esp-idf/components/esp_eth/src/esp_eth_mac_ksz8851snl.c

735 lines
31 KiB
C
Raw Normal View History

// Copyright (c) 2021 Vladimir Chistyakov
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#include <string.h>
#include "esp_log.h"
#include "esp_check.h"
#include "driver/gpio.h"
#include "esp_rom_gpio.h"
#include "driver/spi_master.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "esp_eth.h"
#include "ksz8851.h"
typedef struct {
esp_eth_mac_t parent;
esp_eth_mediator_t *eth;
spi_device_handle_t spi_hdl;
SemaphoreHandle_t spi_lock;
TaskHandle_t rx_task_hdl;
uint32_t sw_reset_timeout_ms;
int int_gpio_num;
uint8_t *rx_buffer;
uint8_t *tx_buffer;
} emac_ksz8851snl_t;
typedef enum {
KSZ8851_SPI_COMMAND_READ_REG = 0x0U,
KSZ8851_SPI_COMMAND_WRITE_REG = 0x1U,
KSZ8851_SPI_COMMAND_READ_FIFO = 0x2U,
KSZ8851_SPI_COMMAND_WRITE_FIFO = 0x3U,
} ksz8851_spi_commands_t;
typedef enum {
KSZ8851_QMU_PACKET_LENGTH = 2000U,
KSZ8851_QMU_PACKET_PADDING = 16U,
} ksz8851_qmu_packet_size_t;
static const char *TAG = "ksz8851snl-mac";
static const unsigned KSZ8851_SPI_COMMAND_BITS = 2U;
static const unsigned KSZ8851_SPI_ADDR_SHIFT = 2U;
static const unsigned KSZ8851_SPI_BYTE_MASK_SHIFT = 8U + KSZ8851_SPI_ADDR_SHIFT;
static const unsigned KSZ8851_SPI_LOCK_TIMEOUT_MS = 500U;
static const uint16_t RXDTTR_INIT_VALUE = 0x03E8U;
static const uint16_t RXDBCTR_INIT_VALUE = 0x1000U;
static const uint16_t RXFCT_INIT_VALUE = 0X0001U;
IRAM_ATTR static void ksz8851_isr_handler(void *arg)
{
emac_ksz8851snl_t *emac = (emac_ksz8851snl_t *)arg;
BaseType_t high_task_wakeup = pdFALSE;
vTaskNotifyGiveFromISR(emac->rx_task_hdl, &high_task_wakeup);
if (high_task_wakeup != pdFALSE) {
portYIELD_FROM_ISR();
}
}
static inline bool ksz8851_mutex_lock(emac_ksz8851snl_t *emac)
{
return xSemaphoreTakeRecursive(emac->spi_lock, pdMS_TO_TICKS(KSZ8851_SPI_LOCK_TIMEOUT_MS)) == pdTRUE;
}
static inline bool ksz8851_mutex_unlock(emac_ksz8851snl_t *emac)
{
return xSemaphoreGiveRecursive(emac->spi_lock) == pdTRUE;
}
static esp_err_t ksz8851_read_reg(emac_ksz8851snl_t *emac, uint32_t address, uint16_t *value)
{
esp_err_t ret = ESP_OK;
ESP_GOTO_ON_FALSE(value != NULL, ESP_ERR_INVALID_ARG, err, TAG, "out pointer must not be null");
ESP_GOTO_ON_FALSE((address & ~KSZ8851_VALID_ADDRESS_MASK) == 0U, ESP_ERR_INVALID_ARG, err, TAG, "address is out of bounds");
const unsigned data_size = 16U; // NOTE(v.chistyakov): bits
// NOTE(v.chistyakov): select upper or lower word inside a dword
const unsigned byte_mask = 0x3U << (KSZ8851_SPI_BYTE_MASK_SHIFT + (address & 0x2U));
address <<= KSZ8851_SPI_ADDR_SHIFT;
spi_transaction_ext_t trans = {
.base.flags = SPI_TRANS_VARIABLE_CMD | SPI_TRANS_VARIABLE_ADDR | SPI_TRANS_VARIABLE_DUMMY | SPI_TRANS_USE_RXDATA,
.base.cmd = KSZ8851_SPI_COMMAND_READ_REG,
.base.addr = address | byte_mask,
.base.length = data_size,
.command_bits = KSZ8851_SPI_COMMAND_BITS,
.address_bits = 16 - KSZ8851_SPI_COMMAND_BITS,
};
if (ksz8851_mutex_lock(emac)) {
if (spi_device_polling_transmit(emac->spi_hdl, &trans.base) != ESP_OK) {
ESP_LOGE(TAG, "%s(%d): spi transmit failed", __FUNCTION__, __LINE__);
ret = ESP_FAIL;
}
ksz8851_mutex_unlock(emac);
memcpy(value, trans.base.rx_data, data_size >> 3U);
ESP_LOGV(TAG, "reading reg 0x%02x == 0x%04x", address, *value);
} else {
ret = ESP_ERR_TIMEOUT;
}
err:
return ret;
}
static esp_err_t ksz8851_write_reg(emac_ksz8851snl_t *emac, uint32_t address, uint16_t value)
