49 lines
2.5 KiB
ReStructuredText
Raw Normal View History

.. include:: ../../../../components/spi_flash/README.rst
See also
--------
2017-03-27 00:01:52 +02:00
- :doc:`Partition Table documentation <../../api-guides/partition-tables>`
- :doc:`Over The Air Update (OTA) API <../system/ota>` provides high-level API for updating app firmware stored in flash.
2019-06-17 14:23:52 +08:00
- :doc:`Non-Volatile Storage (NVS) API <nvs_flash>` provides a structured API for storing small pieces of data in SPI flash.
.. _spi-flash-implementation-details:
Implementation details
----------------------
2019-06-17 14:23:52 +08:00
In order to perform some flash operations, it is necessary to make sure that both CPUs are not running any code from flash for the duration of the flash operation:
- In a single-core setup, the SDK does it by disabling interrupts/scheduler before performing the flash operation.
- In a dual-core setup, this is slightly more complicated as the SDK needs to make sure that the other CPU is not running any code from flash.
2019-06-17 14:23:52 +08:00
When SPI flash API is called on CPU A (can be PRO or APP), start the spi_flash_op_block_func function on CPU B using the esp_ipc_call API. This API wakes up a high priority task on CPU B and tells it to execute a given function, in this case, spi_flash_op_block_func. This function disables cache on CPU B and signals that the cache is disabled by setting the s_flash_op_can_start flag. Then the task on CPU A disables cache as well and proceeds to execute flash operation.
2019-06-17 14:23:52 +08:00
While a flash operation is running, interrupts can still run on CPUs A and B. It is assumed that all interrupt code is placed into RAM. Once the interrupt allocation API is added, a flag should be added to request the interrupt to be disabled for the duration of a flash operations.
2019-06-17 14:23:52 +08:00
Once the flash operation is complete, the function on CPU A sets another flag, s_flash_op_complete, to let the task on CPU B know that it can re-enable cache and release the CPU. Then the function on CPU A re-enables the cache on CPU A as well and returns control to the calling code.
Additionally, all API functions are protected with a mutex (s_flash_op_mutex).
2019-06-17 14:23:52 +08:00
In a single core environment (:ref:`CONFIG_FREERTOS_UNICORE` enabled), you need to disable both caches, so that no inter-CPU communication can take place.
API Reference - SPI Flash
-------------------------
.. include:: /_build/inc/esp_flash_spi_init.inc
.. include:: /_build/inc/esp_flash.inc
.. include:: /_build/inc/spi_flash_types.inc
API Reference - Partition Table
-------------------------------
.. include:: /_build/inc/esp_partition.inc
API Reference - Flash Encrypt
-----------------------------
.. include:: /_build/inc/esp_flash_encrypt.inc