esp-idf/components/driver/rmt.c

724 lines
27 KiB
C
Raw Normal View History

2016-11-09 22:23:40 -05:00
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <esp_types.h>
#include <string.h>
#include <stdlib.h>
2016-11-09 22:23:40 -05:00
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/xtensa_api.h"
#include "freertos/ringbuf.h"
#include "esp_intr.h"
#include "esp_log.h"
#include "esp_err.h"
#include "esp_intr_alloc.h"
2016-11-09 22:23:40 -05:00
#include "soc/gpio_sig_map.h"
#include "soc/rmt_struct.h"
#include "driver/periph_ctrl.h"
#include "driver/rmt.h"
#define RMT_SOUCCE_CLK_APB (APB_CLK_FREQ) /*!< RMT source clock is APB_CLK */
#define RMT_SOURCE_CLK_REF (1 * 1000000) /*!< not used yet */
#define RMT_SOURCE_CLK(select) ((select == RMT_BASECLK_REF) ? (RMT_SOURCE_CLK_REF) : (RMT_SOUCCE_CLK_APB)) /*! RMT source clock frequency */
#define RMT_CHANNEL_ERROR_STR "RMT CHANNEL ERR"
#define RMT_ADDR_ERROR_STR "RMT ADDRESS ERR"
#define RMT_MEM_CNT_ERROR_STR "RMT MEM BLOCK NUM ERR"
#define RMT_CARRIER_ERROR_STR "RMT CARRIER LEVEL ERR"
#define RMT_MEM_OWNER_ERROR_STR "RMT MEM OWNER_ERR"
#define RMT_BASECLK_ERROR_STR "RMT BASECLK ERR"
#define RMT_WR_MEM_OVF_ERROR_STR "RMT WR MEM OVERFLOW"
#define RMT_GPIO_ERROR_STR "RMT GPIO ERROR"
#define RMT_MODE_ERROR_STR "RMT MODE ERROR"
#define RMT_CLK_DIV_ERROR_STR "RMT CLK DIV ERR"
#define RMT_DRIVER_ERROR_STR "RMT DRIVER ERR"
#define RMT_DRIVER_LENGTH_ERROR_STR "RMT PARAM LEN ERROR"
static const char* RMT_TAG = "rmt";
2016-11-09 22:23:40 -05:00
static bool s_rmt_driver_installed = false;
static rmt_isr_handle_t s_rmt_driver_intr_handle;
2016-11-09 22:23:40 -05:00
#define RMT_CHECK(a, str, ret_val) \
if (!(a)) { \
ESP_LOGE(RMT_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
return (ret_val); \
}
2016-11-09 22:23:40 -05:00
static portMUX_TYPE rmt_spinlock = portMUX_INITIALIZER_UNLOCKED;
typedef struct {
int tx_offset;
int tx_len_rem;
int tx_sub_len;
rmt_channel_t channel;
rmt_item32_t* tx_data;
xSemaphoreHandle tx_sem;
RingbufHandle_t tx_buf;
RingbufHandle_t rx_buf;
} rmt_obj_t;
rmt_obj_t* p_rmt_obj[RMT_CHANNEL_MAX] = {0};
static void rmt_set_tx_wrap_en(rmt_channel_t channel, bool en)
{
portENTER_CRITICAL(&rmt_spinlock);
RMT.apb_conf.mem_tx_wrap_en = en;
portEXIT_CRITICAL(&rmt_spinlock);
}
static void rmt_set_data_mode(rmt_data_mode_t data_mode)
{
portENTER_CRITICAL(&rmt_spinlock);
RMT.apb_conf.fifo_mask = data_mode;
portEXIT_CRITICAL(&rmt_spinlock);
}
esp_err_t rmt_set_clk_div(rmt_channel_t channel, uint8_t div_cnt)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT.conf_ch[channel].conf0.div_cnt = div_cnt;
return ESP_OK;
}
esp_err_t rmt_get_clk_div(rmt_channel_t channel, uint8_t* div_cnt)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(div_cnt != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
*div_cnt = RMT.conf_ch[channel].conf0.div_cnt;
return ESP_OK;
}
esp_err_t rmt_set_rx_idle_thresh(rmt_channel_t channel, uint16_t thresh)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT.conf_ch[channel].conf0.idle_thres = thresh;
return ESP_OK;
}
esp_err_t rmt_get_rx_idle_thresh(rmt_channel_t channel, uint16_t *thresh)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(thresh != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
*thresh = RMT.conf_ch[channel].conf0.idle_thres;
return ESP_OK;
}