{
esp_err_t ret = ESP_OK;
ESP_GOTO_ON_FALSE((address & ~KSZ8851_VALID_ADDRESS_MASK) == 0U, ESP_ERR_INVALID_ARG, err, TAG, "address is out of bounds");
ESP_LOGV(TAG, "writing reg 0x%02x = 0x%04x", address, value);
const unsigned data_size = 16U; // NOTE(v.chistyakov): bits
// NOTE(v.chistyakov): select upper or lower word inside a dword
const unsigned byte_mask = 0x3U << (KSZ8851_SPI_BYTE_MASK_SHIFT + (address & 0x2U));
address <<= KSZ8851_SPI_ADDR_SHIFT;
spi_transaction_ext_t trans = {
.base.flags = SPI_TRANS_VARIABLE_CMD | SPI_TRANS_VARIABLE_ADDR | SPI_TRANS_VARIABLE_DUMMY | SPI_TRANS_USE_TXDATA,
.base.cmd = KSZ8851_SPI_COMMAND_WRITE_REG,
.base.addr = address | byte_mask,
.base.length = data_size,
.command_bits = KSZ8851_SPI_COMMAND_BITS,
.address_bits = 16 - KSZ8851_SPI_COMMAND_BITS,
};
memcpy(trans.base.tx_data, &value, data_size >> 3U);
if (ksz8851_mutex_lock(emac)) {
if (spi_device_polling_transmit(emac->spi_hdl, &trans.base) != ESP_OK) {
ESP_LOGE(TAG, "%s(%d): spi transmit failed", __FUNCTION__, __LINE__);
ret = ESP_FAIL;
}
ksz8851_mutex_unlock(emac);
} else {
ret = ESP_ERR_TIMEOUT;
}
err:
return ret;
}
static esp_err_t ksz8851_set_bits(emac_ksz8851snl_t *emac, uint32_t address, uint16_t value)
{
esp_err_t ret = ESP_OK;
uint16_t old;
ESP_GOTO_ON_ERROR(ksz8851_read_reg(emac, address, &old), err, TAG, "failed to read reg 0x%x", address);
old |= value;
ESP_GOTO_ON_ERROR(ksz8851_write_reg(emac, address, old), err, TAG, "failed to write reg 0x%x", address);
err:
return ret;
}
static esp_err_t ksz8851_clear_bits(emac_ksz8851snl_t *emac, uint32_t address, uint16_t value)
{
esp_err_t ret = ESP_OK;
uint16_t old;
ESP_GOTO_ON_ERROR(ksz8851_read_reg(emac, address, &old), err, TAG, "failed to read reg 0x%x", address);
old &= ~value;
ESP_GOTO_ON_ERROR(ksz8851_write_reg(emac, address, old), err, TAG, "failed to write reg 0x%x", address);
err:
return ret;
}
static esp_err_t emac_ksz8851_set_mediator(esp_eth_mac_t *mac, esp_eth_mediator_t *eth)
{
esp_err_t ret = ESP_OK;
ESP_GOTO_ON_FALSE(eth, ESP_ERR_INVALID_ARG, err, TAG, "mediator can not be null");
emac_ksz8851snl_t *emac = __containerof(mac, emac_ksz8851snl_t, parent);
emac->eth = eth;
return ESP_OK;
err:
return ret;
}
static esp_err_t init_soft_reset(emac_ksz8851snl_t *emac)
{
esp_err_t ret = ESP_OK;
ESP_GOTO_ON_ERROR(ksz8851_set_bits(emac, KSZ8851_PMECR, PMECR_WAKEUP_TO_NORMAL), err, TAG, "PMECR write failed");
ESP_GOTO_ON_ERROR(ksz8851_set_bits(emac, KSZ8851_GRR, GRR_GLOBAL_SOFT_RESET), err, TAG, "GRR write failed");
vTaskDelay(pdMS_TO_TICKS(emac->sw_reset_timeout_ms));
ESP_GOTO_ON_ERROR(ksz8851_clear_bits(emac, KSZ8851_GRR, GRR_GLOBAL_SOFT_RESET), err, TAG, "GRR write failed");
vTaskDelay(pdMS_TO_TICKS(emac->sw_reset_timeout_ms));
return ESP_OK;
err:
return ret;
}
static esp_err_t init_verify_chipid(emac_ksz8851snl_t *emac)
{
uint16_t id;
esp_err_t ret = ESP_OK;
ESP_GOTO_ON_ERROR(ksz8851_read_reg(emac, KSZ8851_CIDER, &id), err, TAG, "CIDER read failed");
uint8_t family_id = (id & CIDER_FAMILY_ID_MASK) >> CIDER_FAMILY_ID_SHIFT;
uint8_t chip_id = (id & CIDER_CHIP_ID_MASK) >> CIDER_CHIP_ID_SHIFT;
uint8_t revision = (id & CIDER_REVISION_ID_MASK) >> CIDER_REVISION_ID_SHIFT;
ESP_LOGI(TAG, "Family ID = 0x%x\t Chip ID = 0x%x\t Revision ID = 0x%x", family_id, chip_id, revision);
ESP_GOTO_ON_FALSE(family_id == CIDER_KSZ8851SNL_FAMILY_ID, ESP_FAIL, err, TAG, "wrong family id");
