esp-idf/components/driver/test/dac_dma_test/test_esp32s2.c

365 lines
12 KiB
C
Raw Normal View History

// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
Tests for the dac device driver
*/
#include "esp_system.h"
#include "esp_intr_alloc.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "driver/adc.h"
#include "driver/dac.h"
#include "driver/rtc_io.h"
#include "driver/gpio.h"
#include "unity.h"
#include "esp_system.h"
#include "esp_event.h"
#include "esp_wifi.h"
#include "esp_log.h"
#include "nvs_flash.h"
#include "test_utils.h"
#include "soc/spi_reg.h"
#include "soc/adc_periph.h"
#include "soc/dac_periph.h"
#include "test/test_common_adc.h"
#if !DISABLED_FOR_TARGETS(ESP8266, ESP32) // This testcase for ESP32S2
#include "soc/system_reg.h"
#include "esp32s2/rom/lldesc.h"
#include "test/test_adc_dac_dma.h"
static const char *TAG = "test_adc";
#define PLATFORM_SELECT (1) //0: pxp; 1: chip
#if (PLATFORM_SELECT == 0) //PXP platform
#include "soc/apb_ctrl_reg.h"
#define SET_BREAK_POINT(flag) REG_WRITE(APB_CTRL_DATE_REG, flag)
//PXP clk is slower.
#define SYS_DELAY_TIME_MOM (1/40)
#define RTC_SLOW_CLK_FLAG 1 // Slow clock is 32KHz.
static void test_pxp_deinit_io(void)
{
for (int i = 0; i < 22; i++) {
rtc_gpio_init(i);
}
}
#else
//PXP clk is slower.
#define SET_BREAK_POINT(flag)
#define SYS_DELAY_TIME_MOM (1)
#define RTC_SLOW_CLK_FLAG 0 // Slow clock is 32KHz.
#endif
#define SAR_SIMPLE_NUM 512 // Set out number of enabled unit.
typedef struct dma_msg {
uint32_t int_msk;
uint8_t *data;
uint32_t data_len;
} dac_dma_event_t;
static QueueHandle_t que_dac = NULL;
static uint8_t link_buf[2][SAR_SIMPLE_NUM*2] = {0};
static lldesc_t dma1 = {0};
static lldesc_t dma2 = {0};
/*******************************************/
/** DAC-DMA INIT CODE */
/*******************************************/
/**
* DMA liner initialization and start.
* @param is_loop
* - true: The two dma linked lists are connected end to end, with no end mark (eof).
* - false: The two dma linked lists are connected end to end, with end mark (eof).
* @param int_mask DMA interrupt types.
*/
uint32_t dac_dma_linker_init(bool is_alter, bool is_loop)
{
/* The DAC output is a sawtooth wave. */
if (is_alter) {
for(int i=0; i<SAR_SIMPLE_NUM*2; i++) {
if(i%2){
link_buf[0][i] = i%256;
}else{
link_buf[0][i] = 256-i%256;
}
if(i%2){
link_buf[1][i] = i%256;
}else{
link_buf[1][i] = 256-i%256;
}
}
} else {
for(int i=0; i<SAR_SIMPLE_NUM; i++) {
link_buf[0][i] = i%256;
link_buf[1][i] = i%256;
}
}
dma1 = (lldesc_t) {
.size = (is_alter) ? SAR_SIMPLE_NUM*2 : SAR_SIMPLE_NUM,
.length = (is_alter) ? SAR_SIMPLE_NUM*2 : SAR_SIMPLE_NUM,
.eof = 0,
.owner = 1,
.buf = &link_buf[0][0],
.qe.stqe_next = &dma2,
};
dma2 = (lldesc_t) {
.size = (is_alter) ? SAR_SIMPLE_NUM*2 : SAR_SIMPLE_NUM,
.length = (is_alter) ? SAR_SIMPLE_NUM*2 : SAR_SIMPLE_NUM,
.owner = 1,
.buf = &link_buf[1][0],
};
if (is_loop) {
dma2.eof = 0;
dma2.qe.stqe_next = &dma1;
} else {
dma2.eof = 1;
dma2.qe.stqe_next = NULL;
}
return (uint32_t)&dma1;
}
/** ADC-DMA ISR handler. */
static IRAM_ATTR void dac_dma_isr(void * arg)
{
uint32_t int_st = REG_READ(SPI_DMA_INT_ST_REG(3));
int task_awoken = pdFALSE;
dac_dma_event_t adc_evt;
adc_evt.int_msk = int_st;
REG_WRITE(SPI_DMA_INT_CLR_REG(3), int_st);
xQueueSendFromISR(que_dac, &adc_evt, &task_awoken);
ESP_EARLY_LOGV(TAG, "int msk%x, raw%x", int_st, REG_READ(SPI_DMA_INT_RAW_REG(3)));
if (task_awoken == pdTRUE) {
portYIELD_FROM_ISR();
}
}
/**
* Testcase: Check the interrupt types of DAC-DMA.
