esp-idf/examples/bluetooth/esp_ble_mesh/aligenie_demo/main/board.c

309 lines
8.3 KiB
C
Raw Normal View History

2021-12-06 01:59:55 -05:00
/*
* AliGenie - Example
*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
2021-12-06 01:59:55 -05:00
*
* SPDX-License-Identifier: Unlicense OR CC0-1.0
*/
#include <stdio.h>
#include <inttypes.h>
#include "driver/gpio.h"
#include "esp_log.h"
#include "iot_button.h"
#include "lightbulb.h"
#include "genie_event.h"
#if CONFIG_IDF_TARGET_ESP32C3
#define BUTTON_ON_OFF 9 /* on/off button */
#else
#define BUTTON_ON_OFF 0 /* on/off button */
#endif
#define BUTTON_ACTIVE_LEVEL 0
static const char *TAG = "board";
static uint32_t dev_on_btn_num = BUTTON_ON_OFF;
extern void user_genie_event_handle(genie_event_t event, void *p_arg);
void button_tap_cb(void* arg)
{
user_genie_event_handle(GENIE_EVT_BUTTON_TAP, NULL);
}
static void board_led_init(void)
{
/**
* NOTE:
* If the module has SPI flash, GPIOs 6-11 are connected to the modules integrated SPI flash and PSRAM.
* If the module has PSRAM, GPIOs 16 and 17 are connected to the modules integrated PSRAM.
*/
lightbulb_config_t config = {
.type = DRIVER_ESP_PWM,
.driver_conf.pwm.freq_hz = 4000,
.capability.enable_fades = true,
.capability.fades_ms = CONFIG_LIGHT_FADE_PERIOD_MS,
.capability.enable_lowpower = false,
.capability.enable_mix_cct = false,
.capability.enable_status_storage = false,
.capability.mode_mask = COLOR_MODE,
.capability.storage_cb = NULL,
.capability.sync_change_brightness_value = true,
.io_conf.pwm_io.red = CONFIG_LIGHT_GPIO_RED,
.io_conf.pwm_io.green = CONFIG_LIGHT_GPIO_GREEN,
.io_conf.pwm_io.blue = CONFIG_LIGHT_GPIO_BLUE,
.io_conf.pwm_io.cold_cct = CONFIG_LIGHT_GPIO_COLD,
.io_conf.pwm_io.warm_brightness = CONFIG_LIGHT_GPIO_WARM,
.external_limit = NULL,
.gamma_conf = NULL,
.init_status.mode = WORK_COLOR,
.init_status.on = true,
.init_status.hue = 0,
.init_status.saturation = 100,
.init_status.value = 100,
};
/**
* @brief Light driver initialization
*/
ESP_ERROR_CHECK(lightbulb_init(&config));
vTaskDelay(pdMS_TO_TICKS(1000) * 1);
lightbulb_set_switch(true);
button_handle_t dev_on_off_btn = iot_button_create(BUTTON_ON_OFF, BUTTON_ACTIVE_LEVEL);
iot_button_set_evt_cb(dev_on_off_btn, BUTTON_CB_TAP, button_tap_cb, &dev_on_btn_num);
}
void board_init(void)
{
board_led_init();
}
static esp_err_t board_led_hsl2rgb(uint16_t hue, uint8_t saturation, uint8_t lightness,
uint8_t *red, uint8_t *green, uint8_t *blue)
{
uint16_t hi = (hue / 60) % 6;
uint16_t C = (100 - abs(2 * lightness - 100)) * saturation / 100;
uint16_t M = 100 * (lightness - 0.5 * C) / 100;
uint16_t X = C * (100 - abs((hue * 100 / 60 ) % 200 - 100)) / 100;
switch (hi) {
case 0: /* hue 0~60 */
*red = C + M;
*green = X + M;
*blue = M;
break;
case 1: /* hue 60~120 */
*red = X + M;
*green = C + M;
*blue = M;
break;
case 2: /* hue 120~180 */
*red = M;
*green = C + M;
*blue = X + M;
break;
case 3: /* hue 180~240 */
*red = M;
*green = X + M;
*blue = C + M;
break;
case 4: /* hue 240~300 */
*red = X + M;
*green = M;
*blue = C + M;
break;
case 5: /* hue 300~360 */
*red = C + M;
*green = M;
*blue = X + M;
break;
default:
return ESP_FAIL;
}
*red = *red * 255 / 100;
*green = *green * 255 / 100;
*blue = *blue * 255 / 100;
return ESP_OK;
}
/**
* hsl
*/
void board_led_hsl(uint8_t elem_index, uint16_t hue, uint16_t saturation, uint16_t lightness)
{
static uint16_t last_hue = 0xFFFF;
static uint16_t last_saturation = 0xFFFF;
static uint16_t last_lightness = 0xFFFF;
ESP_LOGD(TAG, "hue last state %d, state %d", last_hue, hue);
ESP_LOGD(TAG, "saturation last state %d, state %d", last_saturation, saturation);
ESP_LOGD(TAG, "lightness last state %d, state %d", last_lightness, lightness);