ESP_GOTO_ON_FALSE(chip_id == CIDER_KSZ8851SNL_CHIP_ID, ESP_FAIL, err, TAG, "wrong chip id");
return ESP_OK;
err:
return ret;
}
static esp_err_t init_set_defaults(emac_ksz8851snl_t *emac)
{
esp_err_t ret = ESP_OK;
ESP_GOTO_ON_ERROR(ksz8851_set_bits(emac, KSZ8851_TXFDPR, TXFDPR_TXFPAI), err, TAG, "TXFDPR write failed");
ESP_GOTO_ON_ERROR(ksz8851_set_bits(emac, KSZ8851_TXCR,
TXCR_TXFCE | TXCR_TXPE | TXCR_TXCE | TXCR_TCGICMP | TXCR_TCGIP | TXCR_TCGTCP), err, TAG, "TXCR write failed");
ESP_GOTO_ON_ERROR(ksz8851_set_bits(emac, KSZ8851_RXFDPR, RXFDPR_RXFPAI), err, TAG, "RXFDPR write failed");
ESP_GOTO_ON_ERROR(ksz8851_set_bits(emac, KSZ8851_RXFCTR, RXFCT_INIT_VALUE), err, TAG, "RXFCTR write failed");
ESP_GOTO_ON_ERROR(ksz8851_set_bits(emac, KSZ8851_RXDTTR, RXDTTR_INIT_VALUE), err, TAG, "RXDTTR write failed");
ESP_GOTO_ON_ERROR(ksz8851_set_bits(emac, KSZ8851_RXDBCTR, RXDBCTR_INIT_VALUE), err, TAG, "RXDBCTR write failed");
ESP_GOTO_ON_ERROR(ksz8851_set_bits(emac, KSZ8851_RXCR1,
RXCR1_RXUDPFCC | RXCR1_RXTCPFCC | RXCR1_RXIPFCC | RXCR1_RXPAFMA | RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE), err, TAG, "RXCR1 write failed");
ESP_GOTO_ON_ERROR(ksz8851_set_bits(emac, KSZ8851_RXCR2,
(4 << RXCR2_SRDBL_SHIFT) | RXCR2_IUFFP | RXCR2_RXIUFCEZ | RXCR2_UDPLFE | RXCR2_RXICMPFCC), err, TAG, "RXCR2 write failed");
ESP_GOTO_ON_ERROR(ksz8851_set_bits(emac, KSZ8851_RXQCR, RXQCR_RXIPHTOE | RXQCR_RXFCTE | RXQCR_ADRFE), err, TAG, "RXQCR write failed");
ESP_GOTO_ON_ERROR(ksz8851_clear_bits(emac, KSZ8851_P1CR, P1CR_FORCE_DUPLEX), err, TAG, "P1CR write failed");
ESP_GOTO_ON_ERROR(ksz8851_set_bits(emac, KSZ8851_P1CR, P1CR_RESTART_AN), err, TAG, "P1CR write failed");
ESP_GOTO_ON_ERROR(ksz8851_set_bits(emac, KSZ8851_ISR, ISR_ALL), err, TAG, "ISR write failed");
ESP_GOTO_ON_ERROR(ksz8851_set_bits(emac, KSZ8851_IER, IER_TXIE | IER_RXIE | IER_LDIE | IER_SPIBEIE | IER_RXOIE), err, TAG, "IER write failed");
ESP_GOTO_ON_ERROR(ksz8851_set_bits(emac, KSZ8851_TXQCR, TXQCR_AETFE), err, TAG, "TXQCR write failed");
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_ksz8851_init(esp_eth_mac_t *mac)
{
esp_err_t ret = ESP_OK;
emac_ksz8851snl_t *emac = __containerof(mac, emac_ksz8851snl_t, parent);
esp_eth_mediator_t *eth = emac->eth;
esp_rom_gpio_pad_select_gpio(emac->int_gpio_num);
gpio_set_direction(emac->int_gpio_num, GPIO_MODE_INPUT);
gpio_set_pull_mode(emac->int_gpio_num, GPIO_PULLUP_ONLY);
gpio_set_intr_type(emac->int_gpio_num, GPIO_INTR_NEGEDGE); // NOTE(v.chistyakov): active low
gpio_intr_enable(emac->int_gpio_num);
gpio_isr_handler_add(emac->int_gpio_num, ksz8851_isr_handler, emac);
ESP_GOTO_ON_ERROR(eth->on_state_changed(eth, ETH_STATE_LLINIT, NULL), err, TAG, "lowlevel init failed");
// NOTE(v.chistyakov): soft reset
ESP_GOTO_ON_ERROR(init_soft_reset(emac), err, TAG, "soft reset failed");
// NOTE(v.chistyakov): verify chip id
ESP_GOTO_ON_ERROR(init_verify_chipid(emac), err, TAG, "verify chip id failed");
// NOTE(v.chistyakov): set default values
ESP_GOTO_ON_ERROR(init_set_defaults(emac), err, TAG, "set defaults after init failed");
ESP_LOGD(TAG, "MAC initialized");
return ESP_OK;
err:
ESP_LOGD(TAG, "MAC initialization failed");
gpio_isr_handler_remove(emac->int_gpio_num);
gpio_reset_pin(emac->int_gpio_num);
eth->on_state_changed(eth, ETH_STATE_DEINIT, NULL);
return ret;
}
static esp_err_t emac_ksz8851_deinit(esp_eth_mac_t *mac)
