esp-idf/components/spi_flash/flash_ops.c

504 lines
16 KiB
C
Raw Normal View History

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <stdio.h>
#include <sys/param.h> // For MIN/MAX(a, b)
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <freertos/semphr.h>
#include <rom/spi_flash.h>
#include <rom/cache.h>
#include <soc/soc.h>
#include <soc/dport_reg.h>
#include "sdkconfig.h"
#include "esp_ipc.h"
#include "esp_attr.h"
#include "esp_spi_flash.h"
#include "esp_log.h"
#include "cache_utils.h"
/* bytes erased by SPIEraseBlock() ROM function */
#define BLOCK_ERASE_SIZE 65536
#if CONFIG_SPI_FLASH_ENABLE_COUNTERS
static const char* TAG = "spi_flash";
static spi_flash_counters_t s_flash_stats;
#define COUNTER_START() uint32_t ts_begin = xthal_get_ccount()
#define COUNTER_STOP(counter) \
do{ \
s_flash_stats.counter.count++; \
s_flash_stats.counter.time += (xthal_get_ccount() - ts_begin) / (XT_CLOCK_FREQ / 1000000); \
} while(0)
#define COUNTER_ADD_BYTES(counter, size) \
do { \
s_flash_stats.counter.bytes += size; \
} while (0)
#else
#define COUNTER_START()
#define COUNTER_STOP(counter)
#define COUNTER_ADD_BYTES(counter, size)
#endif //CONFIG_SPI_FLASH_ENABLE_COUNTERS
static esp_err_t spi_flash_translate_rc(SpiFlashOpResult rc);
const DRAM_ATTR spi_flash_guard_funcs_t g_flash_guard_default_ops = {
.start = spi_flash_disable_interrupts_caches_and_other_cpu,
.end = spi_flash_enable_interrupts_caches_and_other_cpu,
.op_lock = spi_flash_op_lock,
.op_unlock = spi_flash_op_unlock
};
const DRAM_ATTR spi_flash_guard_funcs_t g_flash_guard_no_os_ops = {
.start = spi_flash_disable_interrupts_caches_and_other_cpu_no_os,
.end = spi_flash_enable_interrupts_caches_no_os,
.op_lock = 0,
.op_unlock = 0
};
static const spi_flash_guard_funcs_t *s_flash_guard_ops;
void spi_flash_init()
{
spi_flash_init_lock();
#if CONFIG_SPI_FLASH_ENABLE_COUNTERS
spi_flash_reset_counters();
#endif
}
void IRAM_ATTR spi_flash_guard_set(const spi_flash_guard_funcs_t* funcs)
{
s_flash_guard_ops = funcs;
}
size_t IRAM_ATTR spi_flash_get_chip_size()
{
return g_rom_flashchip.chip_size;
}
static SpiFlashOpResult IRAM_ATTR spi_flash_unlock()
{
static bool unlocked = false;
if (!unlocked) {
SpiFlashOpResult rc = SPIUnlock();
if (rc != SPI_FLASH_RESULT_OK) {
return rc;
}
unlocked = true;
}
return SPI_FLASH_RESULT_OK;
}
static inline void IRAM_ATTR spi_flash_guard_start()
{
if (s_flash_guard_ops && s_flash_guard_ops->start) {
s_flash_guard_ops->start();
}
}
static inline void IRAM_ATTR spi_flash_guard_end()
{
if (s_flash_guard_ops && s_flash_guard_ops->end) {
s_flash_guard_ops->end();
}
}
static inline void IRAM_ATTR spi_flash_guard_op_lock()
{
if (s_flash_guard_ops && s_flash_guard_ops->op_lock) {
s_flash_guard_ops->op_lock();
}
}
static inline void IRAM_ATTR spi_flash_guard_op_unlock()
{
if (s_flash_guard_ops && s_flash_guard_ops->op_unlock) {
s_flash_guard_ops->op_unlock();
}
}
esp_err_t IRAM_ATTR spi_flash_erase_sector(size_t sec)
{
return spi_flash_erase_range(sec * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE);