esp_err_t rmt_set_mem_block_num(rmt_channel_t channel, uint8_t rmt_mem_num)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(rmt_mem_num < 16, RMT_MEM_CNT_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT.conf_ch[channel].conf0.mem_size = rmt_mem_num;
return ESP_OK;
}
esp_err_t rmt_get_mem_block_num(rmt_channel_t channel, uint8_t* rmt_mem_num)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(rmt_mem_num != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
*rmt_mem_num = RMT.conf_ch[channel].conf0.mem_size;
return ESP_OK;
}
esp_err_t rmt_set_tx_carrier(rmt_channel_t channel, bool carrier_en, uint16_t high_level, uint16_t low_level,
rmt_carrier_level_t carrier_level)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(carrier_level < RMT_CARRIER_LEVEL_MAX, RMT_CARRIER_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT.carrier_duty_ch[channel].high = high_level;
RMT.carrier_duty_ch[channel].low = low_level;
RMT.conf_ch[channel].conf0.carrier_out_lv = carrier_level;
RMT.conf_ch[channel].conf0.carrier_en = carrier_en;
return ESP_OK;
}
esp_err_t rmt_set_mem_pd(rmt_channel_t channel, bool pd_en)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT.conf_ch[channel].conf0.mem_pd = pd_en;
return ESP_OK;
}
esp_err_t rmt_get_mem_pd(rmt_channel_t channel, bool* pd_en)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
*pd_en = (bool) RMT.conf_ch[channel].conf0.mem_pd;
return ESP_OK;
}
esp_err_t rmt_tx_start(rmt_channel_t channel, bool tx_idx_rst)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&rmt_spinlock);
if(tx_idx_rst) {
RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
}
RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_TX;
RMT.conf_ch[channel].conf1.tx_start = 1;
portEXIT_CRITICAL(&rmt_spinlock);
return ESP_OK;
}
esp_err_t rmt_tx_stop(rmt_channel_t channel)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&rmt_spinlock);
RMT.conf_ch[channel].conf1.tx_start = 0;
portEXIT_CRITICAL(&rmt_spinlock);
return ESP_OK;
}
esp_err_t rmt_rx_start(rmt_channel_t channel, bool rx_idx_rst)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&rmt_spinlock);
if(rx_idx_rst) {
RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
}
RMT.conf_ch[channel].conf1.rx_en = 0;
RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_RX;
RMT.conf_ch[channel].conf1.rx_en = 1;
portEXIT_CRITICAL(&rmt_spinlock);
return ESP_OK;
}
esp_err_t rmt_rx_stop(rmt_channel_t channel)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&rmt_spinlock);
RMT.conf_ch[channel].conf1.rx_en = 0;
portEXIT_CRITICAL(&rmt_spinlock);
return ESP_OK;
}
esp_err_t rmt_memory_rw_rst(rmt_channel_t channel)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&rmt_spinlock);
RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
portEXIT_CRITICAL(&rmt_spinlock);
return ESP_OK;
}
esp_err_t rmt_set_memory_owner(rmt_channel_t channel, rmt_mem_owner_t owner)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(owner < RMT_MEM_OWNER_MAX, RMT_MEM_OWNER_ERROR_STR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&rmt_spinlock);
RMT.conf_ch[channel].conf1.mem_owner = owner;
portEXIT_CRITICAL(&rmt_spinlock);
return ESP_OK;
}
esp_err_t rmt_get_memory_owner(rmt_channel_t channel, rmt_mem_owner_t* owner)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(owner != NULL, RMT_MEM_OWNER_ERROR_STR, ESP_ERR_INVALID_ARG);
*owner = (rmt_mem_owner_t) RMT.conf_ch[channel].conf1.mem_owner;
return ESP_OK;
}
esp_err_t rmt_set_tx_loop_mode(rmt_channel_t channel, bool loop_en)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&rmt_spinlock);
