* @return number of microseconds since the reference clock was initialized
*/
uint64_t ref_clock_get();
/**
* @brief Reset automatic leak checking which happens in unit tests.
*
* Updates recorded "before" free memory values to the free memory values
* at time of calling. Resets leak checker if tracing is enabled in
* config.
*
* This can be called if a test case does something which allocates
* memory on first use, for example.
*
* @note Use with care as this can mask real memory leak problems.
*/
void unity_reset_leak_checks(void);
/**
* @brief Call this function from a test case which requires TCP/IP or
* LWIP functionality.
*
* @note This should be the first function the test case calls, as it will
* allocate memory on first use (and also reset the test case leak checker).
*/
void test_case_uses_tcpip(void);
/**
* @brief wait for signals.
*
* for multiple devices test cases, DUT might need to wait for other DUTs before continue testing.
* As all DUTs are independent, need user (or test script) interaction to make test synchronized.
*
* Here we provide signal functions for this.
* For example, we're testing GPIO, DUT1 has one pin connect to with DUT2.
* DUT2 will output high level and then DUT1 will read input.
* DUT1 should call `unity_wait_for_signal("output high level");` before it reads input.
* DUT2 should call `unity_send_signal("output high level");` after it finished setting output high level.
* According to the console logs:
*
* DUT1 console:
*
* ```
* Waiting for signal: [output high level]!
* Please press "Enter" key to once any board send this signal.
* ```
*
* DUT2 console:
*
* ```
* Send signal: [output high level]!
* ```
*
* Then we press Enter key on DUT1's console, DUT1 starts to read input and then test success.
*
* @param signal_name signal name which DUT expected to wait before proceed testing
*/
void unity_wait_for_signal(const char* signal_name);
/**
* @brief DUT send signal.
*
* @param signal_name signal name which DUT send once it finished preparing.
*/
void unity_send_signal(const char* signal_name);