This guide shows how to get started with the ESP32-Ethernet-Kit development board and also provides information about its functionality and configuration options.
The :ref:`ESP32-Ethernet-Kit <get-started-esp32-ethernet-kit-b-v1.0>` is an Ethernet-to-Wi-Fi development board that enables Ethernet devices to be interconnected over Wi-Fi. At the same time, to provide more flexible power supply options, the ESP32-Ethernet-Kit also supports power over Ethernet (PoE).
It consists of two development boards, the Ethernet board A and the PoE board B. The :ref:`Ethernet board (A) <get-started-esp32-ethernet-kit-a-v1.0-layout>` contains Bluetooth / Wi-Fi dual-mode ESP32-WROVER-B module and IP101GRI, a Single Port 10/100 Fast Ethernet Transceiver (PHY). The :ref:`PoE board (B) <get-started-esp32-ethernet-kit-b-v1.0-layout>` provides power over Ethernet functionality. The A board can work independently, without the board B installed.
For the application loading and monitoring the Ethernet board (A) also features FTDI FT2232H chip - an advanced multi-interface USB bridge. This chip enables to use JTAG for direct debugging of ESP32 through the USB interface without a separate JTAG debugger.
FT2232H The FT2232H chip serves as a multi-protocol USB-to-serial bridge which can be programmed and controlled via USB to provide communication with ESP32. FT2232H also features USB-to-JTAG interface which is available on channel A of the chip, while USB-to-serial is on channel B. The FT2232H chip enhances user-friendliness in terms of application development and debugging. See `ESP32-Ethernet-Kit V1.0 Ethernet board (A) schematic`_.
USB Port USB interface. Power supply for the board as well as the communication interface between a computer and the board.
Power Switch Power On/Off Switch. Toggling toward the **Boot** button powers the board on, toggling away from **Boot** powers the board off.
5V Input The 5V power supply interface can be more convenient when the board is operating autonomously (not connected to a computer).
5V Power On LED This red LED turns on when power is supplied to the board, either from USB or 5V Input.
DC/DC Converter Provided DC 5 V to 3.3 V conversion, output current up to 2A.
Board B Connectors A pair male header pins for mounting the :ref:`PoE board (B) <get-started-esp32-ethernet-kit-b-v1.0-layout>`.
IP101GRI (PHY) The physical layer (PHY) connection to the Ethernet cable is implemented using the `IP101GRI <http://www.bdtic.com/DataSheet/ICplus/IP101G_DS_R01_20121224.pdf>`_ chip. The connection between PHY and ESP32 is done through the reduced media-independent interface (RMII), a variant of the media-independent interface `(MII) <https://en.wikipedia.org/wiki/Media-independent_interface>`_ standard. The PHY supports the IEEE 802.3 / 802.3u standard of 10/100Mbps.
RJ45 Port Ethernet network data transmission port.
Magnetics Module The Magnetics are part of the Ethernet specification to protect against faults and transients, including rejection of common mode signals between the transceiver IC and the cable. The magnetics also provide galvanic isolation between the transceiver and the Ethernet device.
Link/Activity LEDs Two LEDs (green and red) that respectively indicate the "Link" and "Activity" statuses of the PHY.
BOOT Button Download button. Holding down **BOOT** and then pressing **CH_PU** initiates Firmware Download mode for downloading firmware through the serial port.
CH_PU Button Reset button.
GPIO Header 1 This header provides six unpopulated through-hole solder pads connected to spare GPIOs of ESP32. For details, see `GPIO Header 1`_.
This board coverts power delivered over the Ethernet cable (PoE) to provide a power supply for the Ethernet board (A). The main components of the PoE board (B) are shown on the block diagram under `Functionality Overview`_.
To take advantage of the PoE functionality the **RJ45 Port** of the Ethernet board (A) should be connected with an Ethernet cable to a switch that supports PoE. When the Ethernet board (A) detects 5 V power output from the PoE board (B), the USB power will be automatically cut off.
