mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
252 lines
11 KiB
C
252 lines
11 KiB
C
|
/*
|
||
|
* SPDX-FileCopyrightText: 2016-2021 Espressif Systems (Shanghai) CO LTD
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
*/
|
||
|
|
||
|
/*----------------------------------------------------------------------------------
|
||
|
This file contains ESP32 and ESP32S2 Depricated ADC APIs and functions
|
||
|
-----------------------------------------------------------------------------------*/
|
||
|
|
||
|
#include "sdkconfig.h"
|
||
|
#include "esp_types.h"
|
||
|
#include "esp_log.h"
|
||
|
#include "esp_intr_alloc.h"
|
||
|
#include "driver/rtc_io.h"
|
||
|
#include "hal/adc_hal.h"
|
||
|
#include "hal/adc_ll.h"
|
||
|
#include "hal/adc_types.h"
|
||
|
#include "hal/adc_hal_conf.h"
|
||
|
#ifdef CONFIG_PM_ENABLE
|
||
|
#include "esp_pm.h"
|
||
|
#endif
|
||
|
#include "freertos/FreeRTOS.h"
|
||
|
|
||
|
#include "driver/adc_i2s_legacy.h"
|
||
|
#include "driver/adc_types_legacy.h"
|
||
|
|
||
|
static __attribute__((unused)) const char *ADC_TAG = "ADC";
|
||
|
|
||
|
#define ADC_CHECK_RET(fun_ret) ({ \
|
||
|
if (fun_ret != ESP_OK) { \
|
||
|
ESP_LOGE(ADC_TAG,"%s:%d\n",__FUNCTION__,__LINE__); \
|
||
|
return ESP_FAIL; \
|
||
|
} \
|
||
|
})
|
||
|
|
||
|
#define ADC_CHECK(a, str, ret_val) ({ \
|
||
|
if (!(a)) { \
|
||
|
ESP_LOGE(ADC_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
|
||
|
return (ret_val); \
|
||
|
} \
|
||
|
})
|
||
|
|
||
|
#define ADC_CHANNEL_CHECK(periph, channel) ADC_CHECK(channel < SOC_ADC_CHANNEL_NUM(periph), "ADC"#periph" channel error", ESP_ERR_INVALID_ARG)
|
||
|
#define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel])
|
||
|
|
||
|
extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished.
|
||
|
#define ADC_ENTER_CRITICAL() portENTER_CRITICAL(&rtc_spinlock)
|
||
|
#define ADC_EXIT_CRITICAL() portEXIT_CRITICAL(&rtc_spinlock)
|
||
|
|
||
|
#ifdef CONFIG_PM_ENABLE
|
||
|
esp_pm_lock_handle_t adc_digi_arbiter_lock = NULL;
|
||
|
#endif //CONFIG_PM_ENABLE
|
||
|
|
||
|
|
||
|
#if CONFIG_IDF_TARGET_ESP32
|
||
|
/*---------------------------------------------------------------
|
||
|
ESP32 Depricated ADC APIs and functions
|
||
|
---------------------------------------------------------------*/
|
||
|
#define DIG_ADC_OUTPUT_FORMAT_DEFUALT (ADC_DIGI_FORMAT_12BIT)
|
||
|
#define DIG_ADC_ATTEN_DEFUALT (ADC_ATTEN_DB_11)
|
||
|
#define DIG_ADC_BIT_WIDTH_DEFUALT (3) //3 for ADC_WIDTH_BIT_12
|
||
|
|
||
|
/**
|
||
|
* @brief ADC digital controller (DMA mode) conversion rules setting.
|
||
|
*/
|
||
|
typedef struct {
|
||
|
union {
|
||
|
struct {
|
||
|
uint8_t atten: 2; /*!< ADC sampling voltage attenuation configuration. Modification of attenuation affects the range of measurements.
|
||
|
0: measurement range 0 - 800mV,
|
||
|
1: measurement range 0 - 1100mV,
|
||
|
2: measurement range 0 - 1350mV,
|
||
|
3: measurement range 0 - 2600mV. */
|
||
|
uint8_t bit_width: 2; /*!< ADC resolution.
