esp-idf/components/freertos/FreeRTOS-Kernel-SMP/portable/linux/port.c

825 lines
26 KiB
C
Raw Normal View History

/*
* SPDX-FileCopyrightText: 2020 Amazon.com, Inc. or its affiliates
*
* SPDX-License-Identifier: MIT
*/
/*
* FreeRTOS Kernel V10.4.3
* Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* https://www.FreeRTOS.org
* https://github.com/FreeRTOS
*
*/
/*-----------------------------------------------------------
* Implementation of functions defined in portable.h for the Posix port.
*
* Each task has a pthread which eases use of standard debuggers
* (allowing backtraces of tasks etc). Threads for tasks that are not
* running are blocked in sigwait().
*
* Task switch is done by resuming the thread for the next task by
* signaling the condition variable and then waiting on a condition variable
* with the current thread.
*
* The timer interrupt uses SIGALRM and care is taken to ensure that
* the signal handler runs only on the thread for the current task.
*
* Use of part of the standard C library requires care as some
* functions can take pthread mutexes internally which can result in
* deadlocks as the FreeRTOS kernel can switch tasks while they're
* holding a pthread mutex.
*
* stdio (printf() and friends) should be called from a single task
* only or serialized with a FreeRTOS primitive such as a binary
* semaphore or mutex.
*----------------------------------------------------------*/
#include <errno.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <sys/times.h>
#include <time.h>
#include <unistd.h>
#include <assert.h>
/* Scheduler includes. */
#include "esp_heap_caps.h"
#include "FreeRTOS.h"
#include "task.h"
#include "esp_task.h"
#include "timers.h"
#include "utils/wait_for_event.h"
#include "esp_log.h"
/*-----------------------------------------------------------*/
#define SIG_RESUME SIGUSR1
typedef struct THREAD
{
pthread_t pthread;
TaskFunction_t pxCode;
void *pvParams;
BaseType_t xDying;
struct event *ev;
} Thread_t;
/*
* The additional per-thread data is stored at the beginning of the
* task's stack.
*/
static inline Thread_t *prvGetThreadFromTask(TaskHandle_t xTask)
{
StackType_t *pxTopOfStack = *(StackType_t **)xTask;
return (Thread_t *)(pxTopOfStack + 1);
}
/*-----------------------------------------------------------*/
static pthread_once_t hSigSetupThread = PTHREAD_ONCE_INIT;
static sigset_t xAllSignals;
static sigset_t xSchedulerOriginalSignalMask;
static pthread_t hMainThread = ( pthread_t )NULL;
// These are saved as part of a thread's state in prvSwitchThread()
static volatile BaseType_t uxCriticalNestingIDF = 0; /* Track nesting calls for IDF style critical sections. FreeRTOS critical section nesting is maintained in the TCB. */
static volatile UBaseType_t uxInterruptNesting = 0; /* Tracks if we are currently in an interrupt. */
static volatile BaseType_t uxInterruptLevel = 0; /* Tracks the current level (i.e., interrupt mask) */
/*-----------------------------------------------------------*/
static BaseType_t xSchedulerEnd = pdFALSE;
/*-----------------------------------------------------------*/
static void prvSetupSignalsAndSchedulerPolicy( void );
static void prvSetupTimerInterrupt( void );
static void *prvWaitForStart( void * pvParams );
static void prvSwitchThread( Thread_t * xThreadToResume,
Thread_t *xThreadToSuspend );
static void prvSuspendSelf( Thread_t * thread);
static void prvResumeThread( Thread_t * xThreadId );
static void vPortSystemTickHandler( int sig );
static void vPortStartFirstTask( void );
/*-----------------------------------------------------------*/
static void prvFatalError( const char *pcCall, int iErrno )
{
fprintf( stderr, "%s: %s\n", pcCall, strerror( iErrno ) );
abort();
}
/*
* See header file for description.
*/
StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack,
StackType_t *pxEndOfStack,
TaskFunction_t pxCode,
void *pvParameters )
{
Thread_t *thread;
pthread_attr_t xThreadAttributes;
size_t ulStackSize;
int iRet;
(void)pthread_once( &hSigSetupThread, prvSetupSignalsAndSchedulerPolicy );
/*
* Store the additional thread data at the start of the stack.
