esp-idf/components/driver/test/test_spi_slave.c

386 lines
13 KiB
C
Raw Normal View History

2021-05-24 01:06:17 +02:00
/*
* SPDX-FileCopyrightText: 2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/*
Tests for the spi_slave device driver
*/
#include <string.h>
#include "sdkconfig.h"
#include "unity.h"
#include "test/test_common_spi.h"
#include "driver/spi_master.h"
#include "driver/spi_slave.h"
global: move the soc component out of the common list This MR removes the common dependency from every IDF components to the SOC component. Currently, in the ``idf_functions.cmake`` script, we include the header path of SOC component by default for all components. But for better code organization (or maybe also benifits to the compiling speed), we may remove the dependency to SOC components for most components except the driver and kernel related components. In CMAKE, we have two kinds of header visibilities (set by include path visibility): (Assume component A --(depends on)--> B, B is the current component) 1. public (``COMPONENT_ADD_INCLUDEDIRS``): means this path is visible to other depending components (A) (visible to A and B) 2. private (``COMPONENT_PRIV_INCLUDEDIRS``): means this path is only visible to source files inside the component (visible to B only) and we have two kinds of depending ways: (Assume component A --(depends on)--> B --(depends on)--> C, B is the current component) 1. public (```COMPONENT_REQUIRES```): means B can access to public include path of C. All other components rely on you (A) will also be available for the public headers. (visible to A, B) 2. private (``COMPONENT_PRIV_REQUIRES``): means B can access to public include path of C, but don't propagate this relation to other components (A). (visible to B) 1. remove the common requirement in ``idf_functions.cmake``, this makes the SOC components invisible to all other components by default. 2. if a component (for example, DRIVER) really needs the dependency to SOC, add a private dependency to SOC for it. 3. some other components that don't really depends on the SOC may still meet some errors saying "can't find header soc/...", this is because it's depended component (DRIVER) incorrectly include the header of SOC in its public headers. Moving all this kind of #include into source files, or private headers 4. Fix the include requirements for some file which miss sufficient #include directives. (Previously they include some headers by the long long long header include link) This is a breaking change. Previous code may depends on the long include chain. You may need to include the following headers for some files after this commit: - soc/soc.h - soc/soc_memory_layout.h - driver/gpio.h - esp_sleep.h The major broken include chain includes: 1. esp_system.h no longer includes esp_sleep.h. The latter includes driver/gpio.h and driver/touch_pad.h. 2. ets_sys.h no longer includes soc/soc.h 3. freertos/portmacro.h no longer includes soc/soc_memory_layout.h some peripheral headers no longer includes their hw related headers, e.g. rom/gpio.h no longer includes soc/gpio_pins.h and soc/gpio_reg.h BREAKING CHANGE
2019-04-03 13:17:38 +08:00
#include "driver/gpio.h"
#include "esp_log.h"
#include "esp_rom_gpio.h"
//There is only one GPSPI controller, so single-board test is disabled.
#if !DISABLED_FOR_TARGETS(ESP32C3)
#ifndef CONFIG_SPIRAM
//This test should be removed once the timing test is merged.
static spi_device_handle_t spi;
static WORD_ALIGNED_ATTR uint8_t master_txbuf[320];
static WORD_ALIGNED_ATTR uint8_t master_rxbuf[320];
static WORD_ALIGNED_ATTR uint8_t slave_txbuf[320];
static WORD_ALIGNED_ATTR uint8_t slave_rxbuf[320];
static const uint8_t master_send[] = { 0x93, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43 };
static const uint8_t slave_send[] = { 0xaa, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x13, 0x57, 0x9b, 0xdf, 0x24, 0x68, 0xac, 0xe0 };
2020-09-08 17:05:49 +08:00
static inline void int_connect( uint32_t gpio, uint32_t sigo, uint32_t sigi )
{
esp_rom_gpio_connect_out_signal( gpio, sigo, false, false );
esp_rom_gpio_connect_in_signal( gpio, sigi, false );
}
static void master_init( spi_device_handle_t* spi)
{
esp_err_t ret;
spi_bus_config_t buscfg={
.miso_io_num=PIN_NUM_MISO,
.mosi_io_num=PIN_NUM_MOSI,
.sclk_io_num=PIN_NUM_CLK,
.quadwp_io_num=UNCONNECTED_PIN,
.quadhd_io_num=-1
};
spi_device_interface_config_t devcfg={
.clock_speed_hz=4*1000*1000, //currently only up to 4MHz for internel connect
.mode=0, //SPI mode 0
.spics_io_num=PIN_NUM_CS, //CS pin
.queue_size=7, //We want to be able to queue 7 transactions at a time
.pre_cb=NULL,
.cs_ena_posttrans=5,
.cs_ena_pretrans=1,
};
//Initialize the SPI bus
2021-02-20 11:03:28 +08:00
ret=spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO);
TEST_ASSERT(ret==ESP_OK);
//Attach the LCD to the SPI bus
2018-09-30 19:00:06 +08:00
ret=spi_bus_add_device(TEST_SPI_HOST, &devcfg, spi);
TEST_ASSERT(ret==ESP_OK);
}
static void slave_init(void)
{
//Configuration for the SPI bus
spi_bus_config_t buscfg={
.mosi_io_num=PIN_NUM_MOSI,
.miso_io_num=PIN_NUM_MISO,
.sclk_io_num=PIN_NUM_CLK
};
//Configuration for the SPI slave interface
spi_slave_interface_config_t slvcfg={
.mode=0,
.spics_io_num=PIN_NUM_CS,
.queue_size=3,
.flags=0,
};
//Enable pull-ups on SPI lines so we don't detect rogue pulses when no master is connected.
