mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
209 lines
6.7 KiB
C
209 lines
6.7 KiB
C
|
/*
|
||
|
* SPDX-FileCopyrightText: 2019-2022 Espressif Systems (Shanghai) CO LTD
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
*/
|
||
|
|
||
|
#include <esp_types.h>
|
||
|
#include "sdkconfig.h"
|
||
|
#include "esp_log.h"
|
||
|
#include "esp_check.h"
|
||
|
#include "freertos/FreeRTOS.h"
|
||
|
#include "esp_private/periph_ctrl.h"
|
||
|
#include "esp_private/adc_private.h"
|
||
|
#include "driver/gpio.h"
|
||
|
#include "hal/adc_hal.h"
|
||
|
#include "hal/adc_hal_common.h"
|
||
|
#include "hal/adc_hal_conf.h"
|
||
|
#include "soc/adc_periph.h"
|
||
|
|
||
|
//For calibration
|
||
|
#if CONFIG_IDF_TARGET_ESP32S2
|
||
|
#include "esp_efuse_rtc_table.h"
|
||
|
#elif SOC_ADC_CALIBRATION_V1_SUPPORTED
|
||
|
#include "esp_efuse_rtc_calib.h"
|
||
|
#endif
|
||
|
|
||
|
static const char *TAG = "adc_common";
|
||
|
static portMUX_TYPE s_spinlock = portMUX_INITIALIZER_UNLOCKED;
|
||
|
extern portMUX_TYPE rtc_spinlock;
|
||
|
|
||
|
/*------------------------------------------------------------------------------
|
||
|
* For those who use APB_SARADC periph
|
||
|
*----------------------------------------------------------------------------*/
|
||
|
static int s_adc_digi_ctrlr_cnt;
|
||
|
|
||
|
void adc_apb_periph_claim(void)
|
||
|
{
|
||
|
portENTER_CRITICAL(&s_spinlock);
|
||
|
s_adc_digi_ctrlr_cnt++;
|
||
|
if (s_adc_digi_ctrlr_cnt == 1) {
|
||
|
//enable ADC digital part
|
||
|
periph_module_enable(PERIPH_SARADC_MODULE);
|
||
|
//reset ADC digital part
|
||
|
periph_module_reset(PERIPH_SARADC_MODULE);
|
||
|
}
|
||
|
|
||
|
portEXIT_CRITICAL(&s_spinlock);
|
||
|
}
|
||
|
|
||
|
void adc_apb_periph_free(void)
|
||
|
{
|
||
|
portENTER_CRITICAL(&s_spinlock);
|
||
|
s_adc_digi_ctrlr_cnt--;
|
||
|
if (s_adc_digi_ctrlr_cnt == 0) {
|
||
|
periph_module_disable(PERIPH_SARADC_MODULE);
|
||
|
} else if (s_adc_digi_ctrlr_cnt < 0) {
|
||
|
portEXIT_CRITICAL(&s_spinlock);
|
||
|
ESP_LOGE(TAG, "%s called, but `s_adc_digi_ctrlr_cnt == 0`", __func__);
|
||
|
abort();
|
||
|
}
|
||
|
|
||
|
portEXIT_CRITICAL(&s_spinlock);
|
||
|
}
|
||
|
|
||
|
/*------------------------------------------------------------------------------
|
||
|
* ADC Power
|
||
|
*----------------------------------------------------------------------------*/
|
||
|
// This gets incremented when adc_power_acquire() is called, and decremented when
|
||
|
// adc_power_release() is called. ADC is powered down when the value reaches zero.
|
||
|
// Should be modified within critical section (ADC_ENTER/EXIT_CRITICAL).
|
||
|
static int s_adc_power_on_cnt;
|
||
|
|
||
|
static void adc_power_on_internal(void)
|
||
|
{
|
||
|
/* Set the power always on to increase precision. */
|
||
|
adc_hal_set_power_manage(ADC_POWER_SW_ON);
|
||
|
}
|
||
|
|
||
|
void adc_power_acquire(void)
|
||
|
{
|
||
|
portENTER_CRITICAL(&rtc_spinlock);
|
||
|
s_adc_power_on_cnt++;
|
||
|
if (s_adc_power_on_cnt == 1) {
|
||
|
adc_power_on_internal();
|
||
|
}
|
||
|
portEXIT_CRITICAL(&rtc_spinlock);
|
||
|
}
|
||
|
|
||
|
static void adc_power_off_internal(void)
|
||
|
{
|
||
|
#if CONFIG_IDF_TARGET_ESP32
|
||
|
adc_hal_set_power_manage(ADC_POWER_SW_OFF);
|
||
|
#else
|
||
|
adc_hal_set_power_manage(ADC_POWER_BY_FSM);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void adc_power_release(void)
|
||
|
{
|
||
|
portENTER_CRITICAL(&rtc_spinlock);
|
||
|
s_adc_power_on_cnt--;
|
||
|
/* Sanity check */
|
||
|
if (s_adc_power_on_cnt < 0) {
|
||
|
portEXIT_CRITICAL(&rtc_spinlock);
|
||
|
ESP_LOGE(TAG, "%s called, but s_adc_power_on_cnt == 0", __func__);
|
||
|
abort();
|
||
|
} else if (s_adc_power_on_cnt == 0) {
|
||
|
adc_power_off_internal();
|
||
|
}
|
||
|
portEXIT_CRITICAL(&rtc_spinlock);
|
||
|
}
|
||
|
|
||
|
/*---------------------------------------------------------------
|
||
|
ADC IOs
|
||
|
---------------------------------------------------------------*/