The allocation of the ESP32 (MAC) pins to IP101GRI (PHY) is shown in the table below. Implementation of ESP32-Ethernet-Kit defaults to Reduced Media-Independent Interface (RMII).
==== ================ ===============
. ESP32 Pin (MAC) IP101GRI (PHY)
==== ================ ===============
*RMII Interface*
---------------------------------------
1 GPIO21 TX_EN
2 GPIO19 TXD[0]
3 GPIO22 TXD[1]
4 GPIO25 RXD[0]
5 GPIO26 RXD[1]
6 GPIO27 CRS_DV
7 GPIO0 REF_CLK
---- ---------------- ---------------
*Serial Management Interface*
---------------------------------------
8 GPIO23 MDC
9 GPIO18 MDIO
---- ---------------- ---------------
*PHY Reset*
---------------------------------------
10 GPIO5 Reset_N
==== ================ ===============
..note::
Except for REF_CLK, the allocation of all pins under the *RMII Interface* is fixed and cannot be changed either through IOMUX or GPIO Matrix.
This header contains the GPIOs with specific MII functionality (except GPIO2), as opposed to Reduced Media-Independent Interface (RMII) functionality implemented on ESP32-Ethernet-Kit board by default, see `IP101GRI (PHY) Interface`_. Depending on the situation, if MMI is used, specific Ethernet applications might require this functionality.
1. The ESP32 pins GPIO16 and GPIO17 are not broken out to the ESP32-WROVER-B module and therefore not available for use. If you need to use these pins, please solder a module without SPIRAM memory inside, e.g. the ESP32-WROOM-32D or ESP32-SOLO-1.
2. Functionality depends on the settings of the `Function Switch`_.
GPIO Header 3
^^^^^^^^^^^^^
The functionality of GPIOs connected to this header depends on the settings of the `Function Switch`_.
1. GPIO2 is used to enable external oscillator of the PHY.
2. GPIO0 is a source of 50 MHz reference clock for the PHY. The clock signal is first inverted, to account for transmission line delay, and then supplied to the PHY.
3. To prevent affecting the power-on state of GPIO0 by the clock output on the PHY side, the PHY external oscillator is enabled using GPIO2 after ESP32 is powered up.
4. The ESP32 pins GPIO16 and GPIO17 are not broken out to the ESP32-WROVER-B module and therefore not available for use. If you need to use these pins, please solder a module without SPIRAM memory inside, e.g. the ESP32-WROOM-32D or ESP32-SOLO-1.
Start Application Development
-----------------------------
Before powering up your ESP32-Ethernet-Kit, please make sure that the board is in good condition with no obvious signs of damage.
Initial Setup
^^^^^^^^^^^^^
1. Set the **Function Switch** on the :ref:`Ethernet board (A) <get-started-esp32-ethernet-kit-a-v1.0-layout>` to its default position by turning all the switches to **ON**.
2. To simplify flashing and testing the application, do not install any jumpers and do not connect any signals to the board headers.
3. The :ref:`PoE board (B) <get-started-esp32-ethernet-kit-b-v1.0-layout>` can now be plugged in, but do not connect external power to it.
4. Connect the :ref:`Ethernet board (A) <get-started-esp32-ethernet-kit-a-v1.0-layout>` to the PC with a USB cable.
5. Turn the **Power Switch** from GND to 5V0 position, the **5V Power On LED** should light up.
Proceed to :doc:`../../get-started/index`, where Section :ref:`get-started-step-by-step` will quickly help you set up the development environment and then flash an example project onto your board.
After setting up the development environment and testing the board, you can configure and flash the :example:`ethernet/basic` example. This example has been created for testing Ethernet functionality. It supports different PHY, including **IP101GRI** installed on :ref:`ESP32-Ethernet-Kit V1.0 board <get-started-esp32-ethernet-kit-b-v1.0>`.