esp-idf/components/spi_flash/spi_flash_timing_tuning.c

415 lines
17 KiB
C
Raw Normal View History

/*
* SPDX-FileCopyrightText: 2019-2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdlib.h>
#include <string.h>
#include "sdkconfig.h"
#include "esp_attr.h"
#include "esp_err.h"
#include "esp_types.h"
#include "esp_log.h"
#include "soc/spi_mem_reg.h"
#include "soc/io_mux_reg.h"
#include "spi_flash_private.h"
#if CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/spi_timing_config.h"
#endif
#define ARRAY_SIZE(arr) (sizeof(arr)/sizeof(*(arr)))
/*------------------------------------------------------------------------------
* Common settings
*----------------------------------------------------------------------------*/
void spi_timing_set_pin_drive_strength(void)
{
//For now, set them all to 3. Need to check after QVL test results are out. TODO: IDF-3663
//Set default clk
SET_PERI_REG_MASK(SPI_MEM_DATE_REG(0), SPI_MEM_SPICLK_PAD_DRV_CTL_EN);
REG_SET_FIELD(SPI_MEM_DATE_REG(0), SPI_MEM_SPI_SMEM_SPICLK_FUN_DRV, 3);
REG_SET_FIELD(SPI_MEM_DATE_REG(0), SPI_MEM_SPI_FMEM_SPICLK_FUN_DRV, 3);
//Set default mspi d0 ~ d7, dqs pin drive strength
uint32_t regs[] = {IO_MUX_GPIO27_REG, IO_MUX_GPIO28_REG,
IO_MUX_GPIO31_REG, IO_MUX_GPIO32_REG,
IO_MUX_GPIO33_REG, IO_MUX_GPIO34_REG,
IO_MUX_GPIO35_REG, IO_MUX_GPIO36_REG,
IO_MUX_GPIO37_REG};
for (int i = 0; i < ARRAY_SIZE(regs); i++) {
PIN_SET_DRV(regs[i], 3);
}
}
#if SPI_TIMING_FLASH_NEEDS_TUNING || SPI_TIMING_PSRAM_NEEDS_TUNING
static spi_timing_tuning_param_t s_flash_best_timing_tuning_config;
static spi_timing_tuning_param_t s_psram_best_timing_tuning_config;
/*------------------------------------------------------------------------------
* Static functions to get clock configs
*----------------------------------------------------------------------------*/
static spi_timing_config_core_clock_t get_mspi_core_clock(void)
{
return spi_timing_config_get_core_clock();
}
static uint32_t get_flash_clock_divider(void)
{
#if CONFIG_ESPTOOLPY_FLASHFREQ_20M
return SPI_TIMING_CORE_CLOCK_MHZ / 20;
#elif CONFIG_ESPTOOLPY_FLASHFREQ_40M
return SPI_TIMING_CORE_CLOCK_MHZ / 40;
#elif CONFIG_ESPTOOLPY_FLASHFREQ_80M
return SPI_TIMING_CORE_CLOCK_MHZ / 80;
#elif CONFIG_ESPTOOLPY_FLASHFREQ_120M
return SPI_TIMING_CORE_CLOCK_MHZ / 120;
#else
abort();
#endif
}
static uint32_t get_psram_clock_divider(void)
{
#if CONFIG_SPIRAM_SPEED_40M
return SPI_TIMING_CORE_CLOCK_MHZ / 40;
#elif CONFIG_SPIRAM_SPEED_80M
return SPI_TIMING_CORE_CLOCK_MHZ / 80;
#else
//Will enter this branch only if PSRAM is not enable
return 0;
#endif
}
/*------------------------------------------------------------------------------
* Static functions to do timing tuning
*----------------------------------------------------------------------------*/
/**
* Set timing tuning regs, in order to get successful sample points
*/
static void init_spi1_for_tuning(bool is_flash)
{
//Get required core clock and module clock settings
spi_timing_config_core_clock_t core_clock = get_mspi_core_clock();
//Set SPI1 core clock. SPI0 and SPI1 share the register for core clock. So we only set SPI0 here.