*/
thread = (Thread_t *)(pxTopOfStack + 1) - 1;
pxTopOfStack = (StackType_t *)thread - 1;
ulStackSize = (pxTopOfStack + 1 - pxEndOfStack) * sizeof(*pxTopOfStack);
thread->pxCode = pxCode;
thread->pvParams = pvParameters;
thread->xDying = pdFALSE;
pthread_attr_init( &xThreadAttributes );
pthread_attr_setstack( &xThreadAttributes, pxEndOfStack, ulStackSize );
thread->ev = event_create();
BaseType_t prev_intr_level = xPortSetInterruptMask();
iRet = pthread_create( &thread->pthread, &xThreadAttributes,
prvWaitForStart, thread );
if ( iRet )
{
prvFatalError( "pthread_create", iRet );
}
vPortClearInterruptMask( prev_intr_level );
return pxTopOfStack;
}
/*-----------------------------------------------------------*/
void vPortStartFirstTask( void )
{
Thread_t *pxFirstThread = prvGetThreadFromTask( xTaskGetCurrentTaskHandle() );
/* Start the first task. */
prvResumeThread( pxFirstThread );
}
/*-----------------------------------------------------------*/
/*
* See header file for description.
*/
BaseType_t xPortStartScheduler( void )
{
int iSignal;
sigset_t xSignals;
hMainThread = pthread_self();
/* Start the timer that generates the tick ISR(SIGALRM).
Interrupts are disabled here already. */
prvSetupTimerInterrupt();
/* Start the first task. */
vPortStartFirstTask();
/* Wait until signaled by vPortEndScheduler(). */
sigemptyset( &xSignals );
sigaddset( &xSignals, SIG_RESUME );
while ( !xSchedulerEnd )
{
sigwait( &xSignals, &iSignal );
}
/* Cancel the Idle task and free its resources */
#if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
vPortCancelThread( xTaskGetIdleTaskHandle() );
#endif
#if ( configUSE_TIMERS == 1 )
/* Cancel the Timer task and free its resources */
vPortCancelThread( xTimerGetTimerDaemonTaskHandle() );
#endif /* configUSE_TIMERS */
/* Restore original signal mask. */
(void)pthread_sigmask( SIG_SETMASK, &xSchedulerOriginalSignalMask, NULL );
return 0;
}
/*-----------------------------------------------------------*/
void vPortEndScheduler( void )
{
struct itimerval itimer;
struct sigaction sigtick;
Thread_t *xCurrentThread;
/* Stop the timer and ignore any pending SIGALRMs that would end
* up running on the main thread when it is resumed. */
itimer.it_value.tv_sec = 0;
itimer.it_value.tv_usec = 0;
itimer.it_interval.tv_sec = 0;
itimer.it_interval.tv_usec = 0;
(void)setitimer( ITIMER_REAL, &itimer, NULL );
sigtick.sa_flags = 0;
sigtick.sa_handler = SIG_IGN;
sigemptyset( &sigtick.sa_mask );
sigaction( SIGALRM, &sigtick, NULL );
/* Signal the scheduler to exit its loop. */
xSchedulerEnd = pdTRUE;
(void)pthread_kill( hMainThread, SIG_RESUME );
xCurrentThread = prvGetThreadFromTask( xTaskGetCurrentTaskHandle() );
prvSuspendSelf(xCurrentThread);
}
/*-----------------------------------------------------------*/
static void vPortDisableInterrupts( void )
{
pthread_sigmask( SIG_BLOCK, &xAllSignals, NULL );
}
/*-----------------------------------------------------------*/
static void vPortEnableInterrupts( void )
{
pthread_sigmask( SIG_UNBLOCK, &xAllSignals, NULL );
}
/*-----------------------------------------------------------*/
void vPortEnterCriticalIDF( void )
{
if ( uxCriticalNestingIDF == 0 && uxInterruptLevel == 0)
{
vPortDisableInterrupts();
}
uxCriticalNestingIDF++;
}
/*-----------------------------------------------------------*/
void vPortExitCriticalIDF( void )
{
uxCriticalNestingIDF--;
/* If we have reached 0 then re-enable the interrupts. */
if( uxCriticalNestingIDF == 0 && uxInterruptLevel == 0)
{
vPortEnableInterrupts();
}
}
/*-----------------------------------------------------------*/
void vPortYieldFromISR( void )
{
Thread_t *xThreadToSuspend;
Thread_t *xThreadToResume;
xThreadToSuspend = prvGetThreadFromTask( xTaskGetCurrentTaskHandle() );
vTaskSwitchContext(xPortGetCoreID());
xThreadToResume = prvGetThreadFromTask( xTaskGetCurrentTaskHandle() );
prvSwitchThread( xThreadToResume, xThreadToSuspend );
}
/*-----------------------------------------------------------*/
void vPortYield( void )
{
BaseType_t prev_intr_level = xPortSetInterruptMask();
vPortYieldFromISR();
vPortClearInterruptMask( prev_intr_level );
}
/*-----------------------------------------------------------*/
/* In SMP code, the disable/enable interrupt macros are calling the set/get interrupt mask functions below.
