2016-12-14 20:45:40 -05:00
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
# include <string.h>
# include "esp_types.h"
# include "esp_attr.h"
# include "esp_intr.h"
# include "esp_intr_alloc.h"
# include "esp_log.h"
# include "esp_err.h"
# include "malloc.h"
# include "freertos/FreeRTOS.h"
# include "freertos/semphr.h"
# include "freertos/xtensa_api.h"
# include "freertos/task.h"
# include "freertos/ringbuf.h"
# include "soc/dport_reg.h"
# include "soc/uart_struct.h"
# include "driver/uart.h"
# include "driver/gpio.h"
static const char * UART_TAG = " uart " ;
# define UART_CHECK(a, str, ret_val) \
if ( ! ( a ) ) { \
ESP_LOGE ( UART_TAG , " %s(%d): %s " , __FUNCTION__ , __LINE__ , str ) ; \
return ( ret_val ) ; \
}
# define UART_EMPTY_THRESH_DEFAULT (10)
# define UART_FULL_THRESH_DEFAULT (120)
# define UART_TOUT_THRESH_DEFAULT (10)
# define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
# define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
# define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
# define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
typedef struct {
uart_event_type_t type ; /*!< UART TX data type */
struct {
int brk_len ;
size_t size ;
uint8_t data [ 0 ] ;
} tx_data ;
} uart_tx_data_t ;
typedef struct {
uart_port_t uart_num ; /*!< UART port number*/
int queue_size ; /*!< UART event queue size*/
QueueHandle_t xQueueUart ; /*!< UART queue handler*/
intr_handle_t intr_handle ; /*!< UART interrupt handle*/
//rx parameters
2016-12-18 23:52:10 -05:00
int rx_buffered_len ; /*!< UART cached data length */
2016-12-14 20:45:40 -05:00
SemaphoreHandle_t rx_mux ; /*!< UART RX data mutex*/
int rx_buf_size ; /*!< RX ring buffer size */
RingbufHandle_t rx_ring_buf ; /*!< RX ring buffer handler*/
bool rx_buffer_full_flg ; /*!< RX ring buffer full flag. */
int rx_cur_remain ; /*!< Data number that waiting to be read out in ring buffer item*/
uint8_t * rx_ptr ; /*!< pointer to the current data in ring buffer*/
uint8_t * rx_head_ptr ; /*!< pointer to the head of RX item*/
uint8_t rx_data_buf [ UART_FIFO_LEN ] ; /*!< Data buffer to stash FIFO data*/
uint8_t rx_stash_len ; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
//tx parameters
SemaphoreHandle_t tx_fifo_sem ; /*!< UART TX FIFO semaphore*/
SemaphoreHandle_t tx_mux ; /*!< UART TX mutex*/
SemaphoreHandle_t tx_done_sem ; /*!< UART TX done semaphore*/
SemaphoreHandle_t tx_brk_sem ; /*!< UART TX send break done semaphore*/
int tx_buf_size ; /*!< TX ring buffer size */
RingbufHandle_t tx_ring_buf ; /*!< TX ring buffer handler*/
bool tx_waiting_fifo ; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
uint8_t * tx_ptr ; /*!< TX data pointer to push to FIFO in TX buffer mode*/
uart_tx_data_t * tx_head ; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
uint32_t tx_len_tot ; /*!< Total length of current item in ring buffer*/
uint32_t tx_len_cur ;
uint8_t tx_brk_flg ; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
uint8_t tx_brk_len ; /*!< TX break signal cycle length/number */
uint8_t tx_waiting_brk ; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
} uart_obj_t ;
static uart_obj_t * p_uart_obj [ UART_NUM_MAX ] = { 0 } ;
/* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
static DRAM_ATTR uart_dev_t * const UART [ UART_NUM_MAX ] = { & UART0 , & UART1 , & UART2 } ;
static portMUX_TYPE uart_spinlock [ UART_NUM_MAX ] = { portMUX_INITIALIZER_UNLOCKED , portMUX_INITIALIZER_UNLOCKED , portMUX_INITIALIZER_UNLOCKED } ;
esp_err_t uart_set_word_length ( uart_port_t uart_num , uart_word_length_t data_bit )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_CHECK ( ( data_bit < UART_DATA_BITS_MAX ) , " data bit error " , ESP_FAIL ) ;
UART_ENTER_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
UART [ uart_num ] - > conf0 . bit_num = data_bit ;
UART_EXIT_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
return ESP_OK ;
}
esp_err_t uart_get_word_length ( uart_port_t uart_num , uart_word_length_t * data_bit )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
* ( data_bit ) = UART [ uart_num ] - > conf0 . bit_num ;
return ESP_OK ;
}
esp_err_t uart_set_stop_bits ( uart_port_t uart_num , uart_stop_bits_t stop_bit )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_CHECK ( ( stop_bit < UART_STOP_BITS_MAX ) , " stop bit error " , ESP_FAIL ) ;
UART_ENTER_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
UART [ uart_num ] - > conf0 . stop_bit_num = stop_bit ;
UART_EXIT_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
return ESP_OK ;
}
esp_err_t uart_get_stop_bits ( uart_port_t uart_num , uart_stop_bits_t * stop_bit )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
( * stop_bit ) = UART [ uart_num ] - > conf0 . stop_bit_num ;
return ESP_OK ;
}
esp_err_t uart_set_parity ( uart_port_t uart_num , uart_parity_t parity_mode )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_ENTER_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
UART [ uart_num ] - > conf0 . parity = parity_mode & 0x1 ;
UART [ uart_num ] - > conf0 . parity_en = ( parity_mode > > 1 ) & 0x1 ;
UART_EXIT_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
return ESP_OK ;
}
esp_err_t uart_get_parity ( uart_port_t uart_num , uart_parity_t * parity_mode )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
int val = UART [ uart_num ] - > conf0 . val ;
if ( val & UART_PARITY_EN_M ) {
if ( val & UART_PARITY_M ) {
( * parity_mode ) = UART_PARITY_ODD ;
} else {
( * parity_mode ) = UART_PARITY_EVEN ;
}
} else {
( * parity_mode ) = UART_PARITY_DISABLE ;
}
return ESP_OK ;
}
esp_err_t uart_set_baudrate ( uart_port_t uart_num , uint32_t baud_rate )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_CHECK ( ( baud_rate < UART_BITRATE_MAX ) , " baud_rate error " , ESP_FAIL ) ;
uint32_t clk_div = ( ( ( UART_CLK_FREQ ) < < 4 ) / baud_rate ) ;
UART_ENTER_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
UART [ uart_num ] - > clk_div . div_int = clk_div > > 4 ;
UART [ uart_num ] - > clk_div . div_frag = clk_div & 0xf ;
UART_EXIT_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
return ESP_OK ;
}
esp_err_t uart_get_baudrate ( uart_port_t uart_num , uint32_t * baudrate )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_ENTER_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