{
emac_ksz8851snl_t *emac = __containerof(mac, emac_ksz8851snl_t, parent);
esp_eth_mediator_t *eth = emac->eth;
mac->stop(mac);
gpio_isr_handler_remove(emac->int_gpio_num);
gpio_reset_pin(emac->int_gpio_num);
eth->on_state_changed(eth, ETH_STATE_DEINIT, NULL);
ESP_LOGD(TAG, "MAC deinitialized");
return ESP_OK;
}
static esp_err_t emac_ksz8851_start(esp_eth_mac_t *mac)
{
esp_err_t ret = ESP_OK;
emac_ksz8851snl_t *emac = __containerof(mac, emac_ksz8851snl_t, parent);
ESP_GOTO_ON_ERROR(ksz8851_set_bits(emac, KSZ8851_TXCR, TXCR_TXE), err, TAG, "TXCR write failed");
ESP_GOTO_ON_ERROR(ksz8851_set_bits(emac, KSZ8851_RXCR1, RXCR1_RXE), err, TAG, "RXCR1 write failed");
ESP_LOGD(TAG, "MAC started");
err:
return ret;
}
static esp_err_t emac_ksz8851_stop(esp_eth_mac_t *mac)
{
esp_err_t ret = ESP_OK;
emac_ksz8851snl_t *emac = __containerof(mac, emac_ksz8851snl_t, parent);
ESP_GOTO_ON_ERROR(ksz8851_clear_bits(emac, KSZ8851_TXCR, TXCR_TXE), err, TAG, "TXCR write failed");
ESP_GOTO_ON_ERROR(ksz8851_clear_bits(emac, KSZ8851_RXCR1, RXCR1_RXE), err, TAG, "RXCR1 write failed");
ESP_LOGD(TAG, "MAC stopped");
err:
return ret;
}
static esp_err_t emac_ksz8851snl_transmit(esp_eth_mac_t *mac, uint8_t *buf, uint32_t length)
{
static unsigned s_frame_id = 0U;
ESP_LOGV(TAG, "transmitting frame of size %u", length);
esp_err_t ret = ESP_OK;
emac_ksz8851snl_t *emac = __containerof(mac, emac_ksz8851snl_t, parent);
if (!ksz8851_mutex_lock(emac)) {
return ESP_ERR_TIMEOUT;
}
ESP_GOTO_ON_FALSE(length <= KSZ8851_QMU_PACKET_LENGTH, ESP_ERR_INVALID_ARG, err, TAG, "packet is too big");
// NOTE(v.chistyakov): 4 bytes header + length aligned to 4 bytes
unsigned transmit_length = 4U + ((length + 3U) & ~0x3U);
uint16_t free_space;
ESP_GOTO_ON_ERROR(ksz8851_read_reg(emac, KSZ8851_TXMIR, &free_space), err, TAG, "TXMIR read failed");
ESP_GOTO_ON_FALSE(transmit_length <= free_space, ESP_FAIL, err, TAG, "TXQ free space (%d) < send length (%d)", free_space,
transmit_length);
emac->tx_buffer[0] = ++s_frame_id & TXSR_TXFID_MASK;
emac->tx_buffer[1] = 0x80U;
emac->tx_buffer[2] = length & 0xFFU;
emac->tx_buffer[3] = (length >> 8U) & 0xFFU;
memcpy(emac->tx_buffer + 4U, buf, length);
spi_transaction_ext_t trans = {
.base.flags = SPI_TRANS_VARIABLE_ADDR | SPI_TRANS_VARIABLE_CMD,
.base.cmd = KSZ8851_SPI_COMMAND_WRITE_FIFO,
.base.length = transmit_length * 8U, // NOTE(v.chistyakov): bits
.base.tx_buffer = emac->tx_buffer,
.command_bits = 2U,
.address_bits = 6U,
};
uint16_t ier;
ESP_GOTO_ON_ERROR(ksz8851_read_reg(emac, KSZ8851_IER, &ier), err, TAG, "IER read failed");
ESP_GOTO_ON_ERROR(ksz8851_write_reg(emac, KSZ8851_IER, 0), err, TAG, "IER write failed");
ESP_GOTO_ON_ERROR(ksz8851_set_bits(emac, KSZ8851_RXQCR, RXQCR_SDA), err, TAG, "RXQCR write failed");
if (spi_device_polling_transmit(emac->spi_hdl, &trans.base) != ESP_OK) {
ESP_LOGE(TAG, "%s(%d): spi transmit failed", __FUNCTION__, __LINE__);
ret = ESP_FAIL;
}
ESP_GOTO_ON_ERROR(ksz8851_clear_bits(emac, KSZ8851_RXQCR, RXQCR_SDA), err, TAG, "RXQCR write failed");
ESP_GOTO_ON_ERROR(ksz8851_write_reg(emac, KSZ8851_IER, ier), err, TAG, "IER write failed");
err:
ksz8851_mutex_unlock(emac);
return ret;
}
static esp_err_t emac_ksz8851_receive(esp_eth_mac_t *mac, uint8_t *buf, uint32_t *length)
{
esp_err_t ret = ESP_OK;
emac_ksz8851snl_t *emac = __containerof(mac, emac_ksz8851snl_t, parent);