*/
void test_dac_dig_dma_intr_check(dac_digi_convert_mode_t mode)
{
ESP_LOGI(TAG, " >> %s - dac mode %d<< ", __func__, mode);
dac_dma_event_t evt;
dac_digi_init();
const dac_digi_config_t cfg = {
.mode = mode,
.interval = 100,
.dig_clk.use_apll = false, // APB clk
.dig_clk.div_num = 79,
.dig_clk.div_b = 1,
.dig_clk.div_a = 0,
};
dac_digi_controller_config(&cfg);
dac_output_enable(DAC_CHANNEL_1);
dac_output_enable(DAC_CHANNEL_2);
/* DAC-DMA linker init */
if (que_dac == NULL) {
que_dac = xQueueCreate(5, sizeof(dac_dma_event_t));
} else {
xQueueReset(que_dac);
}
uint32_t int_mask = SPI_OUT_DONE_INT_ENA | SPI_OUT_EOF_INT_ENA | SPI_OUT_TOTAL_EOF_INT_ENA;
uint32_t dma_addr = dac_dma_linker_init(mode, false);
adc_dac_dma_isr_register(dac_dma_isr, NULL, int_mask);
adc_dac_dma_linker_start(DMA_ONLY_DAC_OUTLINK, (void *)dma_addr, int_mask);
/* ADC-DMA start output */
dac_digi_start();
/* Check interrupt type */
while (int_mask) {
TEST_ASSERT_EQUAL( xQueueReceive(que_dac, &evt, 2000 / portTICK_RATE_MS), pdTRUE );
ESP_LOGI(TAG, "DAC-DMA intr type 0x%x", evt.int_msk);
if (evt.int_msk & int_mask) {
int_mask &= (~evt.int_msk);
}
}
ESP_LOGI(TAG, "DAC-DMA intr test over");
adc_dac_dma_linker_deinit();
adc_dac_dma_isr_deregister(dac_dma_isr, NULL);
TEST_ESP_OK( dac_digi_deinit() );
}
TEST_CASE("DAC-DMA interrupt test", "[dac]")
{
test_dac_dig_dma_intr_check(DAC_CONV_NORMAL);
test_dac_dig_dma_intr_check(DAC_CONV_ALTER);
}
/*******************************************/
/** SPI DMA INIT CODE */
/*******************************************/
#include "sys/queue.h"
static bool adc_dac_dma_isr_flag = false;
/*---------------------------------------------------------------
INTERRUPT HANDLER
---------------------------------------------------------------*/
typedef struct adc_dac_dma_isr_handler_ {
uint32_t mask;
intr_handler_t handler;
void* handler_arg;
SLIST_ENTRY(adc_dac_dma_isr_handler_) next;
} adc_dac_dma_isr_handler_t;
static SLIST_HEAD(adc_dac_dma_isr_handler_list_, adc_dac_dma_isr_handler_) s_adc_dac_dma_isr_handler_list =
SLIST_HEAD_INITIALIZER(s_adc_dac_dma_isr_handler_list);
portMUX_TYPE s_isr_handler_list_lock = portMUX_INITIALIZER_UNLOCKED;
static intr_handle_t s_adc_dac_dma_isr_handle;
static IRAM_ATTR void adc_dac_dma_isr_default(void* arg)
{
uint32_t status = REG_READ(SPI_DMA_INT_ST_REG(3));
adc_dac_dma_isr_handler_t* it;
portENTER_CRITICAL_ISR(&s_isr_handler_list_lock);
SLIST_FOREACH(it, &s_adc_dac_dma_isr_handler_list, next) {
if (it->mask & status) {
portEXIT_CRITICAL_ISR(&s_isr_handler_list_lock);
(*it->handler)(it->handler_arg);
portENTER_CRITICAL_ISR(&s_isr_handler_list_lock);
}
}
portEXIT_CRITICAL_ISR(&s_isr_handler_list_lock);
REG_WRITE(SPI_DMA_INT_CLR_REG(3), status);
}
static esp_err_t adc_dac_dma_isr_ensure_installed(void)
{
esp_err_t err = ESP_OK;
portENTER_CRITICAL(&s_isr_handler_list_lock);
if (s_adc_dac_dma_isr_handle) {
goto out;
}
REG_WRITE(SPI_DMA_INT_ENA_REG(3), 0);
REG_WRITE(SPI_DMA_INT_CLR_REG(3), UINT32_MAX);
err = esp_intr_alloc(ETS_SPI3_DMA_INTR_SOURCE, 0, &adc_dac_dma_isr_default, NULL, &s_adc_dac_dma_isr_handle);
if (err != ESP_OK) {
goto out;
}
out:
portEXIT_CRITICAL(&s_isr_handler_list_lock);
return err;
}
esp_err_t adc_dac_dma_isr_register(intr_handler_t handler, void* handler_arg, uint32_t intr_mask)
