A single ESP32's flash can contain multiple apps, as well as many different kinds of data (calibration data, filesystems, parameter storage, etc). For this reason a partition table is flashed to (:ref:`default offset <CONFIG_PARTITION_TABLE_OFFSET>`) 0x8000 in the flash.
Partition table length is 0xC00 bytes (maximum 95 partition table entries). An MD5 checksum, which is used for checking the integrity of the partition table, is appended after the table data. If the partition table is signed due to `secure boot`, the signature is appended after the partition table.
Each entry in the partition table has a name (label), type (app, data, or something else), subtype and the offset in flash where the partition is loaded.
The simplest way to use the partition table is to open the project configuration menu (``idf.py menuconfig``) and choose one of the simple predefined partition tables under :ref:`CONFIG_PARTITION_TABLE_TYPE`:
In both cases the factory app is flashed at offset 0x10000. If you execute `idf.py partition_table` then it will print a summary of the partition table.
* There are now three app partition definitions. The type of the factory app (at 0x10000) and the next two "OTA" apps are all set to "app", but their subtypes are different.
* There is also a new "otadata" slot, which holds the data for OTA updates. The bootloader consults this data in order to know which app to execute. If "ota data" is empty, it will execute the factory app.
If you choose "Custom partition table CSV" in menuconfig then you can also enter the name of a CSV file (in the project directory) to use for your partition table. The CSV file can describe any number of definitions for the table you need.
The CSV format is the same format as printed in the summaries shown above. However, not all fields are required in the CSV. For example, here is the "input" CSV for the OTA partition table::
* The "Offset" field for each partition is empty. The gen_esp32part.py tool fills in each blank offset, starting after the partition table and making sure each partition is aligned correctly.
Partition type field can be specified as app (0) or data (1). Or it can be a number 0-254 (or as hex 0x00-0xFE). Types 0x00-0x3F are reserved for esp-idf core functions.
The 8-bit subtype field is specific to a given partition type. esp-idf currently only specifies the meaning of the subtype field for "app" and "data" partition types.
- factory (0) is the default app partition. The bootloader will execute the factory app unless there it sees a partition of type data/ota, in which case it reads this partition to determine which OTA image to boot.
- If you want to conserve flash usage in an OTA project, you can remove the factory partition and use ota_0 instead.
- ota_0 (0x10) ... ota_15 (0x1F) are the OTA app slots. Refer to the :doc:`OTA documentation <../api-reference/system/ota>` for more details, which then use the OTA data partition to configure which app slot the bootloader should boot. If using OTA, an application should have at least two OTA application slots (ota_0 & ota_1). Refer to the :doc:`OTA documentation <../api-reference/system/ota>` for more details.
- test (0x20) is a reserved subtype for factory test procedures. It will be used as the fallback boot partition if no other valid app partition is found. It is also possible to configure the bootloader to read a GPIO input during each boot, and boot this partition if the GPIO is held low, see :ref:`bootloader_boot_from_test_firmware`.
- ota (0) is the :ref:`OTA data partition <ota_data_partition>` which stores information about the currently selected OTA application. This partition should be 0x2000 bytes in size. Refer to the :ref:`OTA documentation <ota_data_partition>` for more details.
- phy (1) is for storing PHY initialisation data. This allows PHY to be configured per-device, instead of in firmware.
- In the default configuration, the phy partition is not used and PHY initialisation data is compiled into the app itself. As such, this partition can be removed from the partition table to save space.
- To load PHY data from this partition, open the project configuration menu (``idf.py menuconfig``) and enable :ref:`CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION` option. You will also need to flash your devices with phy init data as the esp-idf build system does not do this automatically.
- NVS is used to store WiFi data if the :doc:`esp_wifi_set_storage(WIFI_STORAGE_FLASH) <../api-reference/network/esp_wifi>` initialisation function is used.