uint32_t clk_div = ( UART [ uart_num ] - > clk_div . div_int < < 4 ) | UART [ uart_num ] - > clk_div . div_frag ;
UART_EXIT_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
( * baudrate ) = ( ( UART_CLK_FREQ ) < < 4 ) / clk_div ;
return ESP_OK ;
}
esp_err_t uart_set_line_inverse ( uart_port_t uart_num , uint32_t inverse_mask )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_CHECK ( ( ( ( inverse_mask & UART_LINE_INV_MASK ) = = 0 ) & & ( inverse_mask ! = 0 ) ) , " inverse_mask error " , ESP_FAIL ) ;
UART_ENTER_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
CLEAR_PERI_REG_MASK ( UART_CONF0_REG ( uart_num ) , UART_LINE_INV_MASK ) ;
SET_PERI_REG_MASK ( UART_CONF0_REG ( uart_num ) , inverse_mask ) ;
UART_EXIT_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
return ESP_OK ;
}
//only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
esp_err_t uart_set_hw_flow_ctrl ( uart_port_t uart_num , uart_hw_flowcontrol_t flow_ctrl , uint8_t rx_thresh )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_CHECK ( ( rx_thresh < UART_FIFO_LEN ) , " rx flow thresh error " , ESP_FAIL ) ;
UART_CHECK ( ( flow_ctrl < UART_HW_FLOWCTRL_MAX ) , " hw_flowctrl mode error " , ESP_FAIL ) ;
UART_ENTER_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
if ( flow_ctrl & UART_HW_FLOWCTRL_RTS ) {
UART [ uart_num ] - > conf1 . rx_flow_thrhd = rx_thresh ;
UART [ uart_num ] - > conf1 . rx_flow_en = 1 ;
} else {
UART [ uart_num ] - > conf1 . rx_flow_en = 0 ;
}
if ( flow_ctrl & UART_HW_FLOWCTRL_CTS ) {
UART [ uart_num ] - > conf0 . tx_flow_en = 1 ;
} else {
UART [ uart_num ] - > conf0 . tx_flow_en = 0 ;
}
UART_EXIT_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
return ESP_OK ;
}
esp_err_t uart_get_hw_flow_ctrl ( uart_port_t uart_num , uart_hw_flowcontrol_t * flow_ctrl )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE ;
if ( UART [ uart_num ] - > conf1 . rx_flow_en ) {
val | = UART_HW_FLOWCTRL_RTS ;
}
if ( UART [ uart_num ] - > conf0 . tx_flow_en ) {
val | = UART_HW_FLOWCTRL_CTS ;
}
( * flow_ctrl ) = val ;
return ESP_OK ;
}
static esp_err_t uart_reset_fifo ( uart_port_t uart_num )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_ENTER_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
UART [ uart_num ] - > conf0 . rxfifo_rst = 1 ;
UART [ uart_num ] - > conf0 . rxfifo_rst = 0 ;
UART [ uart_num ] - > conf0 . txfifo_rst = 1 ;
UART [ uart_num ] - > conf0 . txfifo_rst = 0 ;
UART_EXIT_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
return ESP_OK ;
}
esp_err_t uart_clear_intr_status ( uart_port_t uart_num , uint32_t clr_mask )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
//intr_clr register is write-only
UART [ uart_num ] - > int_clr . val = clr_mask ;
return ESP_OK ;
}
esp_err_t uart_enable_intr_mask ( uart_port_t uart_num , uint32_t enable_mask )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_ENTER_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
SET_PERI_REG_MASK ( UART_INT_CLR_REG ( uart_num ) , enable_mask ) ;
SET_PERI_REG_MASK ( UART_INT_ENA_REG ( uart_num ) , enable_mask ) ;
UART_EXIT_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
return ESP_OK ;
}
esp_err_t uart_disable_intr_mask ( uart_port_t uart_num , uint32_t disable_mask )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_ENTER_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
CLEAR_PERI_REG_MASK ( UART_INT_ENA_REG ( uart_num ) , disable_mask ) ;
UART_EXIT_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
return ESP_OK ;
}
2016-12-18 23:52:10 -05:00
esp_err_t uart_enable_pattern_det_intr ( uart_port_t uart_num , char pattern_chr , uint8_t chr_num , int chr_tout , int post_idle , int pre_idle )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_CHECK ( chr_tout > = 0 & & chr_tout < = UART_RX_GAP_TOUT_V , " uart pattern set error \n " , ESP_FAIL ) ;
UART_CHECK ( post_idle > = 0 & & post_idle < = UART_POST_IDLE_NUM_V , " uart pattern set error \n " , ESP_FAIL ) ;
UART_CHECK ( pre_idle > = 0 & & pre_idle < = UART_PRE_IDLE_NUM_V , " uart pattern set error \n " , ESP_FAIL ) ;
UART [ uart_num ] - > at_cmd_char . data = pattern_chr ;
UART [ uart_num ] - > at_cmd_char . char_num = chr_num ;
UART [ uart_num ] - > at_cmd_gaptout . rx_gap_tout = chr_tout ;
UART [ uart_num ] - > at_cmd_postcnt . post_idle_num = post_idle ;
UART [ uart_num ] - > at_cmd_precnt . pre_idle_num = pre_idle ;
return uart_enable_intr_mask ( uart_num , UART_AT_CMD_CHAR_DET_INT_ENA_M ) ;
}
esp_err_t uart_disable_pattern_det_intr ( uart_port_t uart_num )
{
return uart_disable_intr_mask ( uart_num , UART_AT_CMD_CHAR_DET_INT_ENA_M ) ;
}
2016-12-14 20:45:40 -05:00
esp_err_t uart_enable_rx_intr ( uart_port_t uart_num )
{
2016-12-18 23:52:10 -05:00
return uart_enable_intr_mask ( uart_num , UART_RXFIFO_FULL_INT_ENA | UART_RXFIFO_TOUT_INT_ENA ) ;
2016-12-14 20:45:40 -05:00
}
esp_err_t uart_disable_rx_intr ( uart_port_t uart_num )
{
2016-12-18 23:52:10 -05:00
return uart_disable_intr_mask ( uart_num , UART_RXFIFO_FULL_INT_ENA | UART_RXFIFO_TOUT_INT_ENA ) ;
2016-12-14 20:45:40 -05:00
}
esp_err_t uart_disable_tx_intr ( uart_port_t uart_num )
{
2016-12-18 23:52:10 -05:00
return uart_disable_intr_mask ( uart_num , UART_TXFIFO_EMPTY_INT_ENA ) ;
2016-12-14 20:45:40 -05:00
}
esp_err_t uart_enable_tx_intr ( uart_port_t uart_num , int enable , int thresh )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_CHECK ( ( thresh < UART_FIFO_LEN ) , " empty intr threshold error " , ESP_FAIL ) ;
UART_ENTER_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
UART [ uart_num ] - > int_clr . txfifo_empty = 1 ;
UART [ uart_num ] - > conf1 . txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V ;
UART [ uart_num ] - > int_ena . txfifo_empty = enable & 0x1 ;
UART_EXIT_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
return ESP_OK ;
}
2016-12-18 23:52:10 -05:00
esp_err_t uart_isr_register ( uart_port_t uart_num , void ( * fn ) ( void * ) , void * arg , int intr_alloc_flags , uart_isr_handle_t * handle )
2016-12-14 20:45:40 -05:00
{
2016-11-25 04:33:51 -05:00
int ret ;
2016-12-14 20:45:40 -05:00
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_ENTER_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
switch ( uart_num ) {
case UART_NUM_1 :
2016-12-18 23:52:10 -05:00
ret = esp_intr_alloc ( ETS_UART1_INTR_SOURCE , intr_alloc_flags , fn , arg , handle ) ;
2016-12-14 20:45:40 -05:00
break ;
case UART_NUM_2 :
2016-12-18 23:52:10 -05:00
ret = esp_intr_alloc ( ETS_UART2_INTR_SOURCE , intr_alloc_flags , fn , arg , handle ) ;
2016-12-14 20:45:40 -05:00
break ;
case UART_NUM_0 :
default :
2016-12-18 23:52:10 -05:00
ret = esp_intr_alloc ( ETS_UART0_INTR_SOURCE , intr_alloc_flags , fn , arg , handle ) ;
2016-12-14 20:45:40 -05:00
break ;
}
UART_EXIT_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
return ret ;
}
esp_err_t uart_isr_free ( uart_port_t uart_num )
{
2016-12-07 23:38:22 -05:00
esp_err_t ret ;
2016-12-14 20:45:40 -05:00
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
if ( p_uart_obj [ uart_num ] - > intr_handle = = NULL ) return ESP_ERR_INVALID_ARG ;
UART_ENTER_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
ret = esp_intr_free ( p_uart_obj [ uart_num ] - > intr_handle ) ;
p_uart_obj [ uart_num ] - > intr_handle = NULL ;
UART_EXIT_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
return ret ;
}
//internal signal can be output to multiple GPIO pads
//only one GPIO pad can connect with input signal
esp_err_t uart_set_pin ( uart_port_t uart_num , int tx_io_num , int rx_io_num , int rts_io_num , int cts_io_num )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_CHECK ( ( tx_io_num < 0 | | ( GPIO_IS_VALID_OUTPUT_GPIO ( tx_io_num ) ) ) , " tx_io_num error " , ESP_FAIL ) ;
UART_CHECK ( ( rx_io_num < 0 | | ( GPIO_IS_VALID_GPIO ( rx_io_num ) ) ) , " rx_io_num error " , ESP_FAIL ) ;
UART_CHECK ( ( rts_io_num < 0 | | ( GPIO_IS_VALID_OUTPUT_GPIO ( rts_io_num ) ) ) , " rts_io_num error " , ESP_FAIL ) ;
UART_CHECK ( ( cts_io_num < 0 | | ( GPIO_IS_VALID_GPIO ( cts_io_num ) ) ) , " cts_io_num error " , ESP_FAIL ) ;
int tx_sig , rx_sig , rts_sig , cts_sig ;
switch ( uart_num ) {
case UART_NUM_0 :
tx_sig = U0TXD_OUT_IDX ;
rx_sig = U0RXD_IN_IDX ;
rts_sig = U0RTS_OUT_IDX ;
cts_sig = U0CTS_IN_IDX ;
break ;
case UART_NUM_1 :
tx_sig = U1TXD_OUT_IDX ;
rx_sig = U1RXD_IN_IDX ;
rts_sig = U1RTS_OUT_IDX ;
cts_sig = U1CTS_IN_IDX ;
break ;
case UART_NUM_2 :
tx_sig = U2TXD_OUT_IDX ;
rx_sig = U2RXD_IN_IDX ;
rts_sig = U2RTS_OUT_IDX ;
cts_sig = U2CTS_IN_IDX ;
break ;
case UART_NUM_MAX :
default :
tx_sig = U0TXD_OUT_IDX ;
rx_sig = U0RXD_IN_IDX ;
rts_sig = U0RTS_OUT_IDX ;
cts_sig = U0CTS_IN_IDX ;
break ;
}
if ( tx_io_num > = 0 ) {
PIN_FUNC_SELECT ( GPIO_PIN_MUX_REG [ tx_io_num ] , PIN_FUNC_GPIO ) ;
gpio_set_direction ( tx_io_num , GPIO_MODE_OUTPUT ) ;
gpio_matrix_out ( tx_io_num , tx_sig , 0 , 0 ) ;
}
if ( rx_io_num > = 0 ) {
PIN_FUNC_SELECT ( GPIO_PIN_MUX_REG [ rx_io_num ] , PIN_FUNC_GPIO ) ;
2016-12-21 23:08:15 -05:00
gpio_set_pull_mode ( rx_io_num , GPIO_PULLUP_ONLY ) ;
2016-12-14 20:45:40 -05:00
gpio_set_direction ( rx_io_num , GPIO_MODE_INPUT ) ;
gpio_matrix_in ( rx_io_num , rx_sig , 0 ) ;
}
if ( rts_io_num > = 0 ) {
PIN_FUNC_SELECT ( GPIO_PIN_MUX_REG [ rts_io_num ] , PIN_FUNC_GPIO ) ;
gpio_set_direction ( rts_io_num , GPIO_MODE_OUTPUT ) ;
gpio_matrix_out ( rts_io_num , rts_sig , 0 , 0 ) ;
}
if ( cts_io_num > = 0 ) {
PIN_FUNC_SELECT ( GPIO_PIN_MUX_REG [ cts_io_num ] , PIN_FUNC_GPIO ) ;
2016-12-21 23:08:15 -05:00
gpio_set_pull_mode ( cts_io_num , GPIO_PULLUP_ONLY ) ;
2016-12-14 20:45:40 -05:00
gpio_set_direction ( cts_io_num , GPIO_MODE_INPUT ) ;
gpio_matrix_in ( cts_io_num , cts_sig , 0 ) ;
}
return ESP_OK ;
}
esp_err_t uart_set_rts ( uart_port_t uart_num , int level )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_CHECK ( ( UART [ uart_num ] - > conf1 . rx_flow_en ! = 1 ) , " disable hw flowctrl before using sw control " , ESP_FAIL ) ;
UART_ENTER_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
UART [ uart_num ] - > conf0 . sw_rts = level & 0x1 ;
UART_ENTER_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
return ESP_OK ;
}
esp_err_t uart_set_dtr ( uart_port_t uart_num , int level )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_ENTER_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
UART [ uart_num ] - > conf0 . sw_dtr = level & 0x1 ;
UART_ENTER_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
return ESP_OK ;
}
esp_err_t uart_param_config ( uart_port_t uart_num , const uart_config_t * uart_config )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_CHECK ( ( uart_config ) , " param null " , ESP_FAIL ) ;
if ( uart_num = = UART_NUM_0 ) {
periph_module_enable ( PERIPH_UART0_MODULE ) ;
} else if ( uart_num = = UART_NUM_1 ) {
periph_module_enable ( PERIPH_UART1_MODULE ) ;
} else if ( uart_num = = UART_NUM_2 ) {
periph_module_enable ( PERIPH_UART2_MODULE ) ;
}
uart_set_hw_flow_ctrl ( uart_num , uart_config - > flow_ctrl , uart_config - > rx_flow_ctrl_thresh ) ;
uart_set_baudrate ( uart_num , uart_config - > baud_rate ) ;
UART [ uart_num ] - > conf0 . val = (
( uart_config - > parity < < UART_PARITY_S )
| ( uart_config - > stop_bits < < UART_STOP_BIT_NUM_S )
| ( uart_config - > data_bits < < UART_BIT_NUM_S )
| ( ( uart_config - > flow_ctrl & UART_HW_FLOWCTRL_CTS ) ? UART_TX_FLOW_EN : 0x0 )
| UART_TICK_REF_ALWAYS_ON_M ) ;
return ESP_OK ;
}
esp_err_t uart_intr_config ( uart_port_t uart_num , const uart_intr_config_t * intr_conf )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_CHECK ( ( intr_conf ) , " param null " , ESP_FAIL ) ;
UART_ENTER_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
UART [ uart_num ] - > int_clr . val = UART_INTR_MASK ;
if ( intr_conf - > intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M ) {
UART [ uart_num ] - > conf1 . rx_tout_thrhd = ( ( intr_conf - > rx_timeout_thresh ) & UART_RX_TOUT_THRHD_V ) ;
UART [ uart_num ] - > conf1 . rx_tout_en = 1 ;
} else {
UART [ uart_num ] - > conf1 . rx_tout_en = 0 ;
}
if ( intr_conf - > intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M ) {
UART [ uart_num ] - > conf1 . rxfifo_full_thrhd = intr_conf - > rxfifo_full_thresh ;
}
if ( intr_conf - > intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M ) {
UART [ uart_num ] - > conf1 . txfifo_empty_thrhd = intr_conf - > txfifo_empty_intr_thresh ;
}
UART [ uart_num ] - > int_ena . val = intr_conf - > intr_enable_mask ;
UART_EXIT_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
2016-12-16 17:27:45 -05:00
return ESP_OK ;
2016-12-14 20:45:40 -05:00
}
//internal isr handler for default driver code.