if (!ksz8851_mutex_lock(emac)) {
return ESP_ERR_TIMEOUT;
}
ESP_GOTO_ON_FALSE(buf, ESP_ERR_INVALID_ARG, err, TAG, "receive buffer can not be null");
ESP_GOTO_ON_FALSE(length, ESP_ERR_INVALID_ARG, err, TAG, "receive buffer length can not be null");
ESP_GOTO_ON_FALSE(*length > 0U, ESP_ERR_INVALID_ARG, err, TAG, "receive buffer length must be greater than zero");
uint16_t header_status;
ESP_GOTO_ON_ERROR(ksz8851_read_reg(emac, KSZ8851_RXFHSR, &header_status), err, TAG, "RXFHSR read failed");
uint16_t byte_count;
ESP_GOTO_ON_ERROR(ksz8851_read_reg(emac, KSZ8851_RXFHBCR, &byte_count), err, TAG, "RXFHBCR read failed");
byte_count &= RXFHBCR_RXBC_MASK;
// NOTE(v.chistyakov): do not include 2 bytes padding at the beginning and 4 bytes CRC at the end
const unsigned frame_size = byte_count - 6U;
ESP_GOTO_ON_FALSE(frame_size <= *length, ESP_FAIL, err, TAG, "frame size is greater than length");
if (header_status & RXFHSR_RXFV) {
// NOTE(v.chistyakov): 4 dummy + 4 header + alignment
const unsigned receive_size = 8U + ((byte_count + 3U) & ~0x3U);
spi_transaction_ext_t trans = {
.base.flags = SPI_TRANS_VARIABLE_CMD | SPI_TRANS_VARIABLE_ADDR | SPI_TRANS_VARIABLE_DUMMY,
.base.cmd = KSZ8851_SPI_COMMAND_READ_FIFO,
.base.length = receive_size * 8U, // NOTE(v.chistyakov): bits
.base.rx_buffer = emac->rx_buffer,
.command_bits = 2U,
.address_bits = 6U,
};
ESP_GOTO_ON_ERROR(ksz8851_clear_bits(emac, KSZ8851_RXFDPR, RXFDPR_RXFP_MASK), err, TAG, "RXFDPR write failed");
ESP_GOTO_ON_ERROR(ksz8851_set_bits(emac, KSZ8851_RXQCR, RXQCR_SDA), err, TAG, "RXQCR write failed");
if (spi_device_polling_transmit(emac->spi_hdl, &trans.base) != ESP_OK) {
ESP_LOGE(TAG, "%s(%d): spi transmit failed", __FUNCTION__, __LINE__);
ret = ESP_FAIL;
}
ESP_GOTO_ON_ERROR(ksz8851_clear_bits(emac, KSZ8851_RXQCR, RXQCR_SDA), err, TAG, "RXQCR write failed");
// NOTE(v.chistyakov): skip 4 dummy, 4 header, 2 padding
memcpy(buf, emac->rx_buffer + 10U, frame_size);
*length = frame_size;
ESP_LOGV(TAG, "received frame of size %u", frame_size);
} else if (header_status & (RXFHSR_RXCE | RXFHSR_RXRF | RXFHSR_RXFTL | RXFHSR_RXMR | RXFHSR_RXUDPFCS | RXFHSR_RXTCPFCS |
RXFHSR_RXIPFCS | RXFHSR_RXICMPFCS)) {
// NOTE(v.chistyakov): RRXEF is a self-clearing bit
ESP_GOTO_ON_ERROR(ksz8851_set_bits(emac, KSZ8851_RXQCR, RXQCR_RRXEF), err, TAG, "RXQCR write failed");
*length = 0U;
}
err:
ksz8851_mutex_unlock(emac);
return ret;
}
static esp_err_t emac_ksz8851_read_phy_reg(esp_eth_mac_t *mac, uint32_t phy_addr, uint32_t phy_reg, uint32_t *reg_value)
{
esp_err_t ret = ESP_OK;
emac_ksz8851snl_t *emac = __containerof(mac, emac_ksz8851snl_t, parent);
ESP_GOTO_ON_FALSE(reg_value, ESP_ERR_INVALID_ARG, err, TAG, "reg_value can not be null");
uint16_t tmp_val;
ESP_GOTO_ON_ERROR(ksz8851_read_reg(emac, phy_reg, &tmp_val), err, TAG, "read PHY register failed");
*reg_value = tmp_val;
err:
return ret;
}
static esp_err_t emac_ksz8851_write_phy_reg(esp_eth_mac_t *mac, uint32_t phy_addr, uint32_t phy_reg, uint32_t reg_value)
{
esp_err_t ret = ESP_OK;
emac_ksz8851snl_t *emac = __containerof(mac, emac_ksz8851snl_t, parent);
ESP_GOTO_ON_ERROR(ksz8851_write_reg(emac, phy_reg, (uint16_t)reg_value), err, TAG, "write PHY register failed");
err:
return ret;
}
static esp_err_t emac_ksz8851_set_addr(esp_eth_mac_t *mac, uint8_t *addr)
{
esp_err_t ret = ESP_OK;
emac_ksz8851snl_t *emac = __containerof(mac, emac_ksz8851snl_t, parent);