}
esp_err_t IRAM_ATTR spi_flash_erase_range(uint32_t start_addr, uint32_t size)
{
if (start_addr % SPI_FLASH_SEC_SIZE != 0) {
return ESP_ERR_INVALID_ARG;
}
if (size % SPI_FLASH_SEC_SIZE != 0) {
return ESP_ERR_INVALID_SIZE;
}
if (size + start_addr > spi_flash_get_chip_size()) {
return ESP_ERR_INVALID_SIZE;
}
size_t start = start_addr / SPI_FLASH_SEC_SIZE;
size_t end = start + size / SPI_FLASH_SEC_SIZE;
const size_t sectors_per_block = BLOCK_ERASE_SIZE / SPI_FLASH_SEC_SIZE;
COUNTER_START();
spi_flash_guard_start();
SpiFlashOpResult rc;
rc = spi_flash_unlock();
if (rc == SPI_FLASH_RESULT_OK) {
for (size_t sector = start; sector != end && rc == SPI_FLASH_RESULT_OK; ) {
if (sector % sectors_per_block == 0 && end - sector > sectors_per_block) {
rc = SPIEraseBlock(sector / sectors_per_block);
sector += sectors_per_block;
COUNTER_ADD_BYTES(erase, sectors_per_block * SPI_FLASH_SEC_SIZE);
} else {
rc = SPIEraseSector(sector);
++sector;
COUNTER_ADD_BYTES(erase, SPI_FLASH_SEC_SIZE);
}
}
}
spi_flash_guard_end();
COUNTER_STOP(erase);
return spi_flash_translate_rc(rc);
}
esp_err_t IRAM_ATTR spi_flash_write(size_t dst, const void *srcv, size_t size)
{
// Out of bound writes are checked in ROM code, but we can give better
// error code here
if (dst + size > g_rom_flashchip.chip_size) {
return ESP_ERR_INVALID_SIZE;
}
if (size == 0) {
return ESP_OK;
}
SpiFlashOpResult rc = SPI_FLASH_RESULT_OK;
COUNTER_START();
const char *srcc = (const char *) srcv;
/*
* Large operations are split into (up to) 3 parts:
* - Left padding: 4 bytes up to the first 4-byte aligned destination offset.
* - Middle part
* - Right padding: 4 bytes from the last 4-byte aligned offset covered.
*/
size_t left_off = dst & ~3U;
size_t left_size = MIN(((dst + 3) & ~3U) - dst, size);
size_t mid_off = left_size;
size_t mid_size = (size - left_size) & ~3U;
size_t right_off = left_size + mid_size;
size_t right_size = size - mid_size - left_size;
rc = spi_flash_unlock();
if (rc != SPI_FLASH_RESULT_OK) {
goto out;
}
if (left_size > 0) {
uint32_t t = 0xffffffff;
memcpy(((uint8_t *) &t) + (dst - left_off), srcc, left_size);
spi_flash_guard_start();
rc = SPIWrite(left_off, &t, 4);
spi_flash_guard_end();
if (rc != SPI_FLASH_RESULT_OK) {
goto out;
}
COUNTER_ADD_BYTES(write, 4);
}
if (mid_size > 0) {
/* If src buffer is 4-byte aligned as well and is not in a region that
* requires cache access to be enabled, we can write it all at once. */
#ifdef ESP_PLATFORM
bool in_dram = ((uintptr_t) srcc >= 0x3FFAE000 &&
(uintptr_t) srcc < 0x40000000);
#else
bool in_dram = true;
#endif
if (in_dram && (((uintptr_t) srcc) + mid_off) % 4 == 0) {
spi_flash_guard_start();
rc = SPIWrite(dst + mid_off, (const uint32_t *) (srcc + mid_off), mid_size);
spi_flash_guard_end();
if (rc != SPI_FLASH_RESULT_OK) {
goto out;
}
COUNTER_ADD_BYTES(write, mid_size);
} else {
/*
* Otherwise, unlike for read, we cannot manipulate data in the
* user-provided buffer, so we write in 32 byte blocks.
*/
while (mid_size > 0) {
uint32_t t[8];
uint32_t write_size = MIN(mid_size, sizeof(t));
memcpy(t, srcc + mid_off, write_size);
spi_flash_guard_start();
rc = SPIWrite(dst + mid_off, t, write_size);
spi_flash_guard_end();
if (rc != SPI_FLASH_RESULT_OK) {
goto out;
}
COUNTER_ADD_BYTES(write, write_size);
mid_size -= write_size;
mid_off += write_size;
}
}
}
if (right_size > 0) {
uint32_t t = 0xffffffff;
memcpy(&t, srcc + right_off, right_size);
spi_flash_guard_start();
rc = SPIWrite(dst + right_off, &t, 4);
spi_flash_guard_end();
if (rc != SPI_FLASH_RESULT_OK) {
goto out;
}
COUNTER_ADD_BYTES(write, 4);
}
out:
COUNTER_STOP(write);
spi_flash_guard_op_lock();
spi_flash_mark_modified_region(dst, size);
spi_flash_guard_op_unlock();
return spi_flash_translate_rc(rc);
}
esp_err_t IRAM_ATTR spi_flash_write_encrypted(size_t dest_addr, const void *src, size_t size)
{
const uint8_t *ssrc = (const uint8_t *)src;
if ((dest_addr % 16) != 0) {
return ESP_ERR_INVALID_ARG;
}
if ((size % 16) != 0) {
return ESP_ERR_INVALID_SIZE;
}
COUNTER_START();
spi_flash_disable_interrupts_caches_and_other_cpu();
SpiFlashOpResult rc;
rc = spi_flash_unlock();
spi_flash_enable_interrupts_caches_and_other_cpu();
if (rc == SPI_FLASH_RESULT_OK) {
/* SPI_Encrypt_Write encrypts data in RAM as it writes,
so copy to a temporary buffer - 32 bytes at a time.
Each call to SPI_Encrypt_Write takes a 32 byte "row" of
data to encrypt, and each row is two 16 byte AES blocks
that share a key (as derived from flash address).
*/
uint8_t encrypt_buf[32] __attribute__((aligned(4)));
uint32_t row_size;
for (size_t i = 0; i < size; i += row_size) {
uint32_t row_addr = dest_addr + i;
if (i == 0 && (row_addr % 32) != 0) {
/* writing to second block of a 32 byte row */
row_size = 16;
row_addr -= 16;
/* copy to second block in buffer */
memcpy(encrypt_buf + 16, ssrc + i, 16);
/* decrypt the first block from flash, will reencrypt to same bytes */
spi_flash_read_encrypted(row_addr, encrypt_buf, 16);
}
else if (size - i == 16) {
/* 16 bytes left, is first block of a 32 byte row */
row_size = 16;
/* copy to first block in buffer */
memcpy(encrypt_buf, ssrc + i, 16);
/* decrypt the second block from flash, will reencrypt to same bytes */
spi_flash_read_encrypted(row_addr + 16, encrypt_buf + 16, 16);
}
else {
/* Writing a full 32 byte row (2 blocks) */
row_size = 32;
memcpy(encrypt_buf, ssrc + i, 32);
}
spi_flash_disable_interrupts_caches_and_other_cpu();
rc = SPI_Encrypt_Write(row_addr, (uint32_t *)encrypt_buf, 32);
spi_flash_enable_interrupts_caches_and_other_cpu();
if (rc != SPI_FLASH_RESULT_OK) {
break;
}
}
bzero(encrypt_buf, sizeof(encrypt_buf));
}
COUNTER_ADD_BYTES(write, size);
spi_flash_guard_op_lock();
spi_flash_mark_modified_region(dest_addr, size);
spi_flash_guard_op_unlock();
return spi_flash_translate_rc(rc);
}
esp_err_t IRAM_ATTR spi_flash_read(size_t src, void *dstv, size_t size)
{
// Out of bound reads are checked in ROM code, but we can give better
// error code here
if (src + size > g_rom_flashchip.chip_size) {
return ESP_ERR_INVALID_SIZE;
}
if (size == 0) {
return ESP_OK;
}
SpiFlashOpResult rc = SPI_FLASH_RESULT_OK;
COUNTER_START();
spi_flash_guard_start();
/* To simplify boundary checks below, we handle small reads separately. */
if (size < 16) {
uint32_t t[6]; /* Enough for 16 bytes + 4 on either side for padding. */
uint32_t read_src = src & ~3U;
uint32_t left_off = src & 3U;
uint32_t read_size = (left_off + size + 3) & ~3U;
rc = SPIRead(read_src, t, read_size);
if (rc != SPI_FLASH_RESULT_OK) {
goto out;
}
COUNTER_ADD_BYTES(read, read_size);
memcpy(dstv, ((char *) t) + left_off, size);
goto out;
}
char *dstc = (char *) dstv;
intptr_t dsti = (intptr_t) dstc;
/*
* Large operations are split into (up to) 3 parts:
* - The middle part: from the first 4-aligned position in src to the first
* 4-aligned position in dst.