static void IRAM_ATTR uart_rx_intr_handler_default ( void * param )
{
uart_obj_t * p_uart = ( uart_obj_t * ) param ;
uint8_t uart_num = p_uart - > uart_num ;
uart_dev_t * uart_reg = UART [ uart_num ] ;
uint8_t buf_idx = 0 ;
uint32_t uart_intr_status = UART [ uart_num ] - > int_st . val ;
int rx_fifo_len = 0 ;
uart_event_t uart_event ;
portBASE_TYPE HPTaskAwoken = 0 ;
while ( uart_intr_status ! = 0x0 ) {
buf_idx = 0 ;
uart_event . type = UART_EVENT_MAX ;
if ( uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M ) {
UART_ENTER_CRITICAL_ISR ( & uart_spinlock [ uart_num ] ) ;
uart_reg - > int_ena . txfifo_empty = 0 ;
uart_reg - > int_clr . txfifo_empty = 1 ;
UART_EXIT_CRITICAL_ISR ( & uart_spinlock [ uart_num ] ) ;
if ( p_uart - > tx_waiting_brk ) {
continue ;
}
//TX semaphore will only be used when tx_buf_size is zero.
if ( p_uart - > tx_waiting_fifo = = true & & p_uart - > tx_buf_size = = 0 ) {
p_uart - > tx_waiting_fifo = false ;
xSemaphoreGiveFromISR ( p_uart - > tx_fifo_sem , & HPTaskAwoken ) ;
if ( HPTaskAwoken = = pdTRUE ) {
portYIELD_FROM_ISR ( ) ;
}
}
else {
//We don't use TX ring buffer, because the size is zero.
if ( p_uart - > tx_buf_size = = 0 ) {
continue ;
}
int tx_fifo_rem = UART_FIFO_LEN - UART [ uart_num ] - > status . txfifo_cnt ;
bool en_tx_flg = false ;
//We need to put a loop here, in case all the buffer items are very short.
//That would cause a watch_dog reset because empty interrupt happens so often.
//Although this is a loop in ISR, this loop will execute at most 128 turns.
while ( tx_fifo_rem ) {
if ( p_uart - > tx_len_tot = = 0 | | p_uart - > tx_ptr = = NULL | | p_uart - > tx_len_cur = = 0 ) {
size_t size ;
p_uart - > tx_head = ( uart_tx_data_t * ) xRingbufferReceiveFromISR ( p_uart - > tx_ring_buf , & size ) ;
if ( p_uart - > tx_head ) {
//The first item is the data description
//Get the first item to get the data information
if ( p_uart - > tx_len_tot = = 0 ) {
p_uart - > tx_ptr = NULL ;
p_uart - > tx_len_tot = p_uart - > tx_head - > tx_data . size ;
if ( p_uart - > tx_head - > type = = UART_DATA_BREAK ) {
p_uart - > tx_len_tot = p_uart - > tx_head - > tx_data . size ;
p_uart - > tx_brk_flg = 1 ;
p_uart - > tx_brk_len = p_uart - > tx_head - > tx_data . brk_len ;
}
//We have saved the data description from the 1st item, return buffer.
vRingbufferReturnItemFromISR ( p_uart - > tx_ring_buf , p_uart - > tx_head , & HPTaskAwoken ) ;
if ( HPTaskAwoken = = pdTRUE ) {
portYIELD_FROM_ISR ( ) ;
}
} else if ( p_uart - > tx_ptr = = NULL ) {
//Update the TX item pointer, we will need this to return item to buffer.
p_uart - > tx_ptr = ( uint8_t * ) p_uart - > tx_head ;
en_tx_flg = true ;
p_uart - > tx_len_cur = size ;
}
}
else {
//Can not get data from ring buffer, return;
break ;
}
}
if ( p_uart - > tx_len_tot > 0 & & p_uart - > tx_ptr & & p_uart - > tx_len_cur > 0 ) {
//To fill the TX FIFO.
int send_len = p_uart - > tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart - > tx_len_cur ;
for ( buf_idx = 0 ; buf_idx < send_len ; buf_idx + + ) {
WRITE_PERI_REG ( UART_FIFO_AHB_REG ( uart_num ) , * ( p_uart - > tx_ptr + + ) & 0xff ) ;
}
p_uart - > tx_len_tot - = send_len ;
p_uart - > tx_len_cur - = send_len ;
tx_fifo_rem - = send_len ;
if ( p_uart - > tx_len_cur = = 0 ) {
//Return item to ring buffer.
vRingbufferReturnItemFromISR ( p_uart - > tx_ring_buf , p_uart - > tx_head , & HPTaskAwoken ) ;
if ( HPTaskAwoken = = pdTRUE ) {
portYIELD_FROM_ISR ( ) ;
}
p_uart - > tx_head = NULL ;
p_uart - > tx_ptr = NULL ;
//Sending item done, now we need to send break if there is a record.
//Set TX break signal after FIFO is empty
if ( p_uart - > tx_brk_flg = = 1 & & p_uart - > tx_len_tot = = 0 ) {
UART_ENTER_CRITICAL_ISR ( & uart_spinlock [ uart_num ] ) ;
uart_reg - > int_ena . tx_brk_done = 0 ;
uart_reg - > idle_conf . tx_brk_num = p_uart - > tx_brk_len ;
uart_reg - > conf0 . txd_brk = 1 ;
uart_reg - > int_clr . tx_brk_done = 1 ;
uart_reg - > int_ena . tx_brk_done = 1 ;
UART_EXIT_CRITICAL_ISR ( & uart_spinlock [ uart_num ] ) ;
p_uart - > tx_waiting_brk = 1 ;
} else {
//enable TX empty interrupt
en_tx_flg = true ;
}
} else {
//enable TX empty interrupt
en_tx_flg = true ;
}
}
}
if ( en_tx_flg ) {
UART_ENTER_CRITICAL_ISR ( & uart_spinlock [ uart_num ] ) ;
uart_reg - > int_clr . txfifo_empty = 1 ;
uart_reg - > int_ena . txfifo_empty = 1 ;
UART_EXIT_CRITICAL_ISR ( & uart_spinlock [ uart_num ] ) ;
}
}
}
else if ( ( uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M ) | | ( uart_intr_status & UART_RXFIFO_FULL_INT_ST_M ) ) {
if ( p_uart - > rx_buffer_full_flg = = false ) {
//Get the buffer from the FIFO
rx_fifo_len = uart_reg - > status . rxfifo_cnt ;
p_uart - > rx_stash_len = rx_fifo_len ;
//We have to read out all data in RX FIFO to clear the interrupt signal
while ( buf_idx < rx_fifo_len ) {
p_uart - > rx_data_buf [ buf_idx + + ] = uart_reg - > fifo . rw_byte ;
}
//After Copying the Data From FIFO ,Clear intr_status
UART_ENTER_CRITICAL_ISR ( & uart_spinlock [ uart_num ] ) ;
uart_reg - > int_clr . rxfifo_tout = 1 ;
uart_reg - > int_clr . rxfifo_full = 1 ;
UART_EXIT_CRITICAL_ISR ( & uart_spinlock [ uart_num ] ) ;
uart_event . type = UART_DATA ;
uart_event . size = rx_fifo_len ;
//If we fail to push data to ring buffer, we will have to stash the data, and send next time.