ESP_GOTO_ON_FALSE(addr, ESP_ERR_INVALID_ARG, err, TAG, "addr can not be null");
uint16_t MARL = addr[5] | ((uint16_t)(addr[4]) << 8);
uint16_t MARM = addr[3] | ((uint16_t)(addr[2]) << 8);
uint16_t MARH = addr[1] | ((uint16_t)(addr[0]) << 8);
ESP_GOTO_ON_ERROR(ksz8851_write_reg(emac, KSZ8851_MARL, MARL), err, TAG, "MARL write failed");
ESP_GOTO_ON_ERROR(ksz8851_write_reg(emac, KSZ8851_MARM, MARM), err, TAG, "MARM write failed");
ESP_GOTO_ON_ERROR(ksz8851_write_reg(emac, KSZ8851_MARH, MARH), err, TAG, "MARH write failed");
ESP_LOGD(TAG, "set MAC address to %02x:%02x:%02x:%02x:%02x:%02x", addr[0], addr[1], addr[2], addr[3], addr[4],
addr[5]);
err:
return ret;
}
static esp_err_t emac_ksz8851_get_addr(esp_eth_mac_t *mac, uint8_t *addr)
{
esp_err_t ret = ESP_OK;
emac_ksz8851snl_t *emac = __containerof(mac, emac_ksz8851snl_t, parent);
ESP_GOTO_ON_FALSE(addr, ESP_ERR_INVALID_ARG, err, TAG, "addr can not be null");
uint16_t MARL, MARM, MARH;
ESP_GOTO_ON_ERROR(ksz8851_read_reg(emac, KSZ8851_MARL, &MARL), err, TAG, "MARL read failed");
ESP_GOTO_ON_ERROR(ksz8851_read_reg(emac, KSZ8851_MARM, &MARM), err, TAG, "MARM read failed");
ESP_GOTO_ON_ERROR(ksz8851_read_reg(emac, KSZ8851_MARH, &MARH), err, TAG, "MARH read failed");
addr[0] = (MARH >> 8) & 0xFF;
addr[1] = MARH & 0xFF;
addr[2] = (MARM >> 8) & 0xFF;
addr[3] = MARM & 0xFF;
addr[4] = (MARL >> 8) & 0xFF;
addr[5] = MARL & 0xFF;
err:
return ret;
}
static esp_err_t emac_ksz8851_set_speed(esp_eth_mac_t *mac, eth_speed_t speed)
{
esp_err_t ret = ESP_OK;
emac_ksz8851snl_t *emac = __containerof(mac, emac_ksz8851snl_t, parent);
switch (speed) {
case ETH_SPEED_100M:
ESP_GOTO_ON_ERROR(ksz8851_set_bits(emac, KSZ8851_P1CR, P1CR_FORCE_SPEED), err, TAG, "P1CR write failed");
ESP_LOGD(TAG, "set speed to 100M");
break;
case ETH_SPEED_10M:
ESP_GOTO_ON_ERROR(ksz8851_clear_bits(emac, KSZ8851_P1CR, P1CR_FORCE_SPEED), err, TAG, "P1CR write failed");
ESP_LOGD(TAG, "set speed to 10M");
break;
default: ESP_GOTO_ON_FALSE(false, ESP_ERR_INVALID_ARG, err, TAG, "unknown speed"); break;
}
err:
return ret;
}
static esp_err_t emac_ksz8851_set_duplex(esp_eth_mac_t *mac, eth_duplex_t duplex)
{
esp_err_t ret = ESP_OK;
emac_ksz8851snl_t *emac = __containerof(mac, emac_ksz8851snl_t, parent);
switch (duplex) {
case ETH_DUPLEX_FULL:
ESP_GOTO_ON_ERROR(ksz8851_set_bits(emac, KSZ8851_P1CR, P1CR_FORCE_DUPLEX), err, TAG, "P1CR write failed");
ESP_LOGD(TAG, "set duplex to full");
break;
case ETH_DUPLEX_HALF:
ESP_GOTO_ON_ERROR(ksz8851_clear_bits(emac, KSZ8851_P1CR, P1CR_FORCE_DUPLEX), err, TAG, "P1CR write failed");
ESP_LOGD(TAG, "set duplex to half");
break;
default: ESP_GOTO_ON_FALSE(false, ESP_ERR_INVALID_ARG, err, TAG, "unknown duplex"); break;
}
err:
return ret;
}
static esp_err_t emac_ksz8851_set_link(esp_eth_mac_t *mac, eth_link_t link)
{
esp_err_t ret = ESP_OK;
switch (link) {
case ETH_LINK_UP:
ESP_GOTO_ON_ERROR(mac->start(mac), err, TAG, "ksz8851 start failed");
ESP_LOGD(TAG, "link is up");
break;
case ETH_LINK_DOWN:
ESP_GOTO_ON_ERROR(mac->stop(mac), err, TAG, "ksz8851 stop failed");
ESP_LOGD(TAG, "link is down");
break;
default: ESP_GOTO_ON_FALSE(false, ESP_ERR_INVALID_ARG, err, TAG, "unknown link status"); break;
}
err:
return ret;
}
static esp_err_t emac_ksz8851_set_promiscuous(esp_eth_mac_t *mac, bool enable)
{
esp_err_t ret = ESP_OK;
emac_ksz8851snl_t *emac = __containerof(mac, emac_ksz8851snl_t, parent);