*/
size_t src_mid_off = (src % 4 == 0 ? 0 : 4 - (src % 4));
size_t dst_mid_off = (dsti % 4 == 0 ? 0 : 4 - (dsti % 4));
size_t mid_size = (size - MAX(src_mid_off, dst_mid_off)) & ~3U;
/*
* - Once the middle part is in place, src_mid_off bytes from the preceding
* 4-aligned source location are added on the left.
*/
size_t pad_left_src = src & ~3U;
size_t pad_left_size = src_mid_off;
/*
* - Finally, the right part is added: from the end of the middle part to
* the end. Depending on the alignment of source and destination, this may
* be a 4 or 8 byte read from pad_right_src.
*/
size_t pad_right_src = (src + pad_left_size + mid_size) & ~3U;
size_t pad_right_off = (pad_right_src - src);
size_t pad_right_size = (size - pad_right_off);
if (mid_size > 0) {
rc = SPIRead(src + src_mid_off, (uint32_t *) (dstc + dst_mid_off), mid_size);
if (rc != SPI_FLASH_RESULT_OK) {
goto out;
}
COUNTER_ADD_BYTES(read, mid_size);
/*
* If offsets in src and dst are different, perform an in-place shift
* to put destination data into its final position.
* Note that the shift can be left (src_mid_off < dst_mid_off) or right.
*/
if (src_mid_off != dst_mid_off) {
memmove(dstc + src_mid_off, dstc + dst_mid_off, mid_size);
}
}
if (pad_left_size > 0) {
uint32_t t;
rc = SPIRead(pad_left_src, &t, 4);
if (rc != SPI_FLASH_RESULT_OK) {
goto out;
}
COUNTER_ADD_BYTES(read, 4);
memcpy(dstc, ((uint8_t *) &t) + (4 - pad_left_size), pad_left_size);
}
if (pad_right_size > 0) {
uint32_t t[2];
int32_t read_size = (pad_right_size <= 4 ? 4 : 8);
rc = SPIRead(pad_right_src, t, read_size);
if (rc != SPI_FLASH_RESULT_OK) {
goto out;
}
COUNTER_ADD_BYTES(read, read_size);
memcpy(dstc + pad_right_off, t, pad_right_size);
}
out:
spi_flash_guard_end();
COUNTER_STOP(read);
return spi_flash_translate_rc(rc);
}
esp_err_t IRAM_ATTR spi_flash_read_encrypted(size_t src, void *dstv, size_t size)
{
if (src + size > g_rom_flashchip.chip_size) {
return ESP_ERR_INVALID_SIZE;
}
if (size == 0) {
return ESP_OK;
}
esp_err_t err;
const uint8_t *map;
spi_flash_mmap_handle_t map_handle;
size_t map_src = src & ~(SPI_FLASH_MMU_PAGE_SIZE-1);
size_t map_size = size + (src - map_src);
err = spi_flash_mmap(map_src, map_size, SPI_FLASH_MMAP_DATA, (const void **)&map, &map_handle);
if (err != ESP_OK) {
return err;
}
memcpy(dstv, map + (src - map_src), size);
spi_flash_munmap(map_handle);
return err;
}
static esp_err_t IRAM_ATTR spi_flash_translate_rc(SpiFlashOpResult rc)
{
switch (rc) {
case SPI_FLASH_RESULT_OK:
return ESP_OK;
case SPI_FLASH_RESULT_TIMEOUT:
return ESP_ERR_FLASH_OP_TIMEOUT;
case SPI_FLASH_RESULT_ERR:
default:
return ESP_ERR_FLASH_OP_FAIL;
}
}
#if CONFIG_SPI_FLASH_ENABLE_COUNTERS
static inline void dump_counter(spi_flash_counter_t* counter, const char* name)
{
ESP_LOGI(TAG, "%s count=%8d time=%8dms bytes=%8d\n", name,
counter->count, counter->time, counter->bytes);
}
const spi_flash_counters_t* spi_flash_get_counters()
{
return &s_flash_stats;
}
void spi_flash_reset_counters()
{
memset(&s_flash_stats, 0, sizeof(s_flash_stats));
}
void spi_flash_dump_counters()
{
dump_counter(&s_flash_stats.read, "read ");
dump_counter(&s_flash_stats.write, "write");
dump_counter(&s_flash_stats.erase, "erase");
}
#endif //CONFIG_SPI_FLASH_ENABLE_COUNTERS