//Mainly for applications that uses flow control or small ring buffer.
if ( pdFALSE = = xRingbufferSendFromISR ( p_uart - > rx_ring_buf , p_uart - > rx_data_buf , p_uart - > rx_stash_len , & HPTaskAwoken ) ) {
UART_ENTER_CRITICAL_ISR ( & uart_spinlock [ uart_num ] ) ;
uart_reg - > int_ena . rxfifo_full = 0 ;
uart_reg - > int_ena . rxfifo_tout = 0 ;
UART_EXIT_CRITICAL_ISR ( & uart_spinlock [ uart_num ] ) ;
p_uart - > rx_buffer_full_flg = true ;
uart_event . type = UART_BUFFER_FULL ;
} else {
2016-12-18 23:52:10 -05:00
UART_ENTER_CRITICAL_ISR ( & uart_spinlock [ uart_num ] ) ;
p_uart - > rx_buffered_len + = p_uart - > rx_stash_len ;
UART_EXIT_CRITICAL_ISR ( & uart_spinlock [ uart_num ] ) ;
2016-12-14 20:45:40 -05:00
uart_event . type = UART_DATA ;
}
if ( HPTaskAwoken = = pdTRUE ) {
portYIELD_FROM_ISR ( ) ;
}
} else {
UART_ENTER_CRITICAL_ISR ( & uart_spinlock [ uart_num ] ) ;
uart_reg - > int_ena . rxfifo_full = 0 ;
uart_reg - > int_ena . rxfifo_tout = 0 ;
uart_reg - > int_clr . val = UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M ;
UART_EXIT_CRITICAL_ISR ( & uart_spinlock [ uart_num ] ) ;
uart_event . type = UART_BUFFER_FULL ;
}
} else if ( uart_intr_status & UART_RXFIFO_OVF_INT_ST_M ) {
UART_ENTER_CRITICAL_ISR ( & uart_spinlock [ uart_num ] ) ;
uart_reg - > conf0 . rxfifo_rst = 1 ;
uart_reg - > conf0 . rxfifo_rst = 0 ;
uart_reg - > int_clr . rxfifo_ovf = 1 ;
UART_EXIT_CRITICAL_ISR ( & uart_spinlock [ uart_num ] ) ;
uart_event . type = UART_FIFO_OVF ;
} else if ( uart_intr_status & UART_BRK_DET_INT_ST_M ) {
uart_reg - > int_clr . brk_det = 1 ;
uart_event . type = UART_BREAK ;
2016-12-18 23:52:10 -05:00
} else if ( uart_intr_status & UART_FRM_ERR_INT_ST_M ) {
2016-12-21 23:08:15 -05:00
uart_reg - > int_clr . frm_err = 1 ;
2016-12-14 20:45:40 -05:00
uart_event . type = UART_FRAME_ERR ;
2016-12-18 23:52:10 -05:00
} else if ( uart_intr_status & UART_PARITY_ERR_INT_ST_M ) {
2016-12-21 23:08:15 -05:00
uart_reg - > int_clr . parity_err = 1 ;
2016-12-14 20:45:40 -05:00
uart_event . type = UART_PARITY_ERR ;
} else if ( uart_intr_status & UART_TX_BRK_DONE_INT_ST_M ) {
UART_ENTER_CRITICAL_ISR ( & uart_spinlock [ uart_num ] ) ;
uart_reg - > conf0 . txd_brk = 0 ;
uart_reg - > int_ena . tx_brk_done = 0 ;
uart_reg - > int_clr . tx_brk_done = 1 ;
if ( p_uart - > tx_brk_flg = = 1 ) {
uart_reg - > int_ena . txfifo_empty = 1 ;
}
UART_EXIT_CRITICAL_ISR ( & uart_spinlock [ uart_num ] ) ;
if ( p_uart - > tx_brk_flg = = 1 ) {
p_uart - > tx_brk_flg = 0 ;
p_uart - > tx_waiting_brk = 0 ;
} else {
xSemaphoreGiveFromISR ( p_uart - > tx_brk_sem , & HPTaskAwoken ) ;
if ( HPTaskAwoken = = pdTRUE ) {
portYIELD_FROM_ISR ( ) ;
}
}
} else if ( uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M ) {
UART_ENTER_CRITICAL_ISR ( & uart_spinlock [ uart_num ] ) ;
uart_reg - > int_ena . tx_brk_idle_done = 0 ;
uart_reg - > int_clr . tx_brk_idle_done = 1 ;
UART_EXIT_CRITICAL_ISR ( & uart_spinlock [ uart_num ] ) ;
2016-12-18 23:52:10 -05:00
} else if ( uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M ) {
uart_reg - > int_clr . at_cmd_char_det = 1 ;
uart_event . type = UART_PATTERN_DET ;
2016-12-14 20:45:40 -05:00
} else if ( uart_intr_status & UART_TX_DONE_INT_ST_M ) {
UART_ENTER_CRITICAL_ISR ( & uart_spinlock [ uart_num ] ) ;
uart_reg - > int_ena . tx_done = 0 ;
uart_reg - > int_clr . tx_done = 1 ;
UART_EXIT_CRITICAL_ISR ( & uart_spinlock [ uart_num ] ) ;
xSemaphoreGiveFromISR ( p_uart_obj [ uart_num ] - > tx_done_sem , & HPTaskAwoken ) ;
if ( HPTaskAwoken = = pdTRUE ) {
portYIELD_FROM_ISR ( ) ;
}
2016-12-18 23:52:10 -05:00
} else {
2016-12-14 20:45:40 -05:00
uart_reg - > int_clr . val = uart_intr_status ; /*simply clear all other intr status*/
uart_event . type = UART_EVENT_MAX ;
}
if ( uart_event . type ! = UART_EVENT_MAX & & p_uart - > xQueueUart ) {
xQueueSendFromISR ( p_uart - > xQueueUart , ( void * ) & uart_event , & HPTaskAwoken ) ;
if ( HPTaskAwoken = = pdTRUE ) {
portYIELD_FROM_ISR ( ) ;
}
}
uart_intr_status = uart_reg - > int_st . val ;
}
}
/**************************************************************/
esp_err_t uart_wait_tx_done ( uart_port_t uart_num , TickType_t ticks_to_wait )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_CHECK ( ( p_uart_obj [ uart_num ] ) , " uart driver error " , ESP_FAIL ) ;
BaseType_t res ;
portTickType ticks_end = xTaskGetTickCount ( ) + ticks_to_wait ;
//Take tx_mux
res = xSemaphoreTake ( p_uart_obj [ uart_num ] - > tx_mux , ( portTickType ) ticks_to_wait ) ;
if ( res = = pdFALSE ) {
return ESP_ERR_TIMEOUT ;
}
ticks_to_wait = ticks_end - xTaskGetTickCount ( ) ;
xSemaphoreTake ( p_uart_obj [ uart_num ] - > tx_done_sem , 0 ) ;
ticks_to_wait = ticks_end - xTaskGetTickCount ( ) ;
if ( UART [ uart_num ] - > status . txfifo_cnt = = 0 ) {
xSemaphoreGive ( p_uart_obj [ uart_num ] - > tx_mux ) ;
return ESP_OK ;
}
uart_enable_intr_mask ( uart_num , UART_TX_DONE_INT_ENA_M ) ;
//take 2nd tx_done_sem, wait given from ISR
res = xSemaphoreTake ( p_uart_obj [ uart_num ] - > tx_done_sem , ( portTickType ) ticks_to_wait ) ;
if ( res = = pdFALSE ) {
uart_disable_intr_mask ( uart_num , UART_TX_DONE_INT_ENA_M ) ;
xSemaphoreGive ( p_uart_obj [ uart_num ] - > tx_mux ) ;
return ESP_ERR_TIMEOUT ;
}
xSemaphoreGive ( p_uart_obj [ uart_num ] - > tx_mux ) ;
return ESP_OK ;
}
static esp_err_t uart_set_break ( uart_port_t uart_num , int break_num )
{
UART_ENTER_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
UART [ uart_num ] - > idle_conf . tx_brk_num = break_num ;
UART [ uart_num ] - > conf0 . txd_brk = 1 ;
UART [ uart_num ] - > int_clr . tx_brk_done = 1 ;
UART [ uart_num ] - > int_ena . tx_brk_done = 1 ;
UART_EXIT_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
return ESP_OK ;
}
//Fill UART tx_fifo and return a number,
//This function by itself is not thread-safe, always call from within a muxed section.