uint16_t rxcr1;
ESP_GOTO_ON_ERROR(ksz8851_read_reg(emac, KSZ8851_RXCR1, &rxcr1), err, TAG, "RXCR1 read failed");
if (enable) {
// NOTE(v.chistyakov): set promiscuous mode
ESP_LOGD(TAG, "setting promiscuous mode");
rxcr1 |= RXCR1_RXINVF | RXCR1_RXAE;
rxcr1 &= ~(RXCR1_RXPAFMA | RXCR1_RXMAFMA);
} else {
// NOTE(v.chistyakov): set hash perfect (default)
ESP_LOGD(TAG, "setting hash perfect mode");
rxcr1 |= RXCR1_RXPAFMA;
rxcr1 &= ~(RXCR1_RXINVF | RXCR1_RXAE | RXCR1_RXMAFMA);
}
ESP_GOTO_ON_ERROR(ksz8851_write_reg(emac, KSZ8851_RXCR1, rxcr1), err, TAG, "RXCR1 write failed");
err:
return ret;
}
static esp_err_t emac_ksz8851_enable_flow_ctrl(esp_eth_mac_t *mac, bool enable)
{
esp_err_t ret = ESP_OK;
emac_ksz8851snl_t *emac = __containerof(mac, emac_ksz8851snl_t, parent);
if (enable) {
ESP_GOTO_ON_ERROR(ksz8851_set_bits(emac, KSZ8851_TXCR, TXCR_TXFCE), err, TAG, "TXCR write failed");
ESP_GOTO_ON_ERROR(ksz8851_set_bits(emac, KSZ8851_RXCR1, RXCR1_RXFCE), err, TAG, "RXCR write failed");
ESP_LOGD(TAG, "flow control enabled");
} else {
ESP_GOTO_ON_ERROR(ksz8851_clear_bits(emac, KSZ8851_TXCR, TXCR_TXFCE), err, TAG, "TXCR write failed");
ESP_GOTO_ON_ERROR(ksz8851_clear_bits(emac, KSZ8851_RXCR1, RXCR1_RXFCE), err, TAG, "RXCR write failed");
ESP_LOGD(TAG, "flow control disabled");
}
err:
return ret;
}
static esp_err_t emac_ksz8851_set_peer_pause_ability(esp_eth_mac_t *mac, uint32_t ability)
{
// NOTE(v.chistyakov): peer's pause ability is determined with auto-negotiation
return ESP_ERR_NOT_SUPPORTED;
}
static esp_err_t emac_ksz8851_del(esp_eth_mac_t *mac)
{
emac_ksz8851snl_t *emac = __containerof(mac, emac_ksz8851snl_t, parent);
vTaskDelete(emac->rx_task_hdl);
vSemaphoreDelete(emac->spi_lock);
heap_caps_free(emac->rx_buffer);
heap_caps_free(emac->tx_buffer);
free(emac);
return ESP_OK;
}
static void emac_ksz8851snl_task(void *arg)
{
emac_ksz8851snl_t *emac = (emac_ksz8851snl_t *)arg;
while (1) {
ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
uint16_t interrupt_status;
ksz8851_read_reg(emac, KSZ8851_ISR, &interrupt_status);
ksz8851_write_reg(emac, KSZ8851_ISR, interrupt_status);
if (interrupt_status & ISR_TXIS) {
ESP_LOGD(TAG, "TX Interrupt");
}
if (interrupt_status & ISR_RXOIS) {
ESP_LOGD(TAG, "RX Overrun Interrupt");
}
if (interrupt_status & ISR_TXPSIS) {
ESP_LOGD(TAG, "TX Process Stopped Interrupt");
}
if (interrupt_status & ISR_RXPSIS) {
ESP_LOGD(TAG, "RX Process Stopped Interrupt");
}
if (interrupt_status & ISR_TXSAIS) {
ESP_LOGD(TAG, "TX Space Available Interrupt");
}
if (interrupt_status & ISR_RXWFDIS) {
ESP_LOGD(TAG, "RX Wakeup Frame Detect Interrupt");
}
if (interrupt_status & ISR_RXMPDIS) {
ESP_LOGD(TAG, "RX Magic Packet Detect Interrupt");
}
if (interrupt_status & ISR_LDIS) {
ESP_LOGD(TAG, "Linkup Detect Interrupt");
ksz8851_set_bits(emac, KSZ8851_PMECR, PMECR_WAKEUP_LINK);
}
if (interrupt_status & ISR_EDIS) {
ESP_LOGD(TAG, "Energy Detect Interrupt");
}
if (interrupt_status & ISR_SPIBEIS) {
ESP_LOGD(TAG, "SPI Bus Error Interrupt");
}
if (interrupt_status & ISR_RXIS) {
ESP_LOGD(TAG, "RX Interrupt");
uint16_t ier;
ksz8851_read_reg(emac, KSZ8851_IER, &ier);
ksz8851_write_reg(emac, KSZ8851_IER, 0);
uint16_t frame_count = 0;
ksz8851_read_reg(emac, KSZ8851_RXFCTR, &frame_count);
frame_count = (frame_count & RXFCTR_RXFC_MASK) >> RXFCTR_RXFC_SHIFT;
while (frame_count--) {
uint32_t length = ETH_MAX_PACKET_SIZE;