App partitions have to be at offsets aligned to 0x10000 (64K). If you leave the offset field blank, ``gen_esp32part.py`` will automatically align the partition. If you specify an unaligned offset for an app partition, the tool will return an error.
If you want the partitions in the partition table to work with any starting offset (:ref:`CONFIG_PARTITION_TABLE_OFFSET`) of the table itself, leave the offset field (in CSV file) for all partitions blank. Similarly, if changing the partition table offset then be aware that all blank partition offsets may change to match, and that any fixed offsets may now collide with the partition table (causing an error).
Only one flag is currently supported, ``encrypted``. If this field is set to ``encrypted``, this partition will be encrypted if :doc:`/security/flash-encryption` is enabled.
(Note that ``app`` type partitions will always be encrypted, regardless of whether this flag is set or not.)
The partition table which is flashed to the ESP32 is in a binary format, not CSV. The tool :component_file:`partition_table/gen_esp32part.py` is used to convert between CSV and binary formats.
If you configure the partition table CSV name in the project configuration (``idf.py menuconfig``) and then build the project or run ``idf.py partition_table``, this conversion is done as part of the build process.
To display the contents of a binary partition table on stdout (this is how the summaries displayed when running ``idf.py partition_table`` are generated::
The binary format of the partition table contains an MD5 checksum computed based on the partition table. This checksum is used for checking the integrity of the partition table during the boot.
The MD5 checksum generation can be disabled by the ``--disable-md5sum`` option of ``gen_esp32part.py`` or by the :ref:`CONFIG_PARTITION_TABLE_MD5` option. This is useful for example when one :ref:`uses a bootloader from ESP-IDF before v3.1 <CONFIG_ESP32_COMPATIBLE_PRE_V3_1_BOOTLOADERS>` which cannot process MD5 checksums and the boot fails with the error message ``invalid magic number 0xebeb``.
Note that updating the partition table doesn't erase data that may have been stored according to the old partition table. You can use ``idf.py erase_flash`` (or ``esptool.py erase_flash``) to erase the entire flash contents.
The component `partition_table` provides a tool :component_file:`parttool.py<partition_table/parttool.py>` for performing partition-related operations on a target device. The following operations can be performed using the tool:
- reading a partition and saving the contents to a file (read_partition)
- writing the contents of a file to a partition (write_partition)
- erasing a partition (erase_partition)
- retrieving info such as offset and size of a given partition (get_partition_info)
The tool can either be imported and used from another Python script or invoked from shell script for users wanting to perform operation programmatically. This is facilitated by the tool's Python API
and command-line interface, respectively.
Python API
~~~~~~~~~~~
Before anything else, make sure that the `parttool` module is imported.
..code-block:: python
import sys
import os
idf_path = os.environ["IDF_PATH"] # get value of IDF_PATH from environment
parttool_dir = os.path.join(idf_path, "components", "partition_table") # parttool.py lives in $IDF_PATH/components/partition_table
sys.path.append(parttool_dir) # this enables Python to find parttool module
from parttool import * # import all names inside parttool module
The starting point for using the tool's Python API to do is create a `ParttoolTarget` object:
..code-block:: python
# Create a partool.py target device connected on serial port /dev/ttyUSB1
target = ParttoolTarget("/dev/ttyUSB1")
The created object can now be used to perform operations on the target device:
..code-block:: python
# Erase partition with name 'storage'
target.erase_partition(PartitionName("storage"))
# Read partition with type 'data' and subtype 'spiffs' and save to file 'spiffs.bin'
The partition to operate on is specified using `PartitionName` or `PartitionType` or PARTITION_BOOT_DEFAULT. As the name implies, these can be used to refer
to partitions of a particular name, type-subtype combination, or the default boot partition.
More information on the Python API is available in the docstrings for the tool.
Command-line Interface
~~~~~~~~~~~~~~~~~~~~~~
The command-line interface of `parttool.py` has the following structure: