esp-idf/components/spi_flash/spi_flash_hpm_enable.c

333 lines
12 KiB
C
Raw Normal View History

/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdint.h>
#include "sdkconfig.h"
#include "esp_err.h"
#include "esp_log.h"
#include "spi_flash_defs.h"
#include "esp_rom_sys.h"
#include "esp_rom_spiflash.h"
#include "spi_flash_override.h"
// TODO: These dependencies will be removed after remove bootloader_flash to G0.IDF-4609
#include "bootloader_flash_override.h"
#include "bootloader_flash_priv.h"
/*******************************************************************************
* Flash high speed performance mode.
* HPM: High performance mode.
* HPF: High performance flag.
*
* Different flash chips might have different high performance strategy.
* 1. Some flash chips send A3H to enable the HPM.
* 2. Some flash chips write HPF bit in status register.
* 3. Some flash chips adjust dummy cycles.
******************************************************************************/
#if CONFIG_ESPTOOLPY_FLASHFREQ_120M
#define FLASH_FREQUENCY 120
#elif CONFIG_ESPTOOLPY_FLASHFREQ_80M
#define FLASH_FREQUENCY 80
#elif CONFIG_ESPTOOLPY_FLASHFREQ_40M
#define FLASH_FREQUENCY 40
#elif CONFIG_ESPTOOLPY_FLASHFREQ_20M
#define FLASH_FREQUENCY 20
#endif
const static char *HPM_TAG = "flash HPM";
// TODO: This function will be changed after remove bootloader_flash to G0.IDF-4609
extern uint32_t bootloader_flash_execute_command_common(
uint8_t command,
uint32_t addr_len, uint32_t address,
uint8_t dummy_len,
uint8_t mosi_len, uint32_t mosi_data,
uint8_t miso_len);
extern uint32_t IRAM_ATTR bootloader_flash_read_sfdp(uint32_t sfdp_addr, unsigned int miso_byte_num);
//-----------------For flash chips which enter HPM via command-----------------------//
/**
* @brief Probe the chip whether use command to enable HPM mode. Take GD as an example:
* Some GD send 0xA3 command to enable HPM mode of the flash.
*/
static esp_err_t spi_flash_hpm_probe_chip_with_cmd(uint32_t flash_id)
{
esp_err_t ret = ESP_OK;
switch (flash_id) {
/* The flash listed here should enter the HPM with command 0xA3 */
case 0xC84016:
case 0xC84017:
// Read BYTE4 in SFDP, 0 means C series, 6 means E series
uint32_t gd_sfdp = bootloader_flash_read_sfdp(0x4, 1);
if (gd_sfdp == 0x0) {
break;
} else {
ret = ESP_ERR_NOT_FOUND;
break;
}
default:
ret = ESP_ERR_NOT_FOUND;
break;
}
return ret;
}
static spi_flash_requirement_t spi_flash_hpm_chip_hpm_requirement_check_with_cmd(uint32_t flash_id, uint32_t freq_mhz, int voltage_mv, int temperautre)
{
// voltage and temperature are not been used now, to be completed in the future.
(void)voltage_mv;
(void)temperautre;
spi_flash_requirement_t chip_cap = SPI_FLASH_HPM_UNNEEDED;
if (freq_mhz > 80) {
chip_cap = SPI_FLASH_HPM_CMD_NEEDED;
}
ESP_EARLY_LOGD(HPM_TAG, "HPM with command, status is %d", chip_cap);
return chip_cap;
}
/**
* @brief Send HPMEN command (A3H)
*/
static void spi_flash_enable_high_performance_send_cmd(void)
{
uint32_t dummy = 24;
bootloader_flash_execute_command_common(CMD_HPMEN, 0, 0, dummy, 0, 0, 0);
// Delay for T(HPM) refering to datasheet.
esp_rom_delay_us(20);
}
/**
* @brief Check whether flash HPM has been enabled. According to flash datasheets, majorities of
* HPF bit are at bit-5, sr-3. But some are not. Therefore, this function is only used for those
* HPF bit is at bit-5, sr-3.
*/
static esp_err_t spi_flash_high_performance_check_hpf_bit_5(void)
{
if((bootloader_read_status_8b_rdsr3() & (1 << 4)) == 0) {
return ESP_FAIL;
}
return ESP_OK;
}
//-----------------For flash chips which enter HPM via adjust dummy-----------------------//
/**
* @brief Probe the chip whether adjust dummy to enable HPM mode. Take XMC as an example:
* Adjust dummy bits to enable HPM mode of the flash. If XMC works under 80MHz, the dummy bits
* might be 6, but when works under 120MHz, the dummy bits might be 10.