RMT.conf_ch[channel].conf1.tx_conti_mode = loop_en;
portEXIT_CRITICAL(&rmt_spinlock);
return ESP_OK;
}
esp_err_t rmt_get_tx_loop_mode(rmt_channel_t channel, bool* loop_en)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
*loop_en = (bool) RMT.conf_ch[channel].conf1.tx_conti_mode;
return ESP_OK;
}
esp_err_t rmt_set_rx_filter(rmt_channel_t channel, bool rx_filter_en, uint8_t thresh)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&rmt_spinlock);
RMT.conf_ch[channel].conf1.rx_filter_en = rx_filter_en;
RMT.conf_ch[channel].conf1.rx_filter_thres = thresh;
portEXIT_CRITICAL(&rmt_spinlock);
return ESP_OK;
}
esp_err_t rmt_set_source_clk(rmt_channel_t channel, rmt_source_clk_t base_clk)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(base_clk < RMT_BASECLK_MAX, RMT_BASECLK_ERROR_STR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&rmt_spinlock);
RMT.conf_ch[channel].conf1.ref_always_on = base_clk;
portEXIT_CRITICAL(&rmt_spinlock);
return ESP_OK;
}
esp_err_t rmt_get_source_clk(rmt_channel_t channel, rmt_source_clk_t* src_clk)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
*src_clk = (rmt_source_clk_t) (RMT.conf_ch[channel].conf1.ref_always_on);
return ESP_OK;
}
esp_err_t rmt_set_idle_level(rmt_channel_t channel, bool idle_out_en, rmt_idle_level_t level)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(level < RMT_IDLE_LEVEL_MAX, "RMT IDLE LEVEL ERR", ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&rmt_spinlock);
RMT.conf_ch[channel].conf1.idle_out_en = idle_out_en;
RMT.conf_ch[channel].conf1.idle_out_lv = level;
portEXIT_CRITICAL(&rmt_spinlock);
return ESP_OK;
}
esp_err_t rmt_get_status(rmt_channel_t channel, uint32_t* status)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
*status = RMT.status_ch[channel];
return ESP_OK;
}
rmt_data_mode_t rmt_get_data_mode()
{
return (rmt_data_mode_t) (RMT.apb_conf.fifo_mask);
}
void rmt_set_intr_enable_mask(uint32_t mask)
{
portENTER_CRITICAL(&rmt_spinlock);
RMT.int_ena.val |= mask;
portEXIT_CRITICAL(&rmt_spinlock);
}
void rmt_clr_intr_enable_mask(uint32_t mask)
{
portENTER_CRITICAL(&rmt_spinlock);
RMT.int_ena.val &= (~mask);
portEXIT_CRITICAL(&rmt_spinlock);
}
esp_err_t rmt_set_rx_intr_en(rmt_channel_t channel, bool en)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
if(en) {
rmt_set_intr_enable_mask(BIT(channel * 3 + 1));
} else {
rmt_clr_intr_enable_mask(BIT(channel * 3 + 1));
}
return ESP_OK;
}
esp_err_t rmt_set_err_intr_en(rmt_channel_t channel, bool en)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
if(en) {
rmt_set_intr_enable_mask(BIT(channel * 3 + 2));
} else {
rmt_clr_intr_enable_mask(BIT(channel * 3 + 2));
}
return ESP_OK;
}
esp_err_t rmt_set_tx_intr_en(rmt_channel_t channel, bool en)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
if(en) {
rmt_set_intr_enable_mask(BIT(channel * 3));
} else {
rmt_clr_intr_enable_mask(BIT(channel * 3));
}
return ESP_OK;
}
esp_err_t rmt_set_evt_intr_en(rmt_channel_t channel, bool en, uint16_t evt_thresh)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(evt_thresh < 256, "RMT EVT THRESH ERR", ESP_ERR_INVALID_ARG);
if(en) {
RMT.tx_lim_ch[channel].limit = evt_thresh;
rmt_set_tx_wrap_en(channel, true);
rmt_set_intr_enable_mask(BIT(channel + 24));
} else {
rmt_clr_intr_enable_mask(BIT(channel + 24));
}
return ESP_OK;
}