gpio_set_pull_mode(PIN_NUM_MOSI, GPIO_PULLUP_ONLY);
gpio_set_pull_mode(PIN_NUM_CLK, GPIO_PULLUP_ONLY);
gpio_set_pull_mode(PIN_NUM_CS, GPIO_PULLUP_ONLY);
//Initialize SPI slave interface
2021-02-20 11:03:28 +08:00
TEST_ESP_OK(spi_slave_initialize(TEST_SLAVE_HOST, &buscfg, &slvcfg, SPI_DMA_CH_AUTO));
}
static void custom_setup(void) {
//Initialize buffers
memset(master_txbuf, 0, sizeof(master_txbuf));
memset(master_rxbuf, 0, sizeof(master_rxbuf));
memset(slave_txbuf, 0, sizeof(slave_txbuf));
memset(slave_rxbuf, 0, sizeof(slave_rxbuf));
//Initialize SPI Master
master_init( &spi );
//Initialize SPI Slave
slave_init();
//Do internal connections
int_connect( PIN_NUM_MOSI, spi_periph_signal[TEST_SPI_HOST].spid_out, spi_periph_signal[TEST_SLAVE_HOST].spiq_in );
int_connect( PIN_NUM_MISO, spi_periph_signal[TEST_SLAVE_HOST].spiq_out, spi_periph_signal[TEST_SPI_HOST].spid_in );
int_connect( PIN_NUM_CS, spi_periph_signal[TEST_SPI_HOST].spics_out[0], spi_periph_signal[TEST_SLAVE_HOST].spics_in );
int_connect( PIN_NUM_CLK, spi_periph_signal[TEST_SPI_HOST].spiclk_out, spi_periph_signal[TEST_SLAVE_HOST].spiclk_in );
}
static void custom_teardown(void) {
TEST_ASSERT(spi_slave_free(TEST_SLAVE_HOST) == ESP_OK);
TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
}
TEST_CASE("test fullduplex slave with only RX direction","[spi]")
{
custom_setup();
memcpy(master_txbuf, master_send, sizeof(master_send));
for ( int i = 0; i < 4; i ++ ) {
//slave send
spi_slave_transaction_t slave_t;
spi_slave_transaction_t* out;
memset(&slave_t, 0, sizeof(spi_slave_transaction_t));
slave_t.length=8*32;
slave_t.tx_buffer=NULL;
slave_t.rx_buffer=slave_rxbuf;
// Colorize RX buffer with known pattern
memset( slave_rxbuf, 0x66, sizeof(slave_rxbuf));
TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_t, portMAX_DELAY));
//send
spi_transaction_t t = {};
t.length = 32*(i+1);
if ( t.length != 0 ) {
t.tx_buffer = master_txbuf;
t.rx_buffer = NULL;
}
spi_device_transmit( spi, (spi_transaction_t*)&t );
//wait for end
TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &out, portMAX_DELAY));
//show result
ESP_LOGI(SLAVE_TAG, "trans_len: %d", slave_t.trans_len);
ESP_LOG_BUFFER_HEX( "master tx", t.tx_buffer, t.length/8 );
ESP_LOG_BUFFER_HEX( "slave rx", slave_t.rx_buffer, (slave_t.trans_len+7)/8);
TEST_ASSERT_EQUAL_HEX8_ARRAY( t.tx_buffer, slave_t.rx_buffer, t.length/8 );
TEST_ASSERT_EQUAL( t.length, slave_t.trans_len );
}
custom_teardown();
ESP_LOGI(SLAVE_TAG, "test passed.");
}
TEST_CASE("test fullduplex slave with only TX direction","[spi]")
{
custom_setup();
memcpy(slave_txbuf, slave_send, sizeof(slave_send));
for ( int i = 0; i < 4; i ++ ) {
//slave send
spi_slave_transaction_t slave_t;
spi_slave_transaction_t* out;
memset(&slave_t, 0, sizeof(spi_slave_transaction_t));
slave_t.length=8*32;
slave_t.tx_buffer=slave_txbuf;
slave_t.rx_buffer=NULL;
// Colorize RX buffer with known pattern
memset( master_rxbuf, 0x66, sizeof(master_rxbuf));
TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_t, portMAX_DELAY));
//send
spi_transaction_t t = {};
t.length = 32*(i+1);
if ( t.length != 0 ) {
t.tx_buffer = NULL;
t.rx_buffer = master_rxbuf;
}
spi_device_transmit( spi, (spi_transaction_t*)&t );
//wait for end
TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &out, portMAX_DELAY));
//show result
ESP_LOGI(SLAVE_TAG, "trans_len: %d", slave_t.trans_len);
ESP_LOG_BUFFER_HEX( "master rx", t.rx_buffer, t.length/8 );
ESP_LOG_BUFFER_HEX( "slave tx", slave_t.tx_buffer, (slave_t.trans_len+7)/8);
TEST_ASSERT_EQUAL_HEX8_ARRAY( slave_t.tx_buffer, t.rx_buffer, t.length/8 );
TEST_ASSERT_EQUAL( t.length, slave_t.trans_len );
}
custom_teardown();
ESP_LOGI(SLAVE_TAG, "test passed.");
}
TEST_CASE("test slave send unaligned","[spi]")
{
custom_setup();
memcpy(master_txbuf, master_send, sizeof(master_send));
memcpy(slave_txbuf, slave_send, sizeof(slave_send));
for ( int i = 0; i < 4; i ++ ) {
//slave send
spi_slave_transaction_t slave_t;
spi_slave_transaction_t* out;
memset(&slave_t, 0, sizeof(spi_slave_transaction_t));
slave_t.length=8*32;
slave_t.tx_buffer=slave_txbuf+i;
slave_t.rx_buffer=slave_rxbuf;
2020-09-08 17:05:49 +08:00
// Colorize RX buffers with known pattern
memset( master_rxbuf, 0x66, sizeof(master_rxbuf));
memset( slave_rxbuf, 0x66, sizeof(slave_rxbuf));
2018-09-30 19:00:06 +08:00
TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_t, portMAX_DELAY));
//send
spi_transaction_t t = {};
t.length = 32*(i+1);
if ( t.length != 0 ) {
t.tx_buffer = master_txbuf+i;
t.rx_buffer = master_rxbuf+i;
}
spi_device_transmit( spi, (spi_transaction_t*)&t );
//wait for end
2018-09-30 19:00:06 +08:00
TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &out, portMAX_DELAY));
//show result
ESP_LOGI(SLAVE_TAG, "trans_len: %d", slave_t.trans_len);
ESP_LOG_BUFFER_HEX( "master tx", t.tx_buffer, t.length/8 );
ESP_LOG_BUFFER_HEX( "master rx", t.rx_buffer, t.length/8 );
ESP_LOG_BUFFER_HEX( "slave tx", slave_t.tx_buffer, (slave_t.trans_len+7)/8);
ESP_LOG_BUFFER_HEX( "slave rx", slave_t.rx_buffer, (slave_t.trans_len+7)/8);
TEST_ASSERT_EQUAL_HEX8_ARRAY( t.tx_buffer, slave_t.rx_buffer, t.length/8 );
TEST_ASSERT_EQUAL_HEX8_ARRAY( slave_t.tx_buffer, t.rx_buffer, t.length/8 );
TEST_ASSERT_EQUAL( t.length, slave_t.trans_len );
}
custom_teardown();
ESP_LOGI(SLAVE_TAG, "test passed.");
}
#endif // !CONFIG_SPIRAM
#endif // !TEMPORARY_DISABLED_FOR_TARGETS
#if !DISABLED_FOR_TARGETS(ESP32, ESP32S2, ESP32S3)
//These tests are for chips which only have 1 SPI controller
/********************************************************************************
* Test By Master & Slave (2 boards)
*
* PIN | Master(C3) | Slave (C3) |
* ----| --------- | --------- |
* CS | 10 | 10 |
* CLK | 6 | 6 |
* MOSI| 7 | 7 |
* MISO| 2 | 2 |
* GND | GND | GND |
*
********************************************************************************/
#define BUF_SIZE 320
static void unaligned_test_master(void)
{
spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, 0));
spi_device_handle_t spi;
spi_device_interface_config_t devcfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
devcfg.clock_speed_hz = 4 * 1000 * 1000;
devcfg.queue_size = 7;
TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi));
unity_send_signal("Master ready");
uint8_t *master_send_buf = heap_caps_malloc(BUF_SIZE, MALLOC_CAP_DMA);
uint8_t *master_recv_buf = heap_caps_calloc(BUF_SIZE, 1, MALLOC_CAP_DMA);
//This buffer is used for 2-board test and should be assigned totally the same as the ``test_slave_loop`` does.
uint8_t *slave_send_buf = heap_caps_malloc(BUF_SIZE, MALLOC_CAP_DMA);
srand(199);
for (int i = 0; i < BUF_SIZE; i++) {
master_send_buf[i] = rand();
}
srand(299);
for (int i = 0; i < BUF_SIZE; i++) {
slave_send_buf[i] = rand();
}
for (int i = 0; i < 4; i++) {
uint32_t length_in_bytes = 4 * (i + 1);
spi_transaction_t t = {
.tx_buffer = master_send_buf + i,
.rx_buffer = master_recv_buf,
.length = length_in_bytes * 8,
};
vTaskDelay(50);
unity_wait_for_signal("Slave ready");
TEST_ESP_OK(spi_device_transmit(spi, (spi_transaction_t*)&t));
//show result
ESP_LOG_BUFFER_HEX("master tx:", master_send_buf+i, length_in_bytes);
ESP_LOG_BUFFER_HEX("master rx:", master_recv_buf, length_in_bytes);
TEST_ASSERT_EQUAL_HEX8_ARRAY(slave_send_buf+i, master_recv_buf, length_in_bytes);
//clean
memset(master_recv_buf, 0x00, BUF_SIZE);
}
free(master_send_buf);
free(master_recv_buf);
free(slave_send_buf);
TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
}
static void unaligned_test_slave(void)
{
unity_wait_for_signal("Master ready");
spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
spi_slave_interface_config_t slvcfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
TEST_ESP_OK(spi_slave_initialize(TEST_SPI_HOST, &buscfg, &slvcfg, SPI_DMA_CH_AUTO));
uint8_t *slave_send_buf = heap_caps_malloc(BUF_SIZE, MALLOC_CAP_DMA);
uint8_t *slave_recv_buf = heap_caps_calloc(BUF_SIZE, 1, MALLOC_CAP_DMA);
//This buffer is used for 2-board test and should be assigned totally the same as the ``test_slave_loop`` does.
uint8_t *master_send_buf = heap_caps_malloc(BUF_SIZE, MALLOC_CAP_DMA);
srand(199);
for (int i = 0; i < BUF_SIZE; i++) {
master_send_buf[i] = rand();
}
srand(299);
for (int i = 0; i < BUF_SIZE; i++) {
slave_send_buf[i] = rand();
}
for (int i = 0; i < 4; i++) {
uint32_t mst_length_in_bytes = 4 * (i + 1);
spi_slave_transaction_t slave_t = {
.tx_buffer = slave_send_buf + i,
.rx_buffer = slave_recv_buf,
.length = 32 * 8,
};
unity_send_signal("Slave ready");
TEST_ESP_OK(spi_slave_transmit(TEST_SPI_HOST, &slave_t, portMAX_DELAY));
//show result
ESP_LOGI(SLAVE_TAG, "trans_len: %d", slave_t.trans_len);
ESP_LOG_BUFFER_HEX("slave tx:", slave_send_buf + i, mst_length_in_bytes);
ESP_LOG_BUFFER_HEX("slave rx:", slave_recv_buf, mst_length_in_bytes);
TEST_ASSERT_EQUAL(mst_length_in_bytes * 8, slave_t.trans_len);
TEST_ASSERT_EQUAL_HEX8_ARRAY(master_send_buf + i, slave_recv_buf, mst_length_in_bytes);
//clean
memset(slave_recv_buf, 0x00, BUF_SIZE);
}
free(slave_send_buf);
free(slave_recv_buf);
free(master_send_buf);
TEST_ASSERT(spi_slave_free(TEST_SPI_HOST) == ESP_OK);
}
TEST_CASE_MULTIPLE_DEVICES("SPI_Slave_Unaligned_Test", "[spi_ms][test_env=Example_SPI_Multi_device][timeout=120]", unaligned_test_master, unaligned_test_slave);
#endif //#if !DISABLED_FOR_TARGETS(ESP32, ESP32S2, ESP32S3)