esp-idf/components/heap/test_apps/main/test_malloc.c

250 lines
7.3 KiB
C
Raw Normal View History

2022-09-19 05:46:55 -04:00
/*
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
2022-09-19 05:46:55 -04:00
*
* SPDX-License-Identifier: Unlicense OR CC0-1.0
*/
2017-01-27 02:01:51 -05:00
/*
Generic test for malloc/free
2017-01-27 02:01:51 -05:00
*/
#include <esp_types.h>
#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "freertos/queue.h"
#include "unity.h"
#include "esp_heap_caps.h"
#include "esp_system.h"
2017-01-27 02:01:51 -05:00
#include "sdkconfig.h"
static int **allocatedMem;
static int noAllocated;
static int tryAllocMem(void) {
int i, j;
const int allocateMaxK=1024*5; //try to allocate a max of 5MiB
allocatedMem=malloc(sizeof(int *)*allocateMaxK);
if (!allocatedMem) return 0;
for (i=0; i<allocateMaxK; i++) {
allocatedMem[i]=malloc(1024);
if (allocatedMem[i]==NULL) break;
for (j=0; j<1024/4; j++) allocatedMem[i][j]=(0xdeadbeef);
}
noAllocated=i;
return i;
}
static void tryAllocMemFree(void) {
int i, j;
for (i=0; i<noAllocated; i++) {
for (j=0; j<1024/4; j++) {
TEST_ASSERT(allocatedMem[i][j]==(0xdeadbeef));
}
free(allocatedMem[i]);
}
free(allocatedMem);
2017-01-27 02:01:51 -05:00
}
TEST_CASE("Malloc/overwrite, then free all available DRAM", "[heap]")
2017-01-27 02:01:51 -05:00
{
int m1=0, m2=0;
m1=tryAllocMem();
tryAllocMemFree();
m2=tryAllocMem();
tryAllocMemFree();
printf("Could allocate %dK on first try, %dK on 2nd try.\n", m1, m2);
TEST_ASSERT(m1==m2);
2017-01-27 02:01:51 -05:00
}
#if CONFIG_SPIRAM_USE_MALLOC
#if (CONFIG_SPIRAM_MALLOC_RESERVE_INTERNAL > 1024)
TEST_CASE("Check if reserved DMA pool still can allocate even when malloc()'ed memory is exhausted", "[heap]")
{
char** dmaMem=malloc(sizeof(char*)*512);
assert(dmaMem);
int m=tryAllocMem();
int i=0;
for (i=0; i<512; i++) {
dmaMem[i]=heap_caps_malloc(1024, MALLOC_CAP_DMA);
if (dmaMem[i]==NULL) break;
}
for (int j=0; j<i; j++) free(dmaMem[j]);
free(dmaMem);
tryAllocMemFree();
printf("Could allocate %dK of DMA memory after allocating all of %dK of normal memory.\n", i, m);
TEST_ASSERT(i);
}
#endif
2018-06-18 02:24:49 -04:00
#endif
/* As you see, we are desperately trying to outsmart the compiler, so that it
* doesn't warn about oversized allocations in the next two unit tests.
* To be removed when we switch to GCC 8.2 and add
* -Wno-alloc-size-larger-than=PTRDIFF_MAX to CFLAGS for this file.
*/
void* (*g_test_malloc_ptr)(size_t) = &malloc;
void* (*g_test_calloc_ptr)(size_t, size_t) = &calloc;
void* test_malloc_wrapper(size_t size)
{
return (*g_test_malloc_ptr)(size);
}
void* test_calloc_wrapper(size_t count, size_t size)
{
return (*g_test_calloc_ptr)(count, size);
}
2018-06-18 02:24:49 -04:00
TEST_CASE("alloc overflows should all fail", "[heap]")
{
/* allocates 8 bytes if size_t overflows */
TEST_ASSERT_NULL(test_calloc_wrapper(SIZE_MAX / 2 + 4, 2));
2018-06-18 02:24:49 -04:00
/* will overflow if any poisoning is enabled
(should fail for sensible OOM reasons, otherwise) */
TEST_ASSERT_NULL(test_malloc_wrapper(SIZE_MAX - 1));
TEST_ASSERT_NULL(test_calloc_wrapper(SIZE_MAX - 1, 1));
/* will overflow when the size is rounded up to word align it */
TEST_ASSERT_NULL(heap_caps_malloc(SIZE_MAX-1, MALLOC_CAP_32BIT));
TEST_ASSERT_NULL(heap_caps_malloc(SIZE_MAX-1, MALLOC_CAP_EXEC));
2018-06-18 02:24:49 -04:00
}
TEST_CASE("unreasonable allocs should all fail", "[heap]")
{
TEST_ASSERT_NULL(test_calloc_wrapper(16, 1024*1024));
TEST_ASSERT_NULL(test_malloc_wrapper(16*1024*1024));
TEST_ASSERT_NULL(test_malloc_wrapper(SIZE_MAX / 2));
TEST_ASSERT_NULL(test_malloc_wrapper(SIZE_MAX - 256));