|
||
|
- 0: 9 bit;
|
||
|
- 1: 10 bit;
|
||
|
- 2: 11 bit;
|
||
|
- 3: 12 bit. */
|
||
|
int8_t channel: 4; /*!< ADC channel index. */
|
||
|
};
|
||
|
uint8_t val; /*!<Raw data value */
|
||
|
};
|
||
|
} adc_digi_pattern_table_t;
|
||
|
|
||
|
/**
|
||
|
* @brief ADC digital controller (DMA mode) output data format option.
|
||
|
*/
|
||
|
typedef enum {
|
||
|
ADC_DIGI_FORMAT_12BIT, /*!<ADC to DMA data format, [15:12]-channel, [11: 0]-12 bits ADC data (`adc_digi_output_data_t`). Note: For single convert mode. */
|
||
|
ADC_DIGI_FORMAT_11BIT, /*!<ADC to DMA data format, [15]-adc unit, [14:11]-channel, [10: 0]-11 bits ADC data (`adc_digi_output_data_t`). Note: For multi or alter convert mode. */
|
||
|
ADC_DIGI_FORMAT_MAX,
|
||
|
} adc_digi_format_t;
|
||
|
|
||
|
/**
|
||
|
* Explanation of the relationship between `conv_limit_num`, `dma_eof_num` and the number of DMA outputs:
|
||
|
*
|
||
|
* +---------------------+--------+--------+--------+
|
||
|
* | conv_mode | single | both | alter |
|
||
|
* +---------------------+--------+--------+--------+
|
||
|
* | trigger meas times | 1 | 1 | 1 |
|
||
|
* +---------------------+--------+--------+--------+
|
||
|
* | conv_limit_num | +1 | +1 | +1 |
|
||
|
* | dma_eof_num | +1 | +2 | +1 |
|
||
|
* | dma output (byte) | +2 | +4 | +2 |
|
||
|
* +---------------------+--------+--------+--------+
|
||
|
*/
|
||
|
typedef struct {
|
||
|
uint32_t adc1_pattern_len; /*!<Pattern table length for digital controller. Range: 0 ~ 16 (0: Don't change the pattern table setting).
|
||
|
The pattern table that defines the conversion rules for each SAR ADC. Each table has 16 items, in which channel selection,
|
||
|
resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
|
||
|
pattern table one by one. For each controller the scan sequence has at most 16 different rules before repeating itself. */
|
||
|
uint32_t adc2_pattern_len; /*!<Refer to ``adc1_pattern_len`` */
|
||
|
adc_digi_pattern_table_t *adc1_pattern; /*!<Pointer to pattern table for digital controller. The table size defined by `adc1_pattern_len`. */
|
||
|
adc_digi_pattern_table_t *adc2_pattern; /*!<Refer to `adc1_pattern` */
|
||
|
adc_digi_convert_mode_t conv_mode; /*!<ADC conversion mode for digital controller. See ``adc_digi_convert_mode_t``. */
|
||
|
adc_digi_format_t format; /*!<ADC output data format for digital controller. See ``adc_digi_format_t``. */
|
||
|
} adc_digi_config_t;
|
||
|
|
||
|
/**
|
||
|
* Set adc output 16-bit-data format from digital controller.
|
||
|
*
|
||
|
* @param data_sel 1: [15] unit, [14:11] channel, [10:0] data, 11-bit-width at most. Only work under `ADC_LL_DIGI_CONV_BOTH_UNIT` or `ADC_LL_DIGI_CONV_ALTER_UNIT` mode.