spi_timing_config_set_core_clock(0, core_clock);
//Set SPI1 module clock as required
if (is_flash) {
uint32_t flash_div = get_flash_clock_divider();
spi_timing_config_set_flash_clock(1, flash_div);
//Power on HCLK
REG_SET_BIT(SPI_MEM_TIMING_CALI_REG(0), SPI_MEM_TIMING_CLK_ENA);
} else {
//We use SPI1 Flash to tune PSRAM, PSRAM timing related regs do nothing on SPI1
uint32_t psram_div = get_psram_clock_divider();
spi_timing_config_set_flash_clock(1, psram_div);
//Power on HCLK
REG_SET_BIT(SPI_MEM_SPI_SMEM_TIMING_CALI_REG(0), SPI_MEM_SPI_SMEM_TIMING_CLK_ENA);
}
}
/**
* We use different SPI1 timing tuning config to read data to see if current MSPI sampling is successful.
* The sampling result will be stored in an array. In this array, successful item will be 1, failed item will be 0.
*/
static void sweep_for_success_sample_points(uint8_t *reference_data, const spi_timing_config_t *config, bool is_flash, uint8_t *out_array)
{
uint32_t config_idx = 0;
uint8_t read_data[SPI_TIMING_TEST_DATA_LEN] = {0};
for (config_idx = 0; config_idx < config->available_config_num; config_idx++) {
memset(read_data, 0, SPI_TIMING_TEST_DATA_LEN);
#if SPI_TIMING_FLASH_NEEDS_TUNING
if (is_flash) {
/**
* 1. SPI_MEM_DINx_MODE(1), SPI_MEM_DINx_NUM(1) are meaningless
* SPI0 and SPI1 share the SPI_MEM_DINx_MODE(0), SPI_MEM_DINx_NUM(0) for FLASH timing tuning
* 2. We use SPI1 to get the best Flash timing tuning (mode and num) config
*/
spi_timing_config_flash_set_din_mode_num(0, config->tuning_config_table[config_idx].spi_din_mode, config->tuning_config_table[config_idx].spi_din_num);
spi_timing_config_flash_set_extra_dummy(1, config->tuning_config_table[config_idx].extra_dummy_len);
spi_timing_config_flash_read_data(1, read_data, SPI_TIMING_FLASH_TEST_DATA_ADDR, sizeof(read_data));
}
#endif
#if SPI_TIMING_PSRAM_NEEDS_TUNING
if (!is_flash) {
/**
* 1. SPI_MEM_SPI_SMEM_DINx_MODE(1), SPI_MEM_SPI_SMEM_DINx_NUM(1) are meaningless
* SPI0 and SPI1 share the SPI_MEM_SPI_SMEM_DINx_MODE(0), SPI_MEM_SPI_SMEM_DINx_NUM(0) for PSRAM timing tuning
* 2. We use SPI1 to get the best PSRAM timing tuning (mode and num) config
*/
spi_timing_config_psram_set_din_mode_num(0, config->tuning_config_table[config_idx].spi_din_mode, config->tuning_config_table[config_idx].spi_din_num);
spi_timing_config_flash_set_extra_dummy(1, config->tuning_config_table[config_idx].extra_dummy_len);
spi_timing_config_psram_read_data(1, read_data, SPI_TIMING_PSRAM_TEST_DATA_ADDR, SPI_TIMING_TEST_DATA_LEN);
}
#endif
if (memcmp(reference_data, read_data, sizeof(read_data)) == 0) {
out_array[config_idx] = 1;
}
}
}
/**
* Find consecutive successful sampling points.