{
esp_err_t err = adc_dac_dma_isr_ensure_installed();
if (err != ESP_OK) {
return err;
}
adc_dac_dma_isr_handler_t* item = malloc(sizeof(*item));
if (item == NULL) {
return ESP_ERR_NO_MEM;
}
item->handler = handler;
item->handler_arg = handler_arg;
item->mask = intr_mask;
portENTER_CRITICAL(&s_isr_handler_list_lock);
SLIST_INSERT_HEAD(&s_adc_dac_dma_isr_handler_list, item, next);
portEXIT_CRITICAL(&s_isr_handler_list_lock);
return ESP_OK;
}
esp_err_t adc_dac_dma_isr_deregister(intr_handler_t handler, void* handler_arg)
{
adc_dac_dma_isr_handler_t* it;
adc_dac_dma_isr_handler_t* prev = NULL;
bool found = false;
portENTER_CRITICAL(&s_isr_handler_list_lock);
SLIST_FOREACH(it, &s_adc_dac_dma_isr_handler_list, next) {
if (it->handler == handler && it->handler_arg == handler_arg) {
if (it == SLIST_FIRST(&s_adc_dac_dma_isr_handler_list)) {
SLIST_REMOVE_HEAD(&s_adc_dac_dma_isr_handler_list, next);
} else {
SLIST_REMOVE_AFTER(prev, next);
}
found = true;
free(it);
break;
}
prev = it;
}
portEXIT_CRITICAL(&s_isr_handler_list_lock);
return found ? ESP_OK : ESP_ERR_INVALID_STATE;
}
void adc_dac_dma_linker_start(spi_dma_link_type_t type, void *dma_addr, uint32_t int_msk)
{
REG_SET_BIT(DPORT_PERIP_CLK_EN_REG, DPORT_APB_SARADC_CLK_EN_M);
REG_SET_BIT(DPORT_PERIP_CLK_EN_REG, DPORT_SPI3_DMA_CLK_EN_M);
REG_SET_BIT(DPORT_PERIP_CLK_EN_REG, DPORT_SPI3_CLK_EN);
REG_CLR_BIT(DPORT_PERIP_RST_EN_REG, DPORT_SPI3_DMA_RST_M);
REG_CLR_BIT(DPORT_PERIP_RST_EN_REG, DPORT_SPI3_RST_M);
REG_WRITE(SPI_DMA_INT_CLR_REG(3), 0xFFFFFFFF);
REG_WRITE(SPI_DMA_INT_ENA_REG(3), int_msk | REG_READ(SPI_DMA_INT_ENA_REG(3)));
if (type & DMA_ONLY_ADC_INLINK) {
REG_SET_BIT(SPI_DMA_IN_LINK_REG(3), SPI_INLINK_STOP);
REG_CLR_BIT(SPI_DMA_IN_LINK_REG(3), SPI_INLINK_START);
SET_PERI_REG_BITS(SPI_DMA_IN_LINK_REG(3), SPI_INLINK_ADDR, (uint32_t)dma_addr, 0);
REG_SET_BIT(SPI_DMA_CONF_REG(3), SPI_IN_RST);
REG_CLR_BIT(SPI_DMA_CONF_REG(3), SPI_IN_RST);
REG_CLR_BIT(SPI_DMA_IN_LINK_REG(3), SPI_INLINK_STOP);
REG_SET_BIT(SPI_DMA_IN_LINK_REG(3), SPI_INLINK_START);
}
if (type & DMA_ONLY_DAC_OUTLINK) {
REG_SET_BIT(SPI_DMA_OUT_LINK_REG(3), SPI_OUTLINK_STOP);
REG_CLR_BIT(SPI_DMA_OUT_LINK_REG(3), SPI_OUTLINK_START);
SET_PERI_REG_BITS(SPI_DMA_OUT_LINK_REG(3), SPI_OUTLINK_ADDR, (uint32_t)dma_addr, 0);
REG_SET_BIT(SPI_DMA_CONF_REG(3), SPI_OUT_RST);
REG_CLR_BIT(SPI_DMA_CONF_REG(3), SPI_OUT_RST);
REG_CLR_BIT(SPI_DMA_OUT_LINK_REG(3), SPI_OUTLINK_STOP);
REG_SET_BIT(SPI_DMA_OUT_LINK_REG(3), SPI_OUTLINK_START);
}
}
void adc_dac_dma_linker_stop(spi_dma_link_type_t type)
{
if (type & DMA_ONLY_ADC_INLINK) {
REG_SET_BIT(SPI_DMA_IN_LINK_REG(3), SPI_INLINK_STOP);
REG_CLR_BIT(SPI_DMA_IN_LINK_REG(3), SPI_INLINK_START);
}
if (type & DMA_ONLY_DAC_OUTLINK) {
REG_SET_BIT(SPI_DMA_OUT_LINK_REG(3), SPI_OUTLINK_STOP);
REG_CLR_BIT(SPI_DMA_OUT_LINK_REG(3), SPI_OUTLINK_START);
}
}
void adc_dac_dma_linker_deinit(void)
{
adc_dac_dma_linker_stop(DMA_BOTH_ADC_DAC);
REG_WRITE(SPI_DMA_INT_CLR_REG(3), 0xFFFFFFFF);
REG_WRITE(SPI_DMA_INT_ENA_REG(3), 0);
adc_dac_dma_isr_flag = false;
}
/*******************************************/
/** SPI DMA INIT CODE END */
/*******************************************/
#endif // !DISABLED_FOR_TARGETS(ESP8266, ESP32)