|
||
|
* 0: [15:12] channel, [11:0] data, 12-bit-width at most. Only work under `ADC_LL_DIGI_CONV_ONLY_ADC1` or `ADC_LL_DIGI_CONV_ONLY_ADC2` mode
|
||
|
* @note see `adc_ll_digi_pattern_table_t` for more detail of data bit width
|
||
|
*/
|
||
|
static inline void adc_ll_digi_set_output_format(bool data_sel)
|
||
|
{
|
||
|
SYSCON.saradc_ctrl.data_sar_sel = data_sel;
|
||
|
}
|
||
|
|
||
|
static inline void adc_ll_digi_prepare_pattern_table(adc_unit_t adc_n, uint32_t pattern_index, adc_digi_pattern_table_t pattern)
|
||
|
{
|
||
|
uint32_t tab;
|
||
|
uint8_t index = pattern_index / 4;
|
||
|
uint8_t offset = (pattern_index % 4) * 8;
|
||
|
if (adc_n == ADC_UNIT_1) {
|
||
|
tab = SYSCON.saradc_sar1_patt_tab[index]; // Read old register value
|
||
|
tab &= (~(0xFF000000 >> offset)); // clear old data
|
||
|
tab |= ((uint32_t)pattern.val << 24) >> offset; // Fill in the new data
|
||
|
SYSCON.saradc_sar1_patt_tab[index] = tab; // Write back
|
||
|
} else { // adc_n == ADC_UNIT_2
|
||
|
tab = SYSCON.saradc_sar2_patt_tab[index]; // Read old register value
|
||
|
tab &= (~(0xFF000000 >> offset)); // clear old data
|
||
|
tab |= ((uint32_t)pattern.val << 24) >> offset; // Fill in the new data
|
||
|
SYSCON.saradc_sar2_patt_tab[index] = tab; // Write back
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void adc_digi_controller_reg_set(const adc_digi_config_t *cfg)
|
||
|
{
|
||
|
/* On ESP32, only support ADC1 */
|
||
|
switch (cfg->conv_mode) {
|
||
|
case ADC_CONV_SINGLE_UNIT_1:
|
||
|
adc_ll_digi_set_convert_mode(ADC_LL_DIGI_CONV_ONLY_ADC1);
|
||
|
break;
|
||
|
case ADC_CONV_SINGLE_UNIT_2:
|
||
|
adc_ll_digi_set_convert_mode(ADC_LL_DIGI_CONV_ONLY_ADC2);
|
||
|
break;
|
||
|
case ADC_CONV_BOTH_UNIT:
|
||
|
adc_ll_digi_set_convert_mode(ADC_LL_DIGI_CONV_BOTH_UNIT);
|
||
|
break;
|
||
|
case ADC_CONV_ALTER_UNIT:
|
||
|
adc_ll_digi_set_convert_mode(ADC_LL_DIGI_CONV_ALTER_UNIT);
|
||
|
break;
|
||
|
default:
|
||
|
abort();
|
||
|
}
|
||
|
|
||
|
if (cfg->conv_mode & ADC_CONV_SINGLE_UNIT_1) {
|
||
|
adc_ll_set_controller(ADC_UNIT_1, ADC_LL_CTRL_DIG);
|
||
|
if (cfg->adc1_pattern_len) {
|
||
|
adc_ll_digi_clear_pattern_table(ADC_UNIT_1);
|
||
|
adc_ll_digi_set_pattern_table_len(ADC_UNIT_1, cfg->adc1_pattern_len);
|
||
|
for (uint32_t i = 0; i < cfg->adc1_pattern_len; i++) {
|
||
|
adc_ll_digi_prepare_pattern_table(ADC_UNIT_1, i, cfg->adc1_pattern[i]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (cfg->conv_mode & ADC_CONV_SINGLE_UNIT_2) {
|
||
|
adc_ll_set_controller(ADC_UNIT_2, ADC_LL_CTRL_DIG);
|
||
|
if (cfg->adc2_pattern_len) {
|
||
|
adc_ll_digi_clear_pattern_table(ADC_UNIT_2);
|
||
|
adc_ll_digi_set_pattern_table_len(ADC_UNIT_2, cfg->adc2_pattern_len);
|
||
|
for (uint32_t i = 0; i < cfg->adc2_pattern_len; i++) {
|
||