static int uart_fill_fifo ( uart_port_t uart_num , const char * buffer , uint32_t len )
{
uint8_t i = 0 ;
uint8_t tx_fifo_cnt = UART [ uart_num ] - > status . txfifo_cnt ;
uint8_t tx_remain_fifo_cnt = ( UART_FIFO_LEN - tx_fifo_cnt ) ;
uint8_t copy_cnt = ( len > = tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len ) ;
for ( i = 0 ; i < copy_cnt ; i + + ) {
WRITE_PERI_REG ( UART_FIFO_AHB_REG ( uart_num ) , buffer [ i ] ) ;
}
return copy_cnt ;
}
int uart_tx_chars ( uart_port_t uart_num , const char * buffer , uint32_t len )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ( - 1 ) ) ;
UART_CHECK ( ( p_uart_obj [ uart_num ] ) , " uart driver error " , ( - 1 ) ) ;
UART_CHECK ( buffer , " buffer null " , ( - 1 ) ) ;
if ( len = = 0 ) {
return 0 ;
}
xSemaphoreTake ( p_uart_obj [ uart_num ] - > tx_mux , ( portTickType ) portMAX_DELAY ) ;
int tx_len = uart_fill_fifo ( uart_num , ( const char * ) buffer , len ) ;
xSemaphoreGive ( p_uart_obj [ uart_num ] - > tx_mux ) ;
return tx_len ;
}
static int uart_tx_all ( uart_port_t uart_num , const char * src , size_t size , bool brk_en , int brk_len )
{
if ( size = = 0 ) {
return 0 ;
}
size_t original_size = size ;
//lock for uart_tx
xSemaphoreTake ( p_uart_obj [ uart_num ] - > tx_mux , ( portTickType ) portMAX_DELAY ) ;
if ( p_uart_obj [ uart_num ] - > tx_buf_size > 0 ) {
int max_size = xRingbufferGetMaxItemSize ( p_uart_obj [ uart_num ] - > tx_ring_buf ) ;
int offset = 0 ;
uart_tx_data_t evt ;
evt . tx_data . size = size ;
evt . tx_data . brk_len = brk_len ;
if ( brk_en ) {
evt . type = UART_DATA_BREAK ;
} else {
evt . type = UART_DATA ;
}
xRingbufferSend ( p_uart_obj [ uart_num ] - > tx_ring_buf , ( void * ) & evt , sizeof ( uart_tx_data_t ) , portMAX_DELAY ) ;
while ( size > 0 ) {
int send_size = size > max_size / 2 ? max_size / 2 : size ;
xRingbufferSend ( p_uart_obj [ uart_num ] - > tx_ring_buf , ( void * ) ( src + offset ) , send_size , portMAX_DELAY ) ;
size - = send_size ;
offset + = send_size ;
}
xSemaphoreGive ( p_uart_obj [ uart_num ] - > tx_mux ) ;
uart_enable_tx_intr ( uart_num , 1 , UART_EMPTY_THRESH_DEFAULT ) ;
} else {
while ( size ) {
//semaphore for tx_fifo available
if ( pdTRUE = = xSemaphoreTake ( p_uart_obj [ uart_num ] - > tx_fifo_sem , ( portTickType ) portMAX_DELAY ) ) {
size_t sent = uart_fill_fifo ( uart_num , ( char * ) src , size ) ;
if ( sent < size ) {
p_uart_obj [ uart_num ] - > tx_waiting_fifo = true ;
uart_enable_tx_intr ( uart_num , 1 , UART_EMPTY_THRESH_DEFAULT ) ;
}
size - = sent ;
src + = sent ;
}
}
if ( brk_en ) {
uart_set_break ( uart_num , brk_len ) ;
xSemaphoreTake ( p_uart_obj [ uart_num ] - > tx_brk_sem , ( portTickType ) portMAX_DELAY ) ;
}
xSemaphoreGive ( p_uart_obj [ uart_num ] - > tx_fifo_sem ) ;
}
xSemaphoreGive ( p_uart_obj [ uart_num ] - > tx_mux ) ;
return original_size ;
}
int uart_write_bytes ( uart_port_t uart_num , const char * src , size_t size )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ( - 1 ) ) ;
UART_CHECK ( ( p_uart_obj [ uart_num ] ! = NULL ) , " uart driver error " , ( - 1 ) ) ;
UART_CHECK ( src , " buffer null " , ( - 1 ) ) ;
return uart_tx_all ( uart_num , src , size , 0 , 0 ) ;
}
int uart_write_bytes_with_break ( uart_port_t uart_num , const char * src , size_t size , int brk_len )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ( - 1 ) ) ;
UART_CHECK ( ( p_uart_obj [ uart_num ] ) , " uart driver error " , ( - 1 ) ) ;
UART_CHECK ( ( size > 0 ) , " uart size error " , ( - 1 ) ) ;
UART_CHECK ( ( src ) , " uart data null " , ( - 1 ) ) ;
UART_CHECK ( ( brk_len > 0 & & brk_len < 256 ) , " break_num error " , ( - 1 ) ) ;
return uart_tx_all ( uart_num , src , size , 1 , brk_len ) ;
}
int uart_read_bytes ( uart_port_t uart_num , uint8_t * buf , uint32_t length , TickType_t ticks_to_wait )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ( - 1 ) ) ;
UART_CHECK ( ( buf ) , " uart_num error " , ( - 1 ) ) ;
UART_CHECK ( ( p_uart_obj [ uart_num ] ) , " uart driver error " , ( - 1 ) ) ;
uint8_t * data = NULL ;
size_t size ;
size_t copy_len = 0 ;
int len_tmp ;
if ( xSemaphoreTake ( p_uart_obj [ uart_num ] - > rx_mux , ( portTickType ) ticks_to_wait ) ! = pdTRUE ) {
return - 1 ;
}
while ( length ) {
if ( p_uart_obj [ uart_num ] - > rx_cur_remain = = 0 ) {
data = ( uint8_t * ) xRingbufferReceive ( p_uart_obj [ uart_num ] - > rx_ring_buf , & size , ( portTickType ) ticks_to_wait ) ;
if ( data ) {
p_uart_obj [ uart_num ] - > rx_head_ptr = data ;
p_uart_obj [ uart_num ] - > rx_ptr = data ;
p_uart_obj [ uart_num ] - > rx_cur_remain = size ;
} else {
xSemaphoreGive ( p_uart_obj [ uart_num ] - > rx_mux ) ;
2016-12-18 23:52:10 -05:00
UART_ENTER_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
p_uart_obj [ uart_num ] - > rx_buffered_len - = copy_len ;