esp_err_t rmt_set_pin(rmt_channel_t channel, rmt_mode_t mode, gpio_num_t gpio_num)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(mode < RMT_MODE_MAX, RMT_MODE_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(((GPIO_IS_VALID_GPIO(gpio_num) && (mode == RMT_MODE_RX)) || (GPIO_IS_VALID_OUTPUT_GPIO(gpio_num) && (mode == RMT_MODE_TX))),
RMT_GPIO_ERROR_STR, ESP_ERR_INVALID_ARG);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpio_num], 2);
if(mode == RMT_MODE_TX) {
gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
gpio_matrix_out(gpio_num, RMT_SIG_OUT0_IDX + channel, 0, 0);
} else {
gpio_set_direction(gpio_num, GPIO_MODE_INPUT);
gpio_matrix_in(gpio_num, RMT_SIG_IN0_IDX + channel, 0);
}
return ESP_OK;
}
esp_err_t rmt_config(rmt_config_t* rmt_param)
{
uint8_t mode = rmt_param->rmt_mode;
uint8_t channel = rmt_param->channel;
uint8_t gpio_num = rmt_param->gpio_num;
uint8_t mem_cnt = rmt_param->mem_block_num;
int clk_div = rmt_param->clk_div;
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(GPIO_IS_VALID_GPIO(gpio_num), RMT_GPIO_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK((mem_cnt + channel <= 8 && mem_cnt > 0), RMT_MEM_CNT_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK((clk_div > 0), RMT_CLK_DIV_ERROR_STR, ESP_ERR_INVALID_ARG);
periph_module_enable(PERIPH_RMT_MODULE);
RMT.conf_ch[channel].conf0.div_cnt = clk_div;
/*Visit data use memory not FIFO*/
rmt_set_data_mode(RMT_DATA_MODE_MEM);
/*Reset tx/rx memory index */
portENTER_CRITICAL(&rmt_spinlock);
RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
portEXIT_CRITICAL(&rmt_spinlock);
if(mode == RMT_MODE_TX) {
uint32_t rmt_source_clk_hz = 0;
uint32_t carrier_freq_hz = rmt_param->tx_config.carrier_freq_hz;
uint16_t carrier_duty_percent = rmt_param->tx_config.carrier_duty_percent;
uint8_t carrier_level = rmt_param->tx_config.carrier_level;
uint8_t idle_level = rmt_param->tx_config.idle_level;
portENTER_CRITICAL(&rmt_spinlock);
RMT.conf_ch[channel].conf1.tx_conti_mode = rmt_param->tx_config.loop_en;
/*Memory set block number*/
RMT.conf_ch[channel].conf0.mem_size = mem_cnt;
RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_TX;
/*We use APB clock in this version, which is 80Mhz, later we will release system reference clock*/
RMT.conf_ch[channel].conf1.ref_always_on = RMT_BASECLK_APB;
rmt_source_clk_hz = RMT_SOURCE_CLK(RMT_BASECLK_APB);
/*Set idle level */
RMT.conf_ch[channel].conf1.idle_out_en = rmt_param->tx_config.idle_output_en;
RMT.conf_ch[channel].conf1.idle_out_lv = idle_level;
portEXIT_CRITICAL(&rmt_spinlock);
/*Set carrier*/
uint32_t duty_div, duty_h, duty_l;
duty_div = rmt_source_clk_hz / carrier_freq_hz;
duty_h = duty_div * carrier_duty_percent / 100;
duty_l = duty_div - duty_h;
RMT.conf_ch[channel].conf0.carrier_out_lv = carrier_level;
RMT.carrier_duty_ch[channel].high = duty_h;
RMT.carrier_duty_ch[channel].low = duty_l;
RMT.conf_ch[channel].conf0.carrier_en = rmt_param->tx_config.carrier_en;
ESP_LOGD(RMT_TAG, "Rmt Tx Channel %u|Gpio %u|Sclk_Hz %u|Div %u|Carrier_Hz %u|Duty %u",
channel, gpio_num, rmt_source_clk_hz, clk_div, carrier_freq_hz, carrier_duty_percent);
}
else if(RMT_MODE_RX == mode) {
uint8_t filter_cnt = rmt_param->rx_config.filter_ticks_thresh;
uint16_t threshold = rmt_param->rx_config.idle_threshold;
portENTER_CRITICAL(&rmt_spinlock);
/*clock init*/
RMT.conf_ch[channel].conf1.ref_always_on = RMT_BASECLK_APB;
uint32_t rmt_source_clk_hz = RMT_SOURCE_CLK(RMT_BASECLK_APB);