uint8_t *packet = malloc(ETH_MAX_PACKET_SIZE);
if (!packet) {
continue;
}
if (emac->parent.receive(&emac->parent, packet, &length) == ESP_OK && length) {
emac->eth->stack_input(emac->eth, packet, length);
// NOTE(v.chistyakov): the packet is freed in the upper layers
} else {
free(packet);
ksz8851_clear_bits(emac, KSZ8851_RXCR1, RXCR1_RXE);
ksz8851_set_bits(emac, KSZ8851_RXCR1, RXCR1_FRXQ);
ksz8851_clear_bits(emac, KSZ8851_RXCR1, RXCR1_FRXQ);
ksz8851_set_bits(emac, KSZ8851_RXCR1, RXCR1_RXE);
}
}
ksz8851_write_reg(emac, KSZ8851_IER, ier);
}
}
vTaskDelete(NULL);
}
esp_eth_mac_t *esp_eth_mac_new_ksz8851snl(const eth_ksz8851snl_config_t *ksz8851snl_config,
const eth_mac_config_t *mac_config)
{
esp_eth_mac_t *ret = NULL;
emac_ksz8851snl_t *emac = NULL;
ESP_GOTO_ON_FALSE(ksz8851snl_config && mac_config, NULL, err, TAG, "arguments can not be null");
ESP_GOTO_ON_FALSE(ksz8851snl_config->int_gpio_num >= 0, NULL, err, TAG, "invalid interrupt gpio number");
emac = calloc(1, sizeof(emac_ksz8851snl_t));
ESP_GOTO_ON_FALSE(emac, NULL, err, TAG, "no mem for MAC instance");
emac->sw_reset_timeout_ms = mac_config->sw_reset_timeout_ms;
emac->int_gpio_num = ksz8851snl_config->int_gpio_num;
emac->spi_hdl = ksz8851snl_config->spi_hdl;
emac->parent.set_mediator = emac_ksz8851_set_mediator;
emac->parent.init = emac_ksz8851_init;
emac->parent.deinit = emac_ksz8851_deinit;
emac->parent.start = emac_ksz8851_start;
emac->parent.stop = emac_ksz8851_stop;
emac->parent.transmit = emac_ksz8851snl_transmit;
emac->parent.receive = emac_ksz8851_receive;
emac->parent.read_phy_reg = emac_ksz8851_read_phy_reg;
emac->parent.write_phy_reg = emac_ksz8851_write_phy_reg;
emac->parent.set_addr = emac_ksz8851_set_addr;
emac->parent.get_addr = emac_ksz8851_get_addr;
emac->parent.set_speed = emac_ksz8851_set_speed;
emac->parent.set_duplex = emac_ksz8851_set_duplex;
emac->parent.set_link = emac_ksz8851_set_link;
emac->parent.set_promiscuous = emac_ksz8851_set_promiscuous;
emac->parent.enable_flow_ctrl = emac_ksz8851_enable_flow_ctrl;
emac->parent.set_peer_pause_ability = emac_ksz8851_set_peer_pause_ability;
emac->parent.del = emac_ksz8851_del;
emac->spi_lock = xSemaphoreCreateRecursiveMutex();
ESP_GOTO_ON_FALSE(emac->spi_lock, NULL, err, TAG, "create lock failed");
emac->rx_buffer = NULL;
emac->tx_buffer = NULL;
emac->rx_buffer = heap_caps_malloc(KSZ8851_QMU_PACKET_LENGTH + KSZ8851_QMU_PACKET_PADDING, MALLOC_CAP_DMA);
emac->tx_buffer = heap_caps_malloc(KSZ8851_QMU_PACKET_LENGTH + KSZ8851_QMU_PACKET_PADDING, MALLOC_CAP_DMA);
ESP_GOTO_ON_FALSE(emac->rx_buffer, NULL, err, TAG, "RX buffer allocation failed");
ESP_GOTO_ON_FALSE(emac->tx_buffer, NULL, err, TAG, "TX buffer allocation failed");
BaseType_t core_num = tskNO_AFFINITY;
if (mac_config->flags & ETH_MAC_FLAG_PIN_TO_CORE) {
core_num = cpu_hal_get_core_id();
}
BaseType_t xReturned = xTaskCreatePinnedToCore(emac_ksz8851snl_task, "ksz8851snl_tsk", mac_config->rx_task_stack_size,
emac, mac_config->rx_task_prio, &emac->rx_task_hdl, core_num);
ESP_GOTO_ON_FALSE(xReturned == pdPASS, NULL, err, TAG, "create ksz8851 task failed");
return &(emac->parent);
err:
if (emac) {
if (emac->rx_task_hdl) {
vTaskDelete(emac->rx_task_hdl);
}
if (emac->spi_lock) {
vSemaphoreDelete(emac->spi_lock);
}
// NOTE(v.chistyakov): safe to call with NULL
heap_caps_free(emac->rx_buffer);
heap_caps_free(emac->tx_buffer);
free(emac);
}
return ret;
}