*/
static esp_err_t spi_flash_hpm_probe_chip_with_dummy(uint32_t flash_id)
{
esp_err_t ret = ESP_OK;
switch (flash_id) {
/* The flash listed here should enter the HPM by adjusting dummy cycles */
// XMC chips.
case 0x204017:
case 0x204018:
break;
// GD chips.
case 0xC84017:
case 0xC84018:
// Read BYTE4 in SFDP, 0 means C series, 6 means E series
uint32_t gd_sfdp = bootloader_flash_read_sfdp(0x4, 1);
if (gd_sfdp == 0x6) {
break;
} else {
ret = ESP_ERR_NOT_FOUND;
break;
}
default:
ret = ESP_ERR_NOT_FOUND;
break;
}
return ret;
}
static spi_flash_requirement_t spi_flash_hpm_chip_hpm_requirement_check_with_dummy(uint32_t flash_id, uint32_t freq_mhz, int voltage_mv, int temperautre)
{
// voltage and temperature are not been used now, to be completed in the future.
(void)voltage_mv;
(void)temperautre;
spi_flash_requirement_t chip_cap = SPI_FLASH_HPM_UNNEEDED;
if (freq_mhz >= 104) {
chip_cap = SPI_FLASH_HPM_DUMMY_NEEDED;
}
ESP_EARLY_LOGD(HPM_TAG, "HPM with dummy, status is %d", chip_cap);
return chip_cap;
}
/**
* @brief Adjust dummy cycles. This function modifies the Dummy Cycle Bits in SR3.
* Usually, the bits are at bit-0, bit-1, sr-3 and set DC[1:0]=[1,1].
*
* @note Don't forget to adjust dummy configurations for MSPI, you can get the
* correct dummy from interface `spi_flash_hpm_get_dummy`.
*/
static void spi_flash_turn_high_performance_reconfig_dummy(void)
{
uint8_t old_status_3 = bootloader_read_status_8b_rdsr3();
uint8_t new_status = (old_status_3 | 0x03);
bootloader_execute_flash_command(CMD_WRENVSR, 0, 0, 0);
bootloader_write_status_8b_wrsr3(new_status);
esp_rom_spiflash_wait_idle(&g_rom_flashchip);
}
/**
* @brief Check whether HPM has been enabled. This function checks the DC bits
*/
static esp_err_t spi_flash_high_performance_check_dummy_sr(void)
{
if((bootloader_read_status_8b_rdsr3() & 0x03) == 0) {
return ESP_FAIL;
}
return ESP_OK;
}
static void spi_flash_hpm_get_dummy_xmc(spi_flash_hpm_dummy_conf_t *dummy_conf)
{
dummy_conf->dio_dummy = SPI_FLASH_DIO_HPM_DUMMY_BITLEN;
dummy_conf->dout_dummy = SPI_FLASH_DOUT_DUMMY_BITLEN;
dummy_conf->qio_dummy = SPI_FLASH_QIO_HPM_DUMMY_BITLEN;
dummy_conf->qout_dummy = SPI_FLASH_QOUT_DUMMY_BITLEN;
dummy_conf->fastrd_dummy = SPI_FLASH_FASTRD_DUMMY_BITLEN;
}
//-----------------For flash chips which enter HPM via write status register-----------------------//
/**
* @brief Probe the chip whether to write status register to enable HPM mode. Take ZB as an example:
* Write status register bits to enable HPM mode of the flash. If ZB works under 80MHz, the register value
* would be 0, but when works under 120MHz, the register value would be 1.
*/
static esp_err_t spi_flash_hpm_probe_chip_with_write_hpf_bit_5(uint32_t flash_id)
{
esp_err_t ret = ESP_OK;
switch (flash_id) {
/* The flash listed here should enter the HPM by adjusting dummy cycles */
// ZB chips.
case 0x5E4016:
break;
default:
ret = ESP_ERR_NOT_FOUND;
break;
}
return ret;
}
static spi_flash_requirement_t spi_flash_hpm_chip_require_check_hpf_bit_5(uint32_t flash_id, uint32_t freq_mhz, int voltage_mv, int temperautre)
{
// voltage and temperature are not been used now, to be completed in the future.
(void)voltage_mv;
(void)temperautre;
spi_flash_requirement_t chip_cap = SPI_FLASH_HPM_UNNEEDED;
if (freq_mhz >= 104) {
chip_cap = SPI_FLASH_HPM_WRITE_SR_NEEDED;
}
ESP_EARLY_LOGD(HPM_TAG, "HPM with dummy, status is %d", chip_cap);
return chip_cap;
}
/**
* @brief Write bit 5 in status 3
*/
static void spi_flash_turn_high_performance_write_hpf_bit_5(void)
{
uint8_t old_status_3 = bootloader_read_status_8b_rdsr3();
uint8_t new_status = (old_status_3 | 0x10);
bootloader_execute_flash_command(CMD_WRENVSR, 0, 0, 0);
bootloader_write_status_8b_wrsr3(new_status);
esp_rom_spiflash_wait_idle(&g_rom_flashchip);
}
//-----------------------generic functions-------------------------------------//
/**
* @brief Default dummy for almost all flash chips. If your flash does't need to reconfigure dummy,
* just call this function.