/*memory set block number and owner*/
RMT.conf_ch[channel].conf0.mem_size = mem_cnt;
RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_RX;
/*Set idle threshold*/
RMT.conf_ch[channel].conf0.idle_thres = threshold;
/* Set RX filter */
RMT.conf_ch[channel].conf1.rx_filter_thres = filter_cnt;
RMT.conf_ch[channel].conf1.rx_filter_en = rmt_param->rx_config.filter_en;
portEXIT_CRITICAL(&rmt_spinlock);
ESP_LOGD(RMT_TAG, "Rmt Rx Channel %u|Gpio %u|Sclk_Hz %u|Div %u|Thresold %u|Filter %u",
channel, gpio_num, rmt_source_clk_hz, clk_div, threshold, filter_cnt);
}
rmt_set_pin(channel, mode, gpio_num);
return ESP_OK;
}
static void IRAM_ATTR rmt_fill_memory(rmt_channel_t channel, rmt_item32_t* item, uint16_t item_num, uint16_t mem_offset)
{
portENTER_CRITICAL(&rmt_spinlock);
RMT.apb_conf.fifo_mask = RMT_DATA_MODE_MEM;
portEXIT_CRITICAL(&rmt_spinlock);
int i;
for(i = 0; i < item_num; i++) {
RMTMEM.chan[channel].data32[i + mem_offset].val = item[i].val;
}
}
esp_err_t rmt_fill_tx_items(rmt_channel_t channel, rmt_item32_t* item, uint16_t item_num, uint16_t mem_offset)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, (0));
RMT_CHECK((item != NULL), RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK((item_num > 0), RMT_DRIVER_LENGTH_ERROR_STR, ESP_ERR_INVALID_ARG);
/*Each block has 64 x 32 bits of data*/
uint8_t mem_cnt = RMT.conf_ch[channel].conf0.mem_size;
RMT_CHECK((mem_cnt * RMT_MEM_ITEM_NUM >= item_num), RMT_WR_MEM_OVF_ERROR_STR, ESP_ERR_INVALID_ARG);
rmt_fill_memory(channel, item, item_num, mem_offset);
return ESP_OK;
}
esp_err_t rmt_isr_register(void (*fn)(void*), void * arg, int intr_alloc_flags, rmt_isr_handle_t *handle)
2016-11-09 22:23:40 -05:00
{
esp_err_t ret;
2016-11-09 22:23:40 -05:00
RMT_CHECK((fn != NULL), RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(s_rmt_driver_installed == false, "RMT DRIVER INSTALLED, CAN NOT REG ISR HANDLER", ESP_FAIL);
portENTER_CRITICAL(&rmt_spinlock);
ret=esp_intr_alloc(ETS_RMT_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
2016-11-09 22:23:40 -05:00
portEXIT_CRITICAL(&rmt_spinlock);
return ret;
2016-11-09 22:23:40 -05:00
}
esp_err_t rmt_isr_deregister(rmt_isr_handle_t handle)
{
return esp_intr_free(handle);
}
2016-11-09 22:23:40 -05:00
static int IRAM_ATTR rmt_get_mem_len(rmt_channel_t channel)
{
int block_num = RMT.conf_ch[channel].conf0.mem_size;
int item_block_len = block_num * RMT_MEM_ITEM_NUM;
volatile rmt_item32_t* data = RMTMEM.chan[channel].data32;
int idx;
for(idx = 0; idx < item_block_len; idx++) {
if(data[idx].duration0 == 0) {
return idx;
} else if(data[idx].duration1 == 0) {
return idx + 1;
}
}
return idx;
}
static void IRAM_ATTR rmt_driver_isr_default(void* arg)
{
uint32_t intr_st = RMT.int_st.val;
uint32_t i = 0;
uint8_t channel;
portBASE_TYPE HPTaskAwoken = 0;
for(i = 0; i < 32; i++) {
if(i < 24) {
if(intr_st & (BIT(i))) {
channel = i / 3;
rmt_obj_t* p_rmt = p_rmt_obj[channel];
switch(i % 3) {
//TX END
case 0:
ESP_EARLY_LOGD(RMT_TAG, "RMT INTR : TX END");
2016-11-09 22:23:40 -05:00
xSemaphoreGiveFromISR(p_rmt->tx_sem, &HPTaskAwoken);
if(HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR();
}
p_rmt->tx_data = NULL;
p_rmt->tx_len_rem = 0;
p_rmt->tx_offset = 0;
p_rmt->tx_sub_len = 0;
break;
//RX_END
case 1:
ESP_EARLY_LOGD(RMT_TAG, "RMT INTR : RX END");
RMT.conf_ch[channel].conf1.rx_en = 0;
int item_len = rmt_get_mem_len(channel);
//change memory owner to protect data.
RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_TX;
if(p_rmt->rx_buf) {
BaseType_t res = xRingbufferSendFromISR(p_rmt->rx_buf, (void*) RMTMEM.chan[channel].data32, item_len * 4, &HPTaskAwoken);
if(res == pdFALSE) {
ESP_LOGE(RMT_TAG, "RMT RX BUFFER FULL");
} else {
}
if(HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR();
}
} else {
ESP_EARLY_LOGE(RMT_TAG, "RMT RX BUFFER ERROR\n");
}
RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_RX;
RMT.conf_ch[channel].conf1.rx_en = 1;
break;
//ERR
case 2:
ESP_EARLY_LOGE(RMT_TAG, "RMT[%d] ERR", channel);
ESP_EARLY_LOGE(RMT_TAG, "status: 0x%08x", RMT.status_ch[channel]);
RMT.int_ena.val &= (~(BIT(i)));
break;
default:
break;
}
RMT.int_clr.val = BIT(i);
}
} else {
if(intr_st & (BIT(i))) {
channel = i - 24;
rmt_obj_t* p_rmt = p_rmt_obj[channel];
RMT.int_clr.val = BIT(i);
ESP_EARLY_LOGD(RMT_TAG, "RMT CH[%d]: EVT INTR", channel);
if(p_rmt->tx_data == NULL) {
//skip
} else {
rmt_item32_t* pdata = p_rmt->tx_data;
int len_rem = p_rmt->tx_len_rem;
if(len_rem >= p_rmt->tx_sub_len) {
rmt_fill_memory(channel, pdata, p_rmt->tx_sub_len, p_rmt->tx_offset);
p_rmt->tx_data += p_rmt->tx_sub_len;
p_rmt->tx_len_rem -= p_rmt->tx_sub_len;
} else if(len_rem == 0) {
RMTMEM.chan[channel].data32[p_rmt->tx_offset].val = 0;
} else {
rmt_fill_memory(channel, pdata, len_rem, p_rmt->tx_offset);
RMTMEM.chan[channel].data32[p_rmt->tx_offset + len_rem].val = 0;
p_rmt->tx_data += len_rem;
p_rmt->tx_len_rem -= len_rem;
}
if(p_rmt->tx_offset == 0) {
p_rmt->tx_offset = p_rmt->tx_sub_len;
} else {
p_rmt->tx_offset = 0;
}
}
}
}
}
}
esp_err_t rmt_driver_uninstall(rmt_channel_t channel)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
if(p_rmt_obj[channel] == NULL) {
return ESP_OK;
}
xSemaphoreTake(p_rmt_obj[channel]->tx_sem, portMAX_DELAY);
rmt_set_rx_intr_en(channel, 0);
rmt_set_err_intr_en(channel, 0);
rmt_set_tx_intr_en(channel, 0);
rmt_set_evt_intr_en(channel, 0, 0xffff);
if(p_rmt_obj[channel]->tx_sem) {
vSemaphoreDelete(p_rmt_obj[channel]->tx_sem);
p_rmt_obj[channel]->tx_sem = NULL;
}
if(p_rmt_obj[channel]->rx_buf) {
vRingbufferDelete(p_rmt_obj[channel]->rx_buf);
p_rmt_obj[channel]->rx_buf = NULL;
}
free(p_rmt_obj[channel]);
p_rmt_obj[channel] = NULL;
s_rmt_driver_installed = false;
return rmt_isr_deregister(s_rmt_driver_intr_handle);
2016-11-09 22:23:40 -05:00
}
esp_err_t rmt_driver_install(rmt_channel_t channel, size_t rx_buf_size, int intr_alloc_flags)
2016-11-09 22:23:40 -05:00
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
if(p_rmt_obj[channel] != NULL) {
ESP_LOGD(RMT_TAG, "RMT DRIVER ALREADY INSTALLED");
return ESP_FAIL;
}
p_rmt_obj[channel] = (rmt_obj_t*) malloc(sizeof(rmt_obj_t));
if(p_rmt_obj[channel] == NULL) {