if(last_hue != hue || last_saturation != saturation || last_lightness != lightness ) {
last_hue = hue;
last_saturation = saturation;
last_lightness = lightness;
uint16_t actual_hue = (float)last_hue / (UINT16_MAX / 360.0);
uint8_t actual_saturation = (float)last_saturation / (UINT16_MAX / 100.0);
uint8_t actual_lightness = (float)last_lightness / (UINT16_MAX / 100.0);
uint8_t r, g, b;
uint16_t h;
uint8_t s, v;
ESP_LOGD(TAG, "hsl: %d, %d, %d operation", actual_hue, actual_saturation, actual_lightness);
board_led_hsl2rgb(actual_hue, actual_saturation, actual_lightness, &r, &g, &b);
lightbulb_rgb2hsv(r, g, b, &h, &s, &v);
lightbulb_set_hsv(h, s, v);
}
}
/**
* temperature light temp
*/
void board_led_temperature(uint8_t elem_index, uint16_t temperature)
{
static uint16_t last_temperature = 0xFFFF;
ESP_LOGD(TAG, "temperature last state %d, state %d", last_temperature, temperature);
if(last_temperature != temperature) {
last_temperature = temperature;
uint16_t actual_temperature = (float)last_temperature / (UINT16_MAX / 100.0);
ESP_LOGD(TAG, "temperature %d %%%d operation", last_temperature, actual_temperature);
lightbulb_set_cct(actual_temperature);
}
}
/**
* actual lightness
*/
void board_led_lightness(uint8_t elem_index, uint16_t actual)
{
static uint16_t last_acual = 0xFFFF;
ESP_LOGD(TAG, "actual last state %d, state %d", last_acual, actual);
if(last_acual != actual) {
last_acual = actual;
uint16_t actual_lightness = (float)last_acual / (UINT16_MAX / 100.0);
ESP_LOGD(TAG, "lightness %d %%%d operation", last_acual, actual_lightness);
lightbulb_set_brightness(actual_lightness);
}
}
/**
* onoff on/off
*/
void board_led_switch(uint8_t elem_index, uint8_t onoff)
{
static uint8_t last_onoff = 0xFF;
ESP_LOGD(TAG, "onoff last state %d, state %d", last_onoff, onoff);
if(last_onoff != onoff) {
last_onoff = onoff;
if (last_onoff) {
ESP_LOGD(TAG, "onoff %d operation", last_onoff);
lightbulb_set_switch(true);
} else {
ESP_LOGD(TAG, "onoff %d operation", last_onoff);
lightbulb_set_switch(false);
}
}
}
#define MINDIFF (2.25e-308)
static float bt_mesh_sqrt(float square)
{
float root, last, diff;
root = square / 3.0;
diff = 1;
if (square <= 0) {
return 0;
}
do {
last = root;
root = (root + square / root) / 2.0;
diff = root - last;
} while (diff > MINDIFF || diff < -MINDIFF);
return root;
}
static int32_t bt_mesh_ceiling(float num)
{
int32_t inum = (int32_t)num;
if (num == (float)inum) {
return inum;
}
return inum + 1;
}
uint16_t convert_lightness_actual_to_linear(uint16_t actual)
{
float tmp = ((float) actual / UINT16_MAX);
return bt_mesh_ceiling(UINT16_MAX * tmp * tmp);
}
uint16_t convert_lightness_linear_to_actual(uint16_t linear)
{
return (uint16_t)(UINT16_MAX * bt_mesh_sqrt(((float) linear / UINT16_MAX)));
}
int16_t convert_temperature_to_level(uint16_t temp, uint16_t min, uint16_t max)
{
float tmp = (temp - min) * UINT16_MAX / (max - min);
return (int16_t) (tmp + INT16_MIN);
}
uint16_t covert_level_to_temperature(int16_t level, uint16_t min, uint16_t max)
{
float diff = (float) (max - min) / UINT16_MAX;
uint16_t tmp = (uint16_t) ((level - INT16_MIN) * diff);
return (uint16_t) (min + tmp);
}
/* swap octets */
void swap_buf(uint8_t *dst, const uint8_t *src, int len)
{
int i;
for (i = 0; i < len; i++) {
dst[len - 1 - i] = src[i];
}
}
uint8_t *mac_str2hex(const char *mac_str, uint8_t *mac_hex)
{
uint32_t mac_data[6] = {0};
sscanf(mac_str, "%02" PRIx32 "%02" PRIx32 "%02" PRIx32 "%02" PRIx32 "%02" PRIx32 "%02" PRIx32,
mac_data, mac_data + 1, mac_data + 2, mac_data + 3, mac_data + 4, mac_data + 5);
for (int i = 0; i < 6; i++) {
mac_hex[i] = mac_data[i];
}
return mac_hex;
}