esp-idf/components/esp_common/src/esp_timer.c

508 lines
13 KiB
C
Raw Normal View History

// Copyright 2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sys/param.h>
#include <string.h>
global: move the soc component out of the common list This MR removes the common dependency from every IDF components to the SOC component. Currently, in the ``idf_functions.cmake`` script, we include the header path of SOC component by default for all components. But for better code organization (or maybe also benifits to the compiling speed), we may remove the dependency to SOC components for most components except the driver and kernel related components. In CMAKE, we have two kinds of header visibilities (set by include path visibility): (Assume component A --(depends on)--> B, B is the current component) 1. public (``COMPONENT_ADD_INCLUDEDIRS``): means this path is visible to other depending components (A) (visible to A and B) 2. private (``COMPONENT_PRIV_INCLUDEDIRS``): means this path is only visible to source files inside the component (visible to B only) and we have two kinds of depending ways: (Assume component A --(depends on)--> B --(depends on)--> C, B is the current component) 1. public (```COMPONENT_REQUIRES```): means B can access to public include path of C. All other components rely on you (A) will also be available for the public headers. (visible to A, B) 2. private (``COMPONENT_PRIV_REQUIRES``): means B can access to public include path of C, but don't propagate this relation to other components (A). (visible to B) 1. remove the common requirement in ``idf_functions.cmake``, this makes the SOC components invisible to all other components by default. 2. if a component (for example, DRIVER) really needs the dependency to SOC, add a private dependency to SOC for it. 3. some other components that don't really depends on the SOC may still meet some errors saying "can't find header soc/...", this is because it's depended component (DRIVER) incorrectly include the header of SOC in its public headers. Moving all this kind of #include into source files, or private headers 4. Fix the include requirements for some file which miss sufficient #include directives. (Previously they include some headers by the long long long header include link) This is a breaking change. Previous code may depends on the long include chain. You may need to include the following headers for some files after this commit: - soc/soc.h - soc/soc_memory_layout.h - driver/gpio.h - esp_sleep.h The major broken include chain includes: 1. esp_system.h no longer includes esp_sleep.h. The latter includes driver/gpio.h and driver/touch_pad.h. 2. ets_sys.h no longer includes soc/soc.h 3. freertos/portmacro.h no longer includes soc/soc_memory_layout.h some peripheral headers no longer includes their hw related headers, e.g. rom/gpio.h no longer includes soc/gpio_pins.h and soc/gpio_reg.h BREAKING CHANGE
2019-04-03 01:17:38 -04:00
#include "soc/soc.h"
#include "esp_types.h"
#include "esp_attr.h"
#include "esp_err.h"
#include "esp_timer.h"
#include "esp_task.h"
#include "esp_log.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "freertos/xtensa_api.h"
#include "sdkconfig.h"
#include "esp_private/esp_timer_impl.h"
#ifdef CONFIG_ESP_TIMER_PROFILING
#define WITH_PROFILING 1
#endif
#ifndef NDEBUG
// Enable built-in checks in queue.h in debug builds
#define INVARIANTS
#endif
#include "sys/queue.h"
#define EVENT_ID_DELETE_TIMER 0xF0DE1E1E
#define TIMER_EVENT_QUEUE_SIZE 16
struct esp_timer {
uint64_t alarm;
uint64_t period;
union {
esp_timer_cb_t callback;
uint32_t event_id;
};
void* arg;
#if WITH_PROFILING
const char* name;
size_t times_triggered;
size_t times_armed;
uint64_t total_callback_run_time;
#endif // WITH_PROFILING
LIST_ENTRY(esp_timer) list_entry;
};
static bool is_initialized(void);
static esp_err_t timer_insert(esp_timer_handle_t timer);
static esp_err_t timer_remove(esp_timer_handle_t timer);
static bool timer_armed(esp_timer_handle_t timer);
static void timer_list_lock(void);