|
adc_ll_digi_prepare_pattern_table(ADC_UNIT_2, i, cfg->adc2_pattern[i]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
adc_ll_digi_set_output_format(cfg->format);
|
||
|
adc_ll_digi_convert_limit_enable(ADC_LL_DEFAULT_CONV_LIMIT_EN);
|
||
|
adc_ll_digi_set_convert_limit_num(ADC_LL_DEFAULT_CONV_LIMIT_NUM);
|
||
|
adc_ll_digi_set_data_source(ADC_I2S_DATA_SRC_ADC);
|
||
|
}
|
||
|
|
||
|
esp_err_t adc_set_i2s_data_source(adc_i2s_source_t src)
|
||
|
{
|
||
|
ADC_CHECK((src == ADC_I2S_DATA_SRC_IO_SIG || src == ADC_I2S_DATA_SRC_ADC), "ADC i2s data source error", ESP_ERR_INVALID_ARG);
|
||
|
ADC_ENTER_CRITICAL();
|
||
|
adc_ll_digi_set_data_source(src);
|
||
|
ADC_EXIT_CRITICAL();
|
||
|
return ESP_OK;
|
||
|
}
|
||
|
|
||
|
extern esp_err_t adc_common_gpio_init(adc_unit_t adc_unit, adc_channel_t channel);
|
||
|
esp_err_t adc_i2s_mode_init(adc_unit_t adc_unit, adc_channel_t channel)
|
||
|
{
|
||
|
if (adc_unit == ADC_UNIT_1) {
|
||
|
ADC_CHANNEL_CHECK(ADC_UNIT_1, channel);
|
||
|
} else if (adc_unit == ADC_UNIT_2) {
|
||
|
//ADC2 does not support DMA mode
|
||
|
ADC_CHECK(false, "ADC2 not support DMA for now.", ESP_ERR_INVALID_ARG);
|
||
|
ADC_CHANNEL_CHECK(ADC_UNIT_2, channel);
|
||
|
}
|
||
|
|
||
|
adc_digi_pattern_table_t adc1_pattern[1];
|
||
|
adc_digi_pattern_table_t adc2_pattern[1];
|
||
|
adc_digi_config_t dig_cfg = {
|
||
|
.format = DIG_ADC_OUTPUT_FORMAT_DEFUALT,
|
||
|
.conv_mode = ADC_CONV_SINGLE_UNIT_1,
|
||
|
};
|
||
|
|
||
|
if (adc_unit == ADC_UNIT_1) {
|
||
|
adc1_pattern[0].atten = DIG_ADC_ATTEN_DEFUALT;
|
||
|
adc1_pattern[0].bit_width = DIG_ADC_BIT_WIDTH_DEFUALT;
|
||
|
adc1_pattern[0].channel = channel;
|
||
|
dig_cfg.adc1_pattern_len = 1;
|
||
|
dig_cfg.adc1_pattern = adc1_pattern;
|
||
|
} else if (adc_unit == ADC_UNIT_2) {
|
||
|
adc2_pattern[0].atten = DIG_ADC_ATTEN_DEFUALT;
|
||
|
adc2_pattern[0].bit_width = DIG_ADC_BIT_WIDTH_DEFUALT;
|
||
|
adc2_pattern[0].channel = channel;
|
||
|
dig_cfg.adc2_pattern_len = 1;
|
||
|
dig_cfg.adc2_pattern = adc2_pattern;
|
||
|
}
|
||
|
adc_common_gpio_init(adc_unit, channel);
|
||
|
ADC_ENTER_CRITICAL();
|
||
|
adc_ll_digi_set_fsm_time(ADC_HAL_FSM_RSTB_WAIT_DEFAULT, ADC_HAL_FSM_START_WAIT_DEFAULT,
|
||
|
ADC_HAL_FSM_STANDBY_WAIT_DEFAULT);
|
||
|
adc_ll_set_sample_cycle(ADC_HAL_SAMPLE_CYCLE_DEFAULT);
|
||
|
adc_hal_pwdet_set_cct(ADC_HAL_PWDET_CCT_DEFAULT);
|
||
|
adc_ll_digi_output_invert(ADC_UNIT_1, ADC_HAL_DIGI_DATA_INVERT_DEFAULT(ADC_UNIT_1));
|
||
|
adc_ll_digi_output_invert(ADC_UNIT_2, ADC_HAL_DIGI_DATA_INVERT_DEFAULT(ADC_UNIT_2));
|
||
|
adc_ll_digi_set_clk_div(ADC_HAL_DIGI_SAR_CLK_DIV_DEFAULT);
|
||
|
adc_digi_controller_reg_set(&dig_cfg);
|
||
|
ADC_EXIT_CRITICAL();
|
||
|
|
||
|
return ESP_OK;
|
||
|
}
|
||
|
|
||
|
#endif //#if CONFIG_IDF_TARGET_ESP32
|