Hence, we need to call vPortDisableInterrupts() and vPortEnableInterrupts(), otherwise interrupts
are never disabled/enabled. */
BaseType_t xPortSetInterruptMask( void )
{
if (uxInterruptLevel == 0 && uxCriticalNestingIDF == 0) {
vPortDisableInterrupts();
}
BaseType_t prev_intr_level = uxInterruptLevel;
uxInterruptLevel++;
return prev_intr_level;
}
/*-----------------------------------------------------------*/
void vPortClearInterruptMask( BaseType_t xMask )
{
// Only reenable interrupts if xMask is 0
uxInterruptLevel = xMask;
if (uxInterruptLevel == 0 && uxCriticalNestingIDF == 0) {
vPortEnableInterrupts();
}
}
/*-----------------------------------------------------------*/
static uint64_t prvGetTimeNs(void)
{
struct timespec t;
clock_gettime(CLOCK_MONOTONIC, &t);
return t.tv_sec * 1000000000ull + t.tv_nsec;
}
static uint64_t prvStartTimeNs;
/* commented as part of the code below in vPortSystemTickHandler,
* to adjust timing according to full demo requirements */
/* static uint64_t prvTickCount; */
/*
* Setup the systick timer to generate the tick interrupts at the required
* frequency.
*/
void prvSetupTimerInterrupt( void )
{
struct itimerval itimer;
int iRet;
/* Initialise the structure with the current timer information. */
iRet = getitimer( ITIMER_REAL, &itimer );
if ( iRet )
{
prvFatalError( "getitimer", errno );
}
/* Set the interval between timer events. */
itimer.it_interval.tv_sec = 0;
itimer.it_interval.tv_usec = portTICK_RATE_MICROSECONDS;
/* Set the current count-down. */
itimer.it_value.tv_sec = 0;
itimer.it_value.tv_usec = portTICK_RATE_MICROSECONDS;
/* Set-up the timer interrupt. */
iRet = setitimer( ITIMER_REAL, &itimer, NULL );
if ( iRet )
{
prvFatalError( "setitimer", errno );
}
prvStartTimeNs = prvGetTimeNs();
}
/*-----------------------------------------------------------*/
static void vPortSystemTickHandler( int sig )
{
Thread_t *pxThreadToSuspend;
Thread_t *pxThreadToResume;
BaseType_t xSwitchRequired;
/* uint64_t xExpectedTicks; */
// Handling a timer signal, so we are currently in an interrupt.
uxInterruptNesting++;
#if ( configUSE_PREEMPTION == 1 )
pxThreadToSuspend = prvGetThreadFromTask( xTaskGetCurrentTaskHandle() );
#endif
/* Tick Increment, accounting for any lost signals or drift in
* the timer. */
/*
* Comment code to adjust timing according to full demo requirements
* xExpectedTicks = (prvGetTimeNs() - prvStartTimeNs)
* / (portTICK_RATE_MICROSECONDS * 1000);
* do { */
xSwitchRequired = xTaskIncrementTick();
/* prvTickCount++;
* } while (prvTickCount < xExpectedTicks);
*/
#if ( configUSE_PREEMPTION == 1 )
if (xSwitchRequired == pdTRUE) {
/* Select Next Task. */
vTaskSwitchContext(xPortGetCoreID());
pxThreadToResume = prvGetThreadFromTask( xTaskGetCurrentTaskHandle() );
prvSwitchThread(pxThreadToResume, pxThreadToSuspend);
}
#else
(void)xSwitchRequired;
#endif
// Returning from the timer signal handler, so we are exiting the interrupt.
uxInterruptNesting--;
}
/*-----------------------------------------------------------*/
void vPortThreadDying( void *pxTaskToDelete, volatile BaseType_t *pxPendYield )
{
Thread_t *pxThread = prvGetThreadFromTask( pxTaskToDelete );
pxThread->xDying = pdTRUE;
}
void vPortCancelThread( void *pxTaskToDelete )
{
Thread_t *pxThreadToCancel = prvGetThreadFromTask( pxTaskToDelete );
/*
* The thread has already been suspended so it can be safely cancelled.