ESP_LOGE(RMT_TAG, "RMT driver malloc error");
return ESP_FAIL;
}
memset(p_rmt_obj[channel], 0, sizeof(rmt_obj_t));
p_rmt_obj[channel]->tx_len_rem = 0;
p_rmt_obj[channel]->tx_data = NULL;
p_rmt_obj[channel]->channel = channel;
p_rmt_obj[channel]->tx_offset = 0;
p_rmt_obj[channel]->tx_sub_len = 0;
if(p_rmt_obj[channel]->tx_sem == NULL) {
p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinary();
xSemaphoreGive(p_rmt_obj[channel]->tx_sem);
}
if(p_rmt_obj[channel]->rx_buf == NULL && rx_buf_size > 0) {
p_rmt_obj[channel]->rx_buf = xRingbufferCreate(rx_buf_size, RINGBUF_TYPE_NOSPLIT);
rmt_set_rx_intr_en(channel, 1);
rmt_set_err_intr_en(channel, 1);
}
if(s_rmt_driver_installed == false) {
rmt_isr_register(rmt_driver_isr_default, NULL, intr_alloc_flags, &s_rmt_driver_intr_handle);
2016-11-09 22:23:40 -05:00
s_rmt_driver_installed = true;
}
rmt_set_tx_intr_en(channel, 1);
return ESP_OK;
}
esp_err_t rmt_write_items(rmt_channel_t channel, rmt_item32_t* rmt_item, int item_num, bool wait_tx_done)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
RMT_CHECK(rmt_item != NULL, RMT_ADDR_ERROR_STR, ESP_FAIL);
RMT_CHECK(item_num > 0, RMT_DRIVER_LENGTH_ERROR_STR, ESP_ERR_INVALID_ARG);
rmt_obj_t* p_rmt = p_rmt_obj[channel];
int block_num = RMT.conf_ch[channel].conf0.mem_size;
int item_block_len = block_num * RMT_MEM_ITEM_NUM;
int item_sub_len = block_num * RMT_MEM_ITEM_NUM / 2;
int len_rem = item_num;
xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
// fill the memory block first
if(item_num >= item_block_len) {
rmt_fill_memory(channel, rmt_item, item_block_len, 0);
RMT.tx_lim_ch[channel].limit = item_sub_len;
RMT.apb_conf.mem_tx_wrap_en = 1;
len_rem -= item_block_len;
RMT.conf_ch[channel].conf1.tx_conti_mode = 0;
rmt_set_evt_intr_en(channel, 1, item_sub_len);
p_rmt->tx_data = rmt_item + item_block_len;
p_rmt->tx_len_rem = len_rem;
p_rmt->tx_offset = 0;
p_rmt->tx_sub_len = item_sub_len;
} else {
rmt_fill_memory(channel, rmt_item, len_rem, 0);
RMTMEM.chan[channel].data32[len_rem].val = 0;
len_rem = 0;
}
rmt_tx_start(channel, true);
if(wait_tx_done) {
xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
xSemaphoreGive(p_rmt->tx_sem);
}
return ESP_OK;
}
esp_err_t rmt_wait_tx_done(rmt_channel_t channel)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
xSemaphoreTake(p_rmt_obj[channel]->tx_sem, portMAX_DELAY);
xSemaphoreGive(p_rmt_obj[channel]->tx_sem);
return ESP_OK;
}
esp_err_t rmt_get_ringbuf_handler(rmt_channel_t channel, RingbufHandle_t* buf_handler)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
RMT_CHECK(buf_handler != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
*buf_handler = p_rmt_obj[channel]->rx_buf;
return ESP_OK;
}