static void timer_list_unlock(void);
#if WITH_PROFILING
static void timer_insert_inactive(esp_timer_handle_t timer);
static void timer_remove_inactive(esp_timer_handle_t timer);
#endif // WITH_PROFILING
static const char* TAG = "esp_timer";
// list of currently armed timers
static LIST_HEAD(esp_timer_list, esp_timer) s_timers =
LIST_HEAD_INITIALIZER(s_timers);
#if WITH_PROFILING
// list of unarmed timers, used only to be able to dump statistics about
// all the timers
static LIST_HEAD(esp_inactive_timer_list, esp_timer) s_inactive_timers =
LIST_HEAD_INITIALIZER(s_timers);
#endif
// task used to dispatch timer callbacks
static TaskHandle_t s_timer_task;
// counting semaphore used to notify the timer task from ISR
static SemaphoreHandle_t s_timer_semaphore;
#if CONFIG_SPIRAM_USE_MALLOC
// memory for s_timer_semaphore
static StaticQueue_t s_timer_semaphore_memory;
#endif
// lock protecting s_timers, s_inactive_timers
static portMUX_TYPE s_timer_lock = portMUX_INITIALIZER_UNLOCKED;
esp_err_t esp_timer_create(const esp_timer_create_args_t* args,
esp_timer_handle_t* out_handle)
{
if (!is_initialized()) {
return ESP_ERR_INVALID_STATE;
}
if (args == NULL || args->callback == NULL || out_handle == NULL) {
return ESP_ERR_INVALID_ARG;
}
esp_timer_handle_t result = (esp_timer_handle_t) calloc(1, sizeof(*result));
if (result == NULL) {
return ESP_ERR_NO_MEM;
}
result->callback = args->callback;
result->arg = args->arg;
#if WITH_PROFILING
result->name = args->name;
timer_insert_inactive(result);
#endif
*out_handle = result;
return ESP_OK;
}
esp_err_t IRAM_ATTR esp_timer_start_once(esp_timer_handle_t timer, uint64_t timeout_us)
{
if (timer == NULL) {
return ESP_ERR_INVALID_ARG;
}
if (!is_initialized() || timer_armed(timer)) {
return ESP_ERR_INVALID_STATE;
}
timer_list_lock();
timer->alarm = esp_timer_get_time() + timeout_us;
timer->period = 0;
#if WITH_PROFILING
timer->times_armed++;
#endif
esp_err_t err = timer_insert(timer);
timer_list_unlock();
return err;
}
esp_err_t IRAM_ATTR esp_timer_start_periodic(esp_timer_handle_t timer, uint64_t period_us)
{
if (timer == NULL) {
return ESP_ERR_INVALID_ARG;
}
if (!is_initialized() || timer_armed(timer)) {
return ESP_ERR_INVALID_STATE;
}
timer_list_lock();
period_us = MAX(period_us, esp_timer_impl_get_min_period_us());
timer->alarm = esp_timer_get_time() + period_us;
timer->period = period_us;
#if WITH_PROFILING
timer->times_armed++;
#endif
esp_err_t err = timer_insert(timer);
timer_list_unlock();
return err;
}
esp_err_t IRAM_ATTR esp_timer_stop(esp_timer_handle_t timer)
{
if (timer == NULL) {
return ESP_ERR_INVALID_ARG;
}
if (!is_initialized() || !timer_armed(timer)) {
return ESP_ERR_INVALID_STATE;
}
return timer_remove(timer);
}
esp_err_t esp_timer_delete(esp_timer_handle_t timer)
{
if (timer == NULL) {
return ESP_ERR_INVALID_ARG;
}
if (timer_armed(timer)) {
return ESP_ERR_INVALID_STATE;
}
timer_list_lock();
timer->event_id = EVENT_ID_DELETE_TIMER;
timer->alarm = esp_timer_get_time();
timer->period = 0;
timer_insert(timer);
timer_list_unlock();
return ESP_OK;
}
static IRAM_ATTR esp_err_t timer_insert(esp_timer_handle_t timer)
{
#if WITH_PROFILING
timer_remove_inactive(timer);
#endif
esp_timer_handle_t it, last = NULL;
if (LIST_FIRST(&s_timers) == NULL) {
LIST_INSERT_HEAD(&s_timers, timer, list_entry);
} else {
LIST_FOREACH(it, &s_timers, list_entry) {
if (timer->alarm < it->alarm) {
LIST_INSERT_BEFORE(it, timer, list_entry);
break;
}
last = it;
}
if (it == NULL) {
assert(last);
LIST_INSERT_AFTER(last, timer, list_entry);
}
}
if (timer == LIST_FIRST(&s_timers)) {
esp_timer_impl_set_alarm(timer->alarm);
}
return ESP_OK;
}
static IRAM_ATTR esp_err_t timer_remove(esp_timer_handle_t timer)
{
timer_list_lock();
LIST_REMOVE(timer, list_entry);
timer->alarm = 0;
timer->period = 0;
#if WITH_PROFILING
timer_insert_inactive(timer);
#endif
timer_list_unlock();
return ESP_OK;
}
#if WITH_PROFILING
static IRAM_ATTR void timer_insert_inactive(esp_timer_handle_t timer)
{
/* May be locked or not, depending on where this is called from.