UART_EXIT_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
2016-12-14 20:45:40 -05:00
return copy_len ;
}
}
if ( p_uart_obj [ uart_num ] - > rx_cur_remain > length ) {
len_tmp = length ;
} else {
len_tmp = p_uart_obj [ uart_num ] - > rx_cur_remain ;
}
memcpy ( buf + copy_len , p_uart_obj [ uart_num ] - > rx_ptr , len_tmp ) ;
p_uart_obj [ uart_num ] - > rx_ptr + = len_tmp ;
p_uart_obj [ uart_num ] - > rx_cur_remain - = len_tmp ;
copy_len + = len_tmp ;
length - = len_tmp ;
if ( p_uart_obj [ uart_num ] - > rx_cur_remain = = 0 ) {
vRingbufferReturnItem ( p_uart_obj [ uart_num ] - > rx_ring_buf , p_uart_obj [ uart_num ] - > rx_head_ptr ) ;
p_uart_obj [ uart_num ] - > rx_head_ptr = NULL ;
p_uart_obj [ uart_num ] - > rx_ptr = NULL ;
if ( p_uart_obj [ uart_num ] - > rx_buffer_full_flg ) {
BaseType_t res = xRingbufferSend ( p_uart_obj [ uart_num ] - > rx_ring_buf , p_uart_obj [ uart_num ] - > rx_data_buf , p_uart_obj [ uart_num ] - > rx_stash_len , 1 ) ;
if ( res = = pdTRUE ) {
2016-12-18 23:52:10 -05:00
UART_ENTER_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
p_uart_obj [ uart_num ] - > rx_buffered_len + = p_uart_obj [ uart_num ] - > rx_stash_len ;
UART_EXIT_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
2016-12-14 20:45:40 -05:00
p_uart_obj [ uart_num ] - > rx_buffer_full_flg = false ;
uart_enable_rx_intr ( p_uart_obj [ uart_num ] - > uart_num ) ;
}
}
}
}
xSemaphoreGive ( p_uart_obj [ uart_num ] - > rx_mux ) ;
2016-12-18 23:52:10 -05:00
UART_ENTER_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
p_uart_obj [ uart_num ] - > rx_buffered_len - = copy_len ;
UART_EXIT_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
2016-12-14 20:45:40 -05:00
return copy_len ;
}
2016-12-18 23:52:10 -05:00
esp_err_t uart_get_buffered_data_len ( uart_port_t uart_num , size_t * size )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_CHECK ( ( p_uart_obj [ uart_num ] ) , " uart driver error " , ESP_FAIL ) ;
* size = p_uart_obj [ uart_num ] - > rx_buffered_len ;
return ESP_OK ;
}
2016-12-14 20:45:40 -05:00
esp_err_t uart_flush ( uart_port_t uart_num )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_CHECK ( ( p_uart_obj [ uart_num ] ) , " uart driver error " , ESP_FAIL ) ;
uart_obj_t * p_uart = p_uart_obj [ uart_num ] ;
uint8_t * data ;
size_t size ;
//rx sem protect the ring buffer read related functions
xSemaphoreTake ( p_uart - > rx_mux , ( portTickType ) portMAX_DELAY ) ;
2016-12-18 23:52:10 -05:00
uart_disable_rx_intr ( p_uart_obj [ uart_num ] - > uart_num ) ;
2016-12-14 20:45:40 -05:00
while ( true ) {
if ( p_uart - > rx_head_ptr ) {
vRingbufferReturnItem ( p_uart - > rx_ring_buf , p_uart - > rx_head_ptr ) ;
2016-12-18 23:52:10 -05:00
UART_ENTER_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
p_uart_obj [ uart_num ] - > rx_buffered_len - = p_uart - > rx_cur_remain ;
UART_EXIT_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
2016-12-14 20:45:40 -05:00
p_uart - > rx_ptr = NULL ;
p_uart - > rx_cur_remain = 0 ;
p_uart - > rx_head_ptr = NULL ;
}
data = ( uint8_t * ) xRingbufferReceive ( p_uart - > rx_ring_buf , & size , ( portTickType ) 0 ) ;
if ( data = = NULL ) {
break ;
}
2016-12-18 23:52:10 -05:00
UART_ENTER_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
p_uart_obj [ uart_num ] - > rx_buffered_len - = size ;
UART_EXIT_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
2016-12-14 20:45:40 -05:00
vRingbufferReturnItem ( p_uart - > rx_ring_buf , data ) ;
2016-12-18 23:52:10 -05:00
if ( p_uart_obj [ uart_num ] - > rx_buffer_full_flg ) {
BaseType_t res = xRingbufferSend ( p_uart_obj [ uart_num ] - > rx_ring_buf , p_uart_obj [ uart_num ] - > rx_data_buf , p_uart_obj [ uart_num ] - > rx_stash_len , 1 ) ;
if ( res = = pdTRUE ) {
UART_ENTER_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
p_uart_obj [ uart_num ] - > rx_buffered_len + = p_uart_obj [ uart_num ] - > rx_stash_len ;
UART_EXIT_CRITICAL ( & uart_spinlock [ uart_num ] ) ;
p_uart_obj [ uart_num ] - > rx_buffer_full_flg = false ;
}
}
2016-12-14 20:45:40 -05:00
}
p_uart - > rx_ptr = NULL ;
p_uart - > rx_cur_remain = 0 ;
p_uart - > rx_head_ptr = NULL ;
uart_reset_fifo ( uart_num ) ;
2016-12-18 23:52:10 -05:00
uart_enable_rx_intr ( p_uart_obj [ uart_num ] - > uart_num ) ;
xSemaphoreGive ( p_uart - > rx_mux ) ;
2016-12-14 20:45:40 -05:00
return ESP_OK ;
}
2016-12-21 21:43:42 -05:00
esp_err_t uart_driver_install ( uart_port_t uart_num , int rx_buffer_size , int tx_buffer_size , int queue_size , QueueHandle_t * uart_queue , int intr_alloc_flags )
2016-12-14 20:45:40 -05:00
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
2016-12-18 23:52:10 -05:00
UART_CHECK ( ( rx_buffer_size > UART_FIFO_LEN ) , " uart rx buffer length error(>128) " , ESP_FAIL ) ;
2016-12-14 20:45:40 -05:00
if ( p_uart_obj [ uart_num ] = = NULL ) {