*/
pthread_cancel( pxThreadToCancel->pthread );
pthread_join( pxThreadToCancel->pthread, NULL );
event_delete( pxThreadToCancel->ev );
}
/*-----------------------------------------------------------*/
static void *prvWaitForStart( void * pvParams )
{
Thread_t *pxThread = pvParams;
prvSuspendSelf(pxThread);
/* Resumed for the first time, thus this thread didn't previously call
* prvSwitchThread(). So we need to initialise the state variables for this
* thread. */
uxCriticalNestingIDF = 0;
uxInterruptNesting = 0;
uxInterruptLevel = 0;
vPortEnableInterrupts();
/* Call the task's entry point. */
pxThread->pxCode( pxThread->pvParams );
/* A function that implements a task must not exit or attempt to return to
* its caller as there is nothing to return to. If a task wants to exit it
* should instead call vTaskDelete( NULL ). Artificially force an assert()
* to be triggered if configASSERT() is defined, so application writers can
* catch the error. */
configASSERT( pdFALSE );
return NULL;
}
/*-----------------------------------------------------------*/
static void prvSwitchThread( Thread_t *pxThreadToResume,
Thread_t *pxThreadToSuspend )
{
BaseType_t uxSavedCriticalNestingIDF;
BaseType_t uxSavedInterruptNesting;
BaseType_t uxSavedInterruptLevel;
if ( pxThreadToSuspend != pxThreadToResume )
{
/* It is possible for prvSwitchThread() to be called...
* - while inside an ISR (i.e., via vPortSystemTickHandler() or vPortYieldFromISR())
* - while interrupts are disabled or in a critical section (i.e., via vPortYield())
*
* So we need to save the various count variables as part of the thread's context.
* They are restored when the pthread switches back. */
uxSavedCriticalNestingIDF = uxCriticalNestingIDF;
uxSavedInterruptNesting = uxInterruptNesting;
uxSavedInterruptLevel = uxInterruptLevel;
prvResumeThread( pxThreadToResume );
if ( pxThreadToSuspend->xDying )
{
pthread_exit( NULL );
}
prvSuspendSelf( pxThreadToSuspend );
uxCriticalNestingIDF = uxSavedCriticalNestingIDF;
uxInterruptNesting = uxSavedInterruptNesting;
uxInterruptLevel = uxSavedInterruptLevel;
}
}
/*-----------------------------------------------------------*/
static void prvSuspendSelf( Thread_t *thread )
{
/*
* Suspend this thread by waiting for a pthread_cond_signal event.
*
* A suspended thread must not handle signals (interrupts) so
* all signals must be blocked by calling this from:
*
* - Inside a critical section (vPortEnterCritical() /
* vPortExitCritical()).
*
* - From a signal handler that has all signals masked.
*
* - A thread with all signals blocked with pthread_sigmask().
*/
event_wait(thread->ev);
}
/*-----------------------------------------------------------*/
static void prvResumeThread( Thread_t *xThreadId )
{
if ( pthread_self() != xThreadId->pthread )
{
event_signal(xThreadId->ev);
}
}
/*-----------------------------------------------------------*/
static void prvSetupSignalsAndSchedulerPolicy( void )
{
struct sigaction sigresume, sigtick;
int iRet;
hMainThread = pthread_self();
/* Initialise common signal masks. */
sigfillset( &xAllSignals );
/* Don't block SIGINT so this can be used to break into GDB while
* in a critical section. */
sigdelset( &xAllSignals, SIGINT );
/*
* Block all signals in this thread so all new threads
* inherits this mask.
*
* When a thread is resumed for the first time, all signals
* will be unblocked.