* Lock recursively.
*/
timer_list_lock();
esp_timer_handle_t head = LIST_FIRST(&s_inactive_timers);
if (head == NULL) {
LIST_INSERT_HEAD(&s_inactive_timers, timer, list_entry);
} else {
/* Insert as head element as this is the fastest thing to do.
* Removal is O(1) anyway.
*/
LIST_INSERT_BEFORE(head, timer, list_entry);
}
timer_list_unlock();
}
static IRAM_ATTR void timer_remove_inactive(esp_timer_handle_t timer)
{
timer_list_lock();
LIST_REMOVE(timer, list_entry);
timer_list_unlock();
}
#endif // WITH_PROFILING
static IRAM_ATTR bool timer_armed(esp_timer_handle_t timer)
{
return timer->alarm > 0;
}
static IRAM_ATTR void timer_list_lock(void)
{
portENTER_CRITICAL(&s_timer_lock);
}
static IRAM_ATTR void timer_list_unlock(void)
{
portEXIT_CRITICAL(&s_timer_lock);
}
static void timer_process_alarm(esp_timer_dispatch_t dispatch_method)
{
/* unused, provision to allow running callbacks from ISR */
(void) dispatch_method;
timer_list_lock();
uint64_t now = esp_timer_impl_get_time();
esp_timer_handle_t it = LIST_FIRST(&s_timers);
while (it != NULL &&
it->alarm < now) {
LIST_REMOVE(it, list_entry);
if (it->event_id == EVENT_ID_DELETE_TIMER) {
free(it);
it = LIST_FIRST(&s_timers);
continue;
}
if (it->period > 0) {
it->alarm += it->period;
timer_insert(it);
} else {
it->alarm = 0;
#if WITH_PROFILING
timer_insert_inactive(it);
#endif
}
#if WITH_PROFILING
uint64_t callback_start = now;
#endif
timer_list_unlock();
(*it->callback)(it->arg);
timer_list_lock();
now = esp_timer_impl_get_time();
#if WITH_PROFILING
it->times_triggered++;
it->total_callback_run_time += now - callback_start;
#endif
it = LIST_FIRST(&s_timers);
}
esp_timer_handle_t first = LIST_FIRST(&s_timers);
if (first) {
esp_timer_impl_set_alarm(first->alarm);
}
timer_list_unlock();
}
static void timer_task(void* arg)
{
while (true){
int res = xSemaphoreTake(s_timer_semaphore, portMAX_DELAY);
assert(res == pdTRUE);
timer_process_alarm(ESP_TIMER_TASK);
}
}
static void IRAM_ATTR timer_alarm_handler(void* arg)
{
int need_yield;
if (xSemaphoreGiveFromISR(s_timer_semaphore, &need_yield) != pdPASS) {
ESP_EARLY_LOGD(TAG, "timer queue overflow");
return;
}
if (need_yield == pdTRUE) {
portYIELD_FROM_ISR();
}
}
static IRAM_ATTR bool is_initialized(void)
{
return s_timer_task != NULL;
}
esp_err_t esp_timer_init(void)
{
esp_err_t err;
if (is_initialized()) {
return ESP_ERR_INVALID_STATE;
}
#if CONFIG_SPIRAM_USE_MALLOC
memset(&s_timer_semaphore_memory, 0, sizeof(StaticQueue_t));
s_timer_semaphore = xSemaphoreCreateCountingStatic(TIMER_EVENT_QUEUE_SIZE, 0, &s_timer_semaphore_memory);
#else
s_timer_semaphore = xSemaphoreCreateCounting(TIMER_EVENT_QUEUE_SIZE, 0);
#endif
if (!s_timer_semaphore) {
err = ESP_ERR_NO_MEM;
goto out;
}
int ret = xTaskCreatePinnedToCore(&timer_task, "esp_timer",
ESP_TASK_TIMER_STACK, NULL, ESP_TASK_TIMER_PRIO, &s_timer_task, PRO_CPU_NUM);
if (ret != pdPASS) {
err = ESP_ERR_NO_MEM;
goto out;
}
err = esp_timer_impl_init(&timer_alarm_handler);
if (err != ESP_OK) {
goto out;
}
return ESP_OK;
out:
if (s_timer_task) {
vTaskDelete(s_timer_task);
s_timer_task = NULL;
}
if (s_timer_semaphore) {
vSemaphoreDelete(s_timer_semaphore);
s_timer_semaphore = NULL;
}
return ESP_ERR_NO_MEM;
}
esp_err_t esp_timer_deinit(void)
{
if (!is_initialized()) {
return ESP_ERR_INVALID_STATE;
}
/* Check if there are any active timers */
if (!LIST_EMPTY(&s_timers)) {
return ESP_ERR_INVALID_STATE;
}
/* We can only check if there are any timers which are not deleted if
* profiling is enabled.