*/
void __attribute__((weak)) spi_flash_hpm_get_dummy_generic(spi_flash_hpm_dummy_conf_t *dummy_conf)
{
dummy_conf->dio_dummy = SPI_FLASH_DIO_DUMMY_BITLEN;
dummy_conf->dout_dummy = SPI_FLASH_DOUT_DUMMY_BITLEN;
dummy_conf->qio_dummy = SPI_FLASH_QIO_DUMMY_BITLEN;
dummy_conf->qout_dummy = SPI_FLASH_QOUT_DUMMY_BITLEN;
dummy_conf->fastrd_dummy = SPI_FLASH_FASTRD_DUMMY_BITLEN;
}
const spi_flash_hpm_info_t __attribute__((weak)) spi_flash_hpm_enable_list[] = {
/* vendor, chip_id, freq_threshold, temperature threshold, operation for setting high performance, reading HPF status, get dummy */
{ "command", spi_flash_hpm_probe_chip_with_cmd, spi_flash_hpm_chip_hpm_requirement_check_with_cmd, spi_flash_enable_high_performance_send_cmd, spi_flash_high_performance_check_hpf_bit_5, spi_flash_hpm_get_dummy_generic },
{ "dummy", spi_flash_hpm_probe_chip_with_dummy, spi_flash_hpm_chip_hpm_requirement_check_with_dummy, spi_flash_turn_high_performance_reconfig_dummy, spi_flash_high_performance_check_dummy_sr, spi_flash_hpm_get_dummy_xmc},
{ "write sr3-bit5", spi_flash_hpm_probe_chip_with_write_hpf_bit_5, spi_flash_hpm_chip_require_check_hpf_bit_5, spi_flash_turn_high_performance_write_hpf_bit_5, spi_flash_high_performance_check_hpf_bit_5, spi_flash_hpm_get_dummy_generic},
// default: do nothing, but keep the dummy get function. The first item with NULL as its probe will be the fallback.
{ "NULL", NULL, NULL, NULL, NULL, spi_flash_hpm_get_dummy_generic},
};
static const spi_flash_hpm_info_t *chip_hpm = NULL;
static spi_flash_hpm_dummy_conf_t dummy_conf;
static bool hpm_dummy_changed = false;
esp_err_t spi_flash_enable_high_performance_mode(void)
{
uint32_t flash_chip_id = g_rom_flashchip.device_id;
uint32_t flash_freq = FLASH_FREQUENCY;
spi_flash_requirement_t hpm_requirement_check;
// voltage and temperature has not been implemented, just leave an interface here. Complete in the future.
int voltage = 0;
int temperature = 0;
const spi_flash_hpm_info_t *chip = spi_flash_hpm_enable_list;
esp_err_t ret = ESP_OK;
while (chip->probe) {
ret = chip->probe(flash_chip_id);
if (ret == ESP_OK) {
break;
}
chip++;
}
chip_hpm = chip;
if (ret != ESP_OK) {
#if (FLASH_FREQUENCY == 120)
ESP_EARLY_LOGW(HPM_TAG, "Flash high performance mode hasn't been supported");
#endif
return ret;
}
hpm_requirement_check = chip_hpm->chip_hpm_requirement_check(flash_chip_id, flash_freq, voltage, temperature);
if ((hpm_requirement_check == SPI_FLASH_HPM_CMD_NEEDED) || (hpm_requirement_check == SPI_FLASH_HPM_DUMMY_NEEDED) || (hpm_requirement_check == SPI_FLASH_HPM_WRITE_SR_NEEDED)) {
ESP_EARLY_LOGI(HPM_TAG, "Enabling flash high speed mode by %s", chip_hpm->method);
chip_hpm->flash_hpm_enable();
ESP_EARLY_LOGD(HPM_TAG, "Checking whether HPM has been executed");
if (chip_hpm->flash_hpf_check() != ESP_OK) {
ESP_EARLY_LOGE(HPM_TAG, "Flash high performance mode hasn't been executed successfully");
return ESP_FAIL;
}
hpm_dummy_changed = (hpm_requirement_check == SPI_FLASH_HPM_DUMMY_NEEDED) ? true : false;
} else if (hpm_requirement_check == SPI_FLASH_HPM_BEYOND_LIMIT) {
ESP_EARLY_LOGE(HPM_TAG, "Flash does not have the ability to raise to that frequency");
return ESP_FAIL;
}
return ESP_OK;
}
const spi_flash_hpm_dummy_conf_t *spi_flash_hpm_get_dummy(void)
{
chip_hpm->flash_get_dummy(&dummy_conf);
return &dummy_conf;
}
bool spi_flash_hpm_dummy_adjust(void)
{
return hpm_dummy_changed;
}