p_uart_obj [ uart_num ] = ( uart_obj_t * ) malloc ( sizeof ( uart_obj_t ) ) ;
if ( p_uart_obj [ uart_num ] = = NULL ) {
ESP_LOGE ( UART_TAG , " UART driver malloc error " ) ;
return ESP_FAIL ;
}
p_uart_obj [ uart_num ] - > uart_num = uart_num ;
p_uart_obj [ uart_num ] - > tx_fifo_sem = xSemaphoreCreateBinary ( ) ;
xSemaphoreGive ( p_uart_obj [ uart_num ] - > tx_fifo_sem ) ;
p_uart_obj [ uart_num ] - > tx_done_sem = xSemaphoreCreateBinary ( ) ;
p_uart_obj [ uart_num ] - > tx_brk_sem = xSemaphoreCreateBinary ( ) ;
p_uart_obj [ uart_num ] - > tx_mux = xSemaphoreCreateMutex ( ) ;
p_uart_obj [ uart_num ] - > rx_mux = xSemaphoreCreateMutex ( ) ;
p_uart_obj [ uart_num ] - > queue_size = queue_size ;
p_uart_obj [ uart_num ] - > tx_ptr = NULL ;
p_uart_obj [ uart_num ] - > tx_head = NULL ;
p_uart_obj [ uart_num ] - > tx_len_tot = 0 ;
p_uart_obj [ uart_num ] - > tx_brk_flg = 0 ;
p_uart_obj [ uart_num ] - > tx_brk_len = 0 ;
p_uart_obj [ uart_num ] - > tx_waiting_brk = 0 ;
2016-12-18 23:52:10 -05:00
p_uart_obj [ uart_num ] - > rx_buffered_len = 0 ;
2016-12-14 20:45:40 -05:00
if ( uart_queue ) {
p_uart_obj [ uart_num ] - > xQueueUart = xQueueCreate ( queue_size , sizeof ( uart_event_t ) ) ;
2016-12-21 21:43:42 -05:00
* uart_queue = p_uart_obj [ uart_num ] - > xQueueUart ;
2016-12-14 20:45:40 -05:00
ESP_LOGI ( UART_TAG , " queue free spaces: %d " , uxQueueSpacesAvailable ( p_uart_obj [ uart_num ] - > xQueueUart ) ) ;
} else {
p_uart_obj [ uart_num ] - > xQueueUart = NULL ;
}
p_uart_obj [ uart_num ] - > rx_buffer_full_flg = false ;
p_uart_obj [ uart_num ] - > tx_waiting_fifo = false ;
p_uart_obj [ uart_num ] - > rx_ptr = NULL ;
p_uart_obj [ uart_num ] - > rx_cur_remain = 0 ;
p_uart_obj [ uart_num ] - > rx_head_ptr = NULL ;
p_uart_obj [ uart_num ] - > rx_ring_buf = xRingbufferCreate ( rx_buffer_size , RINGBUF_TYPE_BYTEBUF ) ;
if ( tx_buffer_size > 0 ) {
p_uart_obj [ uart_num ] - > tx_ring_buf = xRingbufferCreate ( tx_buffer_size , RINGBUF_TYPE_NOSPLIT ) ;
p_uart_obj [ uart_num ] - > tx_buf_size = tx_buffer_size ;
} else {
p_uart_obj [ uart_num ] - > tx_ring_buf = NULL ;
p_uart_obj [ uart_num ] - > tx_buf_size = 0 ;
}
} else {
ESP_LOGE ( UART_TAG , " UART driver already installed " ) ;
return ESP_FAIL ;
}
2016-12-18 23:52:10 -05:00
uart_isr_register ( uart_num , uart_rx_intr_handler_default , p_uart_obj [ uart_num ] , intr_alloc_flags , & p_uart_obj [ uart_num ] - > intr_handle ) ;
2016-12-14 20:45:40 -05:00
uart_intr_config_t uart_intr = {
. intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
| UART_RXFIFO_TOUT_INT_ENA_M
| UART_FRM_ERR_INT_ENA_M
| UART_RXFIFO_OVF_INT_ENA_M
| UART_BRK_DET_INT_ENA_M
| UART_PARITY_ERR_INT_ENA_M ,
. rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT ,
. rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT ,
. txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
} ;
uart_intr_config ( uart_num , & uart_intr ) ;
return ESP_OK ;
}
//Make sure no other tasks are still using UART before you call this function
esp_err_t uart_driver_delete ( uart_port_t uart_num )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
if ( p_uart_obj [ uart_num ] = = NULL ) {
ESP_LOGI ( UART_TAG , " ALREADY NULL " ) ;
return ESP_OK ;
}
2016-11-25 04:33:51 -05:00
esp_intr_free ( p_uart_obj [ uart_num ] - > intr_handle ) ;
2016-12-14 20:45:40 -05:00
uart_disable_rx_intr ( uart_num ) ;
uart_disable_tx_intr ( uart_num ) ;
if ( p_uart_obj [ uart_num ] - > tx_fifo_sem ) {
vSemaphoreDelete ( p_uart_obj [ uart_num ] - > tx_fifo_sem ) ;
p_uart_obj [ uart_num ] - > tx_fifo_sem = NULL ;
}
if ( p_uart_obj [ uart_num ] - > tx_done_sem ) {
vSemaphoreDelete ( p_uart_obj [ uart_num ] - > tx_done_sem ) ;
p_uart_obj [ uart_num ] - > tx_done_sem = NULL ;
}
if ( p_uart_obj [ uart_num ] - > tx_brk_sem ) {
vSemaphoreDelete ( p_uart_obj [ uart_num ] - > tx_brk_sem ) ;
p_uart_obj [ uart_num ] - > tx_brk_sem = NULL ;
}
if ( p_uart_obj [ uart_num ] - > tx_mux ) {
vSemaphoreDelete ( p_uart_obj [ uart_num ] - > tx_mux ) ;
p_uart_obj [ uart_num ] - > tx_mux = NULL ;
}
if ( p_uart_obj [ uart_num ] - > rx_mux ) {
vSemaphoreDelete ( p_uart_obj [ uart_num ] - > rx_mux ) ;
p_uart_obj [ uart_num ] - > rx_mux = NULL ;
}
if ( p_uart_obj [ uart_num ] - > xQueueUart ) {
vQueueDelete ( p_uart_obj [ uart_num ] - > xQueueUart ) ;
p_uart_obj [ uart_num ] - > xQueueUart = NULL ;
}
if ( p_uart_obj [ uart_num ] - > rx_ring_buf ) {
vRingbufferDelete ( p_uart_obj [ uart_num ] - > rx_ring_buf ) ;
p_uart_obj [ uart_num ] - > rx_ring_buf = NULL ;
}
if ( p_uart_obj [ uart_num ] - > tx_ring_buf ) {
vRingbufferDelete ( p_uart_obj [ uart_num ] - > tx_ring_buf ) ;
p_uart_obj [ uart_num ] - > tx_ring_buf = NULL ;
}
free ( p_uart_obj [ uart_num ] ) ;
p_uart_obj [ uart_num ] = NULL ;
return ESP_OK ;
}