TEST_ASSERT_NULL(test_malloc_wrapper(esp_get_free_heap_size() - 1));
2018-06-18 02:24:49 -04:00
}
TEST_CASE("malloc(0) should return a NULL pointer", "[heap]")
{
void *p;
p = malloc(0);
TEST_ASSERT(p == NULL);
}
static bool failure_occured = false;
static void test_alloc_failure_callback(size_t size, uint32_t caps, const char * function_name)
{
failure_occured = true;
}
TEST_CASE("malloc/calloc(0) should not call failure callback", "[heap]")
{
void* ptr = NULL;
esp_err_t ret = heap_caps_register_failed_alloc_callback(test_alloc_failure_callback);
TEST_ASSERT(ret == ESP_OK);
ptr = malloc(0);
TEST_ASSERT_NULL(ptr);
/* Check that our callback was NOT called */
TEST_ASSERT_FALSE(failure_occured);
/* Do the same thing for calloc */
ptr = calloc(0, 0);
TEST_ASSERT_NULL(ptr);
TEST_ASSERT_FALSE(failure_occured);
}
TEST_CASE("test get allocated size", "[heap]")
{
// random values to test, some are 4 bytes aligned, some are not
const size_t alloc_sizes[] = { 1035, 1064, 1541 };
const size_t iterations = sizeof(alloc_sizes) / sizeof(size_t);
void *ptr_array[iterations];
for (size_t i = 0; i < iterations; i++) {
ptr_array[i] = heap_caps_malloc(alloc_sizes[i], MALLOC_CAP_DEFAULT);
TEST_ASSERT_NOT_NULL(ptr_array[i]);
// test that the heap_caps_get_allocated_size() returns the right number of bytes (aligned to 4 bytes
// since the heap component aligns to 4 bytes)
const size_t aligned_size = (alloc_sizes[i] + 3) & ~3;
const size_t real_size = heap_caps_get_allocated_size(ptr_array[i]);
printf("initial size: %d, requested size : %d, allocated size: %d\n", alloc_sizes[i], aligned_size, real_size);
TEST_ASSERT_EQUAL(aligned_size, real_size);
heap_caps_free(ptr_array[i]);
}
}
// provide the definition of alloc and free hooks
static const size_t alloc_size = 1234; // make this size atypical to be able to rely on it in the hook
static const size_t expected_calls = 2; // one call for malloc/calloc and one call for realloc
static uint32_t *alloc_ptr = NULL;
static bool test_success = false;
static size_t counter = 0;
static void reset_static_variables(void) {
test_success = false;
alloc_ptr = NULL;
counter = 0;
}
void esp_heap_trace_alloc_hook(void* ptr, size_t size, uint32_t caps)
{
if (size == alloc_size) {
counter++;
if (counter == expected_calls) {
alloc_ptr = ptr;
}
}
}
void esp_heap_trace_free_hook(void* ptr)
{
if (alloc_ptr == ptr && counter == expected_calls) {
test_success = true;
}
}
TEST_CASE("test allocation and free function hooks", "[heap]")
{
// alloc, realloc and free memory, at the end of the test, test_success will be set
// to true if both function hooks are called.
uint32_t *ptr = heap_caps_malloc(alloc_size, MALLOC_CAP_DEFAULT);
TEST_ASSERT_NOT_NULL(ptr);
ptr = heap_caps_realloc(ptr, alloc_size, MALLOC_CAP_32BIT);
heap_caps_free(ptr);
TEST_ASSERT_TRUE(test_success);
// re-init the static variables
reset_static_variables();
// calloc, realloc and free memory, at the end of the test, test_success will be set
// to true if both function hooks are called.
ptr = heap_caps_calloc(1, alloc_size, MALLOC_CAP_DEFAULT);
TEST_ASSERT_NOT_NULL(ptr);
ptr = heap_caps_realloc(ptr, alloc_size, MALLOC_CAP_32BIT);
heap_caps_free(ptr);
TEST_ASSERT_TRUE(test_success);
// re-init the static variables
reset_static_variables();
// aligned alloc, realloc and aligned free memory, at the end of the test, test_success
// will be set to true if both function hooks are called.
ptr = heap_caps_aligned_alloc(0x200, alloc_size, MALLOC_CAP_DEFAULT);
TEST_ASSERT_NOT_NULL(ptr);
ptr = heap_caps_realloc(ptr, alloc_size, MALLOC_CAP_32BIT);
heap_caps_free(ptr);
TEST_ASSERT_TRUE(test_success);
}