|
||
|
esp_err_t adc_io_to_channel(int io_num, adc_unit_t *unit_id, adc_channel_t *channel)
|
||
|
{
|
||
|
ESP_RETURN_ON_FALSE(GPIO_IS_VALID_GPIO(io_num), ESP_ERR_INVALID_ARG, TAG, "invalid gpio number");
|
||
|
ESP_RETURN_ON_FALSE(unit_id && channel, ESP_ERR_INVALID_ARG, TAG, "invalid argument: null pointer");
|
||
|
|
||
|
bool found = false;
|
||
|
for (int i = 0; i < SOC_ADC_PERIPH_NUM; i++) {
|
||
|
for (int j = 0; j < SOC_ADC_MAX_CHANNEL_NUM; j++) {
|
||
|
if (adc_channel_io_map[i][j] == io_num) {
|
||
|
*channel = j;
|
||
|
*unit_id = i;
|
||
|
found = true;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return (found) ? ESP_OK : ESP_ERR_NOT_FOUND;
|
||
|
}
|
||
|
|
||
|
esp_err_t adc_channel_to_io(adc_unit_t unit_id, adc_channel_t channel, int *io_num)
|
||
|
{
|
||
|
ESP_RETURN_ON_FALSE(unit_id < SOC_ADC_PERIPH_NUM, ESP_ERR_INVALID_ARG, TAG, "invalid unit");
|
||
|
ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(unit_id), ESP_ERR_INVALID_ARG, TAG, "invalid channel");
|
||
|
ESP_RETURN_ON_FALSE(io_num, ESP_ERR_INVALID_ARG, TAG, "invalid argument: null pointer");
|
||
|
|
||
|
*io_num = adc_channel_io_map[unit_id][channel];
|
||
|
return ESP_OK;
|
||
|
}
|
||
|
|
||
|
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
|
||
|
/*---------------------------------------------------------------
|
||
|
ADC Hardware Calibration
|
||
|
---------------------------------------------------------------*/
|
||
|
#if CONFIG_IDF_TARGET_ESP32S2
|
||
|
#define esp_efuse_rtc_calib_get_ver() esp_efuse_rtc_table_read_calib_version()
|
||
|
|
||
|
static inline uint32_t esp_efuse_rtc_calib_get_init_code(int version, uint32_t adc_unit, int atten)
|
||
|
{
|
||
|
int tag = esp_efuse_rtc_table_get_tag(version, adc_unit + 1, atten, RTCCALIB_V2_PARAM_VINIT);
|
||
|
return esp_efuse_rtc_table_get_parsed_efuse_value(tag, false);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static uint32_t s_adc_cali_param[SOC_ADC_PERIPH_NUM][SOC_ADC_ATTEN_NUM] = {};
|
||
|
|
||
|
void adc_calc_hw_calibration_code(adc_unit_t adc_n, adc_atten_t atten)
|
||
|
{
|
||
|
if (s_adc_cali_param[adc_n][atten]) {
|
||
|
ESP_EARLY_LOGV(TAG, "Use calibrated val ADC%d atten=%d: %04X", adc_n + 1, atten, s_adc_cali_param[adc_n][atten]);
|
||
|
return ;
|
||
|
}
|
||
|
|
||
|
// check if we can fetch the values from eFuse.
|
||
|
int version = esp_efuse_rtc_calib_get_ver();
|
||
|
|
||
|
uint32_t init_code = 0;
|
||
|
|
||
|
if (version == ESP_EFUSE_ADC_CALIB_VER) {
|
||
|
init_code = esp_efuse_rtc_calib_get_init_code(version, adc_n, atten);
|
||
|
} else {
|
||
|
ESP_EARLY_LOGD(TAG, "Calibration eFuse is not configured, use self-calibration for ICode");
|
||
|
adc_power_acquire();
|
||
|
portENTER_CRITICAL(&rtc_spinlock);
|
||
|
adc_ll_pwdet_set_cct(ADC_HAL_PWDET_CCT_DEFAULT);
|
||
|
const bool internal_gnd = true;
|
||
|
init_code = adc_hal_self_calibration(adc_n, atten, internal_gnd);
|
||
|
portEXIT_CRITICAL(&rtc_spinlock);
|
||
|
adc_power_release();
|
||
|
}
|
||
|
|
||
|
s_adc_cali_param[adc_n][atten] = init_code;
|
||
|
ESP_EARLY_LOGV(TAG, "Calib(V%d) ADC%d atten=%d: %04X", version, adc_n + 1, atten, init_code);
|
||
|
}
|
||
|
|
||
|
void IRAM_ATTR adc_set_hw_calibration_code(adc_unit_t adc_n, adc_atten_t atten)
|
||
|
{
|
||
|
adc_hal_set_calibration_param(adc_n, s_adc_cali_param[adc_n][atten]);
|
||
|
}
|
||
|
|
||
|
static __attribute__((constructor)) void adc_hw_calibration(void)
|
||
|
{
|
||
|
//Calculate all ICode
|
||
|
for (int i = 0; i < SOC_ADC_PERIPH_NUM; i++) {
|
||
|
adc_hal_calibration_init(i);
|
||
|
for (int j = 0; j < SOC_ADC_ATTEN_NUM; j++) {
|
||
|
/**
|
||
|
* This may get wrong when attenuations are NOT consecutive on some chips,
|
||
|
* update this when bringing up the calibration on that chip
|
||
|
*/
|
||
|
adc_calc_hw_calibration_code(i, j);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#endif //#if SOC_ADC_CALIBRATION_V1_SUPPORTED
|