*/
(void)pthread_sigmask( SIG_SETMASK, &xAllSignals,
&xSchedulerOriginalSignalMask );
/* SIG_RESUME is only used with sigwait() so doesn't need a
handler. */
sigresume.sa_flags = 0;
sigresume.sa_handler = SIG_IGN;
sigfillset( &sigresume.sa_mask );
sigtick.sa_flags = 0;
sigtick.sa_handler = vPortSystemTickHandler;
sigfillset( &sigtick.sa_mask );
iRet = sigaction( SIG_RESUME, &sigresume, NULL );
if ( iRet )
{
prvFatalError( "sigaction", errno );
}
iRet = sigaction( SIGALRM, &sigtick, NULL );
if ( iRet )
{
prvFatalError( "sigaction", errno );
}
}
/*-----------------------------------------------------------*/
unsigned long ulPortGetRunTime( void )
{
struct tms xTimes;
times( &xTimes );
return ( unsigned long ) xTimes.tms_utime;
}
/*-----------------------------------------------------------*/
bool portVALID_TCB_MEM(const void *ptr)
{
return true;
}
bool portVALID_STACK_MEM(const void *ptr)
{
return true;
}
/*-----------------------------------------------------------*/
portMUX_TYPE port_xTaskLock = portMUX_INITIALIZER_UNLOCKED;
portMUX_TYPE port_xISRLock = portMUX_INITIALIZER_UNLOCKED;
static const char *TAG = "port";
/* When configSUPPORT_STATIC_ALLOCATION is set to 1 the application writer can
* use a callback function to optionally provide the memory required by the idle
* and timer tasks. This is the stack that will be used by the timer task. It is
* declared here, as a global, so it can be checked by a test that is implemented
* in a different file. */
StackType_t uxTimerTaskStack[ configTIMER_TASK_STACK_DEPTH ];
BaseType_t xPortCheckIfInISR(void)
{
return (uxInterruptNesting == 0) ? pdFALSE : pdTRUE;
}
void app_main(void);
static void main_task(void* args)
{
app_main();
vTaskDelete(NULL);
}
int main(int argc, const char **argv)
{
// This makes sure that stdio is flushed after each '\n' so that idf.py monitor
// reads the program output on time.
setvbuf(stdout, NULL, _IOLBF, 0);
usleep(1000);
BaseType_t res;
#if ( configNUM_CORES > 1 )
res = xTaskCreateAffinitySet(&main_task, "main",
ESP_TASK_MAIN_STACK, NULL,
ESP_TASK_MAIN_PRIO, ESP_TASK_MAIN_CORE, NULL);
#else
res = xTaskCreate(&main_task, "main",
ESP_TASK_MAIN_STACK, NULL,
ESP_TASK_MAIN_PRIO, NULL);
#endif
assert(res == pdTRUE);
(void)res;
ESP_LOGI(TAG, "Starting SMP scheduler.");
vTaskStartScheduler();
// This line should never be reached
assert(false);
}
void esp_vApplicationIdleHook(void)
{
/* vApplicationIdleHook() will only be called if configUSE_IDLE_HOOK is set
* to 1 in FreeRTOSConfig.h. It will be called on each iteration of the idle
* task. It is essential that code added to this hook function never attempts
* to block in any way (for example, call xQueueReceive() with a block time
* specified, or call vTaskDelay()). If application tasks make use of the
* vTaskDelete() API function to delete themselves then it is also important
* that vApplicationIdleHook() is permitted to return to its calling function,
* because it is the responsibility of the idle task to clean up memory
* allocated by the kernel to any task that has since deleted itself. */
usleep( 15000 );
}
void esp_vApplicationTickHook( void ) { }
#if ( configUSE_TICK_HOOK > 0 )
void vApplicationTickHook( void )
{
esp_vApplicationTickHook();
}
#endif
#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
/* configUSE_STATIC_ALLOCATION is set to 1, so the application must provide an
* implementation of vApplicationGetIdleTaskMemory() to provide the memory that is
* used by the Idle task. */
void vApplicationGetIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer,
StackType_t ** ppxIdleTaskStackBuffer,
uint32_t * pulIdleTaskStackSize )
{
/* If the buffers to be provided to the Idle task are declared inside this
* function then they must be declared static - otherwise they will be allocated on
* the stack and so not exists after this function exits. */
static StaticTask_t xIdleTaskTCB;
static StackType_t uxIdleTaskStack[ configMINIMAL_STACK_SIZE ];
/* Pass out a pointer to the StaticTask_t structure in which the Idle task's
* state will be stored. */
*ppxIdleTaskTCBBuffer = &xIdleTaskTCB;
/* Pass out the array that will be used as the Idle task's stack. */
*ppxIdleTaskStackBuffer = uxIdleTaskStack;
/* Pass out the size of the array pointed to by *ppxIdleTaskStackBuffer.