*/
#if WITH_PROFILING
if (!LIST_EMPTY(&s_inactive_timers)) {
return ESP_ERR_INVALID_STATE;
}
#endif
esp_timer_impl_deinit();
vTaskDelete(s_timer_task);
s_timer_task = NULL;
vSemaphoreDelete(s_timer_semaphore);
s_timer_semaphore = NULL;
return ESP_OK;
}
static void print_timer_info(esp_timer_handle_t t, char** dst, size_t* dst_size)
{
size_t cb = snprintf(*dst, *dst_size,
#if WITH_PROFILING
"%-12s %12lld %12lld %9d %9d %12lld\n",
t->name, t->period, t->alarm,
t->times_armed, t->times_triggered, t->total_callback_run_time);
/* keep this in sync with the format string, used in esp_timer_dump */
#define TIMER_INFO_LINE_LEN 78
#else
"timer@%p %12lld %12lld\n", t, t->period, t->alarm);
#define TIMER_INFO_LINE_LEN 46
#endif
*dst += cb;
*dst_size -= cb;
}
esp_err_t esp_timer_dump(FILE* stream)
{
/* Since timer lock is a critical section, we don't want to print directly
* to stdout, since that may cause a deadlock if stdout is interrupt-driven
* (via the UART driver). Allocate sufficiently large chunk of memory first,
* print to it, then dump this memory to stdout.
*/
esp_timer_handle_t it;
/* First count the number of timers */
size_t timer_count = 0;
timer_list_lock();
LIST_FOREACH(it, &s_timers, list_entry) {
++timer_count;
}
#if WITH_PROFILING
LIST_FOREACH(it, &s_inactive_timers, list_entry) {
++timer_count;
}
#endif
timer_list_unlock();
/* Allocate the memory for this number of timers. Since we have unlocked,
* we may find that there are more timers. There's no bulletproof solution
* for this (can't allocate from a critical section), but we allocate
* slightly more and the output will be truncated if that is not enough.
*/
size_t buf_size = TIMER_INFO_LINE_LEN * (timer_count + 3);
char* print_buf = calloc(1, buf_size + 1);
if (print_buf == NULL) {
return ESP_ERR_NO_MEM;
}
/* Print to the buffer */
timer_list_lock();
char* pos = print_buf;
LIST_FOREACH(it, &s_timers, list_entry) {
print_timer_info(it, &pos, &buf_size);
}
#if WITH_PROFILING
LIST_FOREACH(it, &s_inactive_timers, list_entry) {
print_timer_info(it, &pos, &buf_size);
}
#endif
timer_list_unlock();
/* Print the buffer */
fputs(print_buf, stream);
free(print_buf);
return ESP_OK;
}
int64_t IRAM_ATTR esp_timer_get_next_alarm(void)
{
int64_t next_alarm = INT64_MAX;
timer_list_lock();
esp_timer_handle_t it = LIST_FIRST(&s_timers);
if (it) {
next_alarm = it->alarm;
}
timer_list_unlock();
return next_alarm;
}
int64_t IRAM_ATTR esp_timer_get_time(void)
{
return (int64_t) esp_timer_impl_get_time();
}