* e.g. array: {1, 1, 0, 0, 1, 1, 1, 0}
* out_length: 3
* outout_end_index: 6
*/
static void find_max_consecutive_success_points(uint8_t *array, uint32_t size, uint32_t *out_length, uint32_t *out_end_index)
{
uint32_t max = 0;
uint32_t match_num = 0;
uint32_t i = 0;
uint32_t end = 0;
while (i < size) {
if (array[i]) {
match_num++;
} else {
if (match_num > max) {
max = match_num;
end = i - 1;
}
match_num = 0;
}
i++;
}
*out_length = match_num > max ? match_num : max;
*out_end_index = match_num == size ? size : end;
}
static void select_best_tuning_config(spi_timing_config_t *config, uint32_t consecutive_length, uint32_t end, bool is_flash)
{
#if (SPI_TIMING_FLASH_DTR_MODE && CONFIG_ESPTOOLPY_FLASHFREQ_80M) || (SPI_TIMING_PSRAM_DTR_MODE && CONFIG_SPIRAM_SPEED_80M)
//80M DTR best point scheme
uint32_t best_point;
/**
* If the consecutive success point list is no longer than 2, or all available points are successful,
* tuning is FAIL, select default point, and generate a warning
*/
//Define these magic number in macros in `spi_timing_config.h`. TODO: IDF-3146
if (consecutive_length <= 2 || consecutive_length >= 6) {
best_point = config->default_config_id;
ESP_EARLY_LOGW("timing tuning:", "tuning fail, best point is %d\n", best_point + 1);
} else if (consecutive_length <= 4) {
//consevutive length : 3 or 4
best_point = end - 1;
ESP_EARLY_LOGD("timing tuning:","tuning success, best point is %d\n", best_point + 1);
} else {
//consecutive point list length equals 5
best_point = end - 2;
ESP_EARLY_LOGD("timing tuning:","tuning success, best point is %d\n", best_point + 1);
}
if (is_flash) {
s_flash_best_timing_tuning_config = config->tuning_config_table[best_point];
} else {
s_psram_best_timing_tuning_config = config->tuning_config_table[best_point];
}
#else
//won't reach here
abort();
#endif
}
static void do_tuning(uint8_t *reference_data, spi_timing_config_t *timing_config, bool is_flash)
{
/**
* We use SPI1 to tune the FLASH timing:
* 1. Get all SPI1 sampling results.
* 2. Find the longest consecutive successful sampling points from the result above.
* 3. The middle one will be the best sampling point.
*/
uint32_t consecutive_length = 0;
uint32_t last_success_point = 0;
uint8_t sample_result[SPI_TIMING_CONFIG_NUM_DEFAULT] = {0};
init_spi1_for_tuning(is_flash);
sweep_for_success_sample_points(reference_data, timing_config, is_flash, sample_result);
find_max_consecutive_success_points(sample_result, SPI_TIMING_CONFIG_NUM_DEFAULT, &consecutive_length, &last_success_point);
select_best_tuning_config(timing_config, consecutive_length, last_success_point, is_flash);
}
#endif //#if SPI_TIMING_FLASH_NEEDS_TUNING || SPI_TIMING_PSRAM_NEEDS_TUNING
/*------------------------------------------------------------------------------
* FLASH Timing Tuning
*----------------------------------------------------------------------------*/
#if SPI_TIMING_FLASH_NEEDS_TUNING
static void get_flash_tuning_configs(spi_timing_config_t *config)
{
#if SPI_TIMING_FLASH_DTR_MODE
#define FLASH_MODE DTR_MODE
#else //SPI_TIMING_FLASH_STR_MODE
#define FLASH_MODE STR_MODE
#endif
#if CONFIG_ESPTOOLPY_FLASHFREQ_20M
*config = SPI_TIMING_FLASH_GET_TUNING_CONFIG(SPI_TIMING_CORE_CLOCK_MHZ, 20, FLASH_MODE);
#elif CONFIG_ESPTOOLPY_FLASHFREQ_40M
*config = SPI_TIMING_FLASH_GET_TUNING_CONFIG(SPI_TIMING_CORE_CLOCK_MHZ, 40, FLASH_MODE);
#elif CONFIG_ESPTOOLPY_FLASHFREQ_80M
*config = SPI_TIMING_FLASH_GET_TUNING_CONFIG(SPI_TIMING_CORE_CLOCK_MHZ, 80, FLASH_MODE);
#elif CONFIG_ESPTOOLPY_FLASHFREQ_120M
*config = SPI_TIMING_FLASH_GET_TUNING_CONFIG(SPI_TIMING_CORE_CLOCK_MHZ, 120, FLASH_MODE);
#endif
#undef FLASH_MODE
}
void spi_timing_flash_tuning(void)
{
ESP_EARLY_LOGW("FLASH", "DO NOT USE FOR MASS PRODUCTION! Timing parameters will be updated in future IDF version.");
/**
* set SPI01 related regs to 20mhz configuration, to get reference data from FLASH
* see detailed comments in this function (`spi_timing_enter_mspi_low_speed_mode)
*/
spi_timing_enter_mspi_low_speed_mode();
//Disable the variable dummy mode when doing timing tuning
CLEAR_PERI_REG_MASK(SPI_MEM_DDR_REG(1), SPI_MEM_SPI_FMEM_VAR_DUMMY); //GD flash will read error in variable mode with 20MHz
uint8_t reference_data[SPI_TIMING_TEST_DATA_LEN] = {0};
spi_timing_config_flash_read_data(1, reference_data, SPI_TIMING_FLASH_TEST_DATA_ADDR, sizeof(reference_data));
spi_timing_config_t timing_configs = {0};
get_flash_tuning_configs(&timing_configs);
do_tuning(reference_data, &timing_configs, true);
spi_timing_enter_mspi_high_speed_mode();
}
#else
void spi_timing_flash_tuning(void)
{
//Empty function for compatibility, therefore upper layer won't need to know that FLASH in which operation mode and frequency config needs to be tuned
}
#endif //SPI_TIMING_FLASH_NEEDS_TUNING
/*------------------------------------------------------------------------------
* PSRAM Timing Tuning
*----------------------------------------------------------------------------*/
#if SPI_TIMING_PSRAM_NEEDS_TUNING
static void get_psram_tuning_configs(spi_timing_config_t *config)
{
#if SPI_TIMING_PSRAM_DTR_MODE
#define PSRAM_MODE DTR_MODE
#else //SPI_TIMING_PSRAM_STR_MODE
#define PSRAM_MODE STR_MODE
#endif
#if CONFIG_SPIRAM_SPEED_40M
*config = SPI_TIMING_PSRAM_GET_TUNING_CONFIG(SPI_TIMING_CORE_CLOCK_MHZ, 40, PSRAM_MODE);
#elif CONFIG_SPIRAM_SPEED_80M
*config = SPI_TIMING_PSRAM_GET_TUNING_CONFIG(SPI_TIMING_CORE_CLOCK_MHZ, 80, PSRAM_MODE);
#endif
#undef PSRAM_MODE
}
void spi_timing_psram_tuning(void)
{
ESP_EARLY_LOGW("PSRAM", "DO NOT USE FOR MASS PRODUCTION! Timing parameters will be updated in future IDF version.");
/**
* set SPI01 related regs to 20mhz configuration, to write reference data to PSRAM
* see detailed comments in this function (`spi_timing_enter_mspi_low_speed_mode)
*/
spi_timing_enter_mspi_low_speed_mode();
// write data into psram, used to do timing tuning test.
uint8_t reference_data[SPI_TIMING_TEST_DATA_LEN];
for (int i=0; i < SPI_TIMING_TEST_DATA_LEN/4; i++) {
((uint32_t *)reference_data)[i] = 0xa5ff005a;
}
spi_timing_config_psram_write_data(1, reference_data, SPI_TIMING_PSRAM_TEST_DATA_ADDR, SPI_TIMING_TEST_DATA_LEN);
spi_timing_config_t timing_configs = {0};
get_psram_tuning_configs(&timing_configs);
//Disable the variable dummy mode when doing timing tuning
CLEAR_PERI_REG_MASK(SPI_MEM_DDR_REG(1), SPI_MEM_SPI_FMEM_VAR_DUMMY);
//Get required config, and set them to PSRAM related registers
do_tuning(reference_data, &timing_configs, false);
spi_timing_enter_mspi_high_speed_mode();
}
#else
void spi_timing_psram_tuning(void)
{
//Empty function for compatibility, therefore upper layer won't need to know that FLASH in which operation mode and frequency config needs to be tuned
}
#endif //SPI_TIMING_PSRAM_NEEDS_TUNING
/*------------------------------------------------------------------------------
* APIs to make SPI0 and SPI1 FLASH work for high/low freq
*----------------------------------------------------------------------------*/
#if SPI_TIMING_FLASH_NEEDS_TUNING || SPI_TIMING_PSRAM_NEEDS_TUNING
static void clear_timing_tuning_regs(void)
{
spi_timing_config_flash_set_din_mode_num(0, 0, 0); //SPI0 and SPI1 share the registers for flash din mode and num setting, so we only set SPI0's reg
spi_timing_config_flash_set_extra_dummy(0, 0);
spi_timing_config_flash_set_extra_dummy(1, 0);
}
#endif //#if SPI_TIMING_FLASH_NEEDS_TUNING || SPI_TIMING_PSRAM_NEEDS_TUNING
void spi_timing_enter_mspi_low_speed_mode(void)
{
#if SPI_TIMING_FLASH_NEEDS_TUNING || SPI_TIMING_PSRAM_NEEDS_TUNING
/**
* Here we are going to slow the SPI1 frequency to 20Mhz, so we need to set SPI1 din_num and din_mode regs.
*
* Because SPI0 and SPI1 share the din_num and din_mode regs, so if we clear SPI1 din_num and din_mode to
* 0, if the SPI0 flash module clock is still in high freq, it may not work correctly.
*
* Therefore, here we need to slow both the SPI0 and SPI1 and related timing tuning regs to 20Mhz configuration.
*/
//Switch SPI1 and SPI0 clock as 20MHz, set its SPIMEM core clock as 80M and set clock division as 4
spi_timing_config_set_core_clock(0, SPI_TIMING_CONFIG_CORE_CLOCK_80M); //SPI0 and SPI1 share the register for core clock. So we only set SPI0 here.
spi_timing_config_set_flash_clock(1, 4);
spi_timing_config_set_flash_clock(0, 4);
clear_timing_tuning_regs();
#else
//Empty function for compatibility, therefore upper layer won't need to know that FLASH in which operation mode and frequency config needs to be tuned
#endif
}
#if SPI_TIMING_FLASH_NEEDS_TUNING || SPI_TIMING_PSRAM_NEEDS_TUNING
static void set_timing_tuning_regs_as_required(void)
{
//SPI0 and SPI1 share the registers for flash din mode and num setting, so we only set SPI0's reg
spi_timing_config_flash_set_din_mode_num(0, s_flash_best_timing_tuning_config.spi_din_mode, s_flash_best_timing_tuning_config.spi_din_num);
spi_timing_config_flash_set_extra_dummy(0, s_flash_best_timing_tuning_config.extra_dummy_len);
spi_timing_config_flash_set_extra_dummy(1, s_flash_best_timing_tuning_config.extra_dummy_len);
spi_timing_config_psram_set_din_mode_num(0, s_psram_best_timing_tuning_config.spi_din_mode, s_psram_best_timing_tuning_config.spi_din_num);
spi_timing_config_psram_set_extra_dummy(0, s_psram_best_timing_tuning_config.extra_dummy_len);
}
#endif //#if SPI_TIMING_FLASH_NEEDS_TUNING || SPI_TIMING_PSRAM_NEEDS_TUNING
/**
* Set SPI0 and SPI1 flash module clock, din_num, din_mode and extra dummy,
* according to the configuration got from timing tuning function (`calculate_best_flash_tuning_config`).
*
* This function should always be called after `spi_timing_flash_tuning` or `calculate_best_flash_tuning_config`
*/
void spi_timing_enter_mspi_high_speed_mode(void)
{
#if SPI_TIMING_FLASH_NEEDS_TUNING || SPI_TIMING_PSRAM_NEEDS_TUNING
spi_timing_config_core_clock_t core_clock = get_mspi_core_clock();
uint32_t flash_div = get_flash_clock_divider();
uint32_t psram_div = get_psram_clock_divider();
//Set SPI01 core clock
spi_timing_config_set_core_clock(0, core_clock); //SPI0 and SPI1 share the register for core clock. So we only set SPI0 here.
//Set FLASH module clock
spi_timing_config_set_flash_clock(0, flash_div);
spi_timing_config_set_flash_clock(1, flash_div);
//Set PSRAM module clock
spi_timing_config_set_psram_clock(0, psram_div);
set_timing_tuning_regs_as_required();
#else
//Empty function for compatibility, therefore upper layer won't need to know that FLASH in which operation mode and frequency config needs to be tuned
#endif
}