* Note that, as the array is necessarily of type StackType_t,
* configMINIMAL_STACK_SIZE is specified in words, not bytes. */
*pulIdleTaskStackSize = configMINIMAL_STACK_SIZE;
}
#endif // configSUPPORT_STATIC_ALLOCATION == 1
/*-----------------------------------------------------------*/
#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
/* configUSE_STATIC_ALLOCATION and configUSE_TIMERS are both set to 1, so the
* application must provide an implementation of vApplicationGetTimerTaskMemory()
* to provide the memory that is used by the Timer service task. */
void vApplicationGetTimerTaskMemory( StaticTask_t ** ppxTimerTaskTCBBuffer,
StackType_t ** ppxTimerTaskStackBuffer,
uint32_t * pulTimerTaskStackSize )
{
/* If the buffers to be provided to the Timer task are declared inside this
* function then they must be declared static - otherwise they will be allocated on
* the stack and so not exists after this function exits. */
static StaticTask_t xTimerTaskTCB;
/* Pass out a pointer to the StaticTask_t structure in which the Timer
* task's state will be stored. */
*ppxTimerTaskTCBBuffer = &xTimerTaskTCB;
/* Pass out the array that will be used as the Timer task's stack. */
*ppxTimerTaskStackBuffer = uxTimerTaskStack;
/* Pass out the size of the array pointed to by *ppxTimerTaskStackBuffer.
* Note that, as the array is necessarily of type StackType_t,
* configMINIMAL_STACK_SIZE is specified in words, not bytes. */
*pulTimerTaskStackSize = configTIMER_TASK_STACK_DEPTH;
}
#endif // configSUPPORT_STATIC_ALLOCATION == 1
void vPortTakeLock( portMUX_TYPE *lock )
{
spinlock_acquire( lock, portMUX_NO_TIMEOUT);
}
void vPortReleaseLock( portMUX_TYPE *lock )
{
spinlock_release( lock );
}
#define FREERTOS_SMP_MALLOC_CAPS (MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT)
void *pvPortMalloc( size_t xSize )
{
return heap_caps_malloc(xSize, FREERTOS_SMP_MALLOC_CAPS);
}
void vPortFree( void *pv )
{
heap_caps_free(pv);
}
void __attribute__((weak)) vApplicationStackOverflowHook(TaskHandle_t xTask, char *pcTaskName)
{
#define ERR_STR1 "***ERROR*** A stack overflow in task "
#define ERR_STR2 " has been detected."
const char *str[] = {ERR_STR1, pcTaskName, ERR_STR2};
char buf[sizeof(ERR_STR1) + CONFIG_FREERTOS_MAX_TASK_NAME_LEN + sizeof(ERR_STR2) + 1 /* null char */] = {0};
char *dest = buf;
for (int i = 0; i < sizeof(str) / sizeof(str[0]); i++) {
dest = strcat(dest, str[i]);
}
printf("%s\n", buf);
abort();
}
// ------- Thread Local Storage Pointers Deletion Callbacks -------
#if ( CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS )
void vPortTLSPointersDelCb( void *pxTCB )
{
/* Typecast pxTCB to StaticTask_t type to access TCB struct members.
* pvDummy15 corresponds to pvThreadLocalStoragePointers member of the TCB.
*/
StaticTask_t *tcb = ( StaticTask_t * )pxTCB;
/* The TLSP deletion callbacks are stored at an offset of (configNUM_THREAD_LOCAL_STORAGE_POINTERS/2) */
TlsDeleteCallbackFunction_t *pvThreadLocalStoragePointersDelCallback = ( TlsDeleteCallbackFunction_t * )( &( tcb->pvDummy15[ ( configNUM_THREAD_LOCAL_STORAGE_POINTERS / 2 ) ] ) );
/* We need to iterate over half the depth of the pvThreadLocalStoragePointers area
* to access all TLS pointers and their respective TLS deletion callbacks.
*/
for ( int x = 0; x < ( configNUM_THREAD_LOCAL_STORAGE_POINTERS / 2 ); x++ ) {
if ( pvThreadLocalStoragePointersDelCallback[ x ] != NULL ) { //If del cb is set
// We skip the check if the callback is executable as that is difficult to determine for different
// platforms (compare xtensa and riscv code).
pvThreadLocalStoragePointersDelCallback[ x ]( x, tcb->pvDummy15[ x ] ); //Call del cb
}
}
}
#endif // CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS
void vPortCleanUpTCB ( void *pxTCB )
{
#if ( CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS )
/* Call TLS pointers deletion callbacks */
vPortTLSPointersDelCb( pxTCB );
#endif /* CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS */
vPortCancelThread(pxTCB);
}