esp-idf/components/esp_common/Kconfig

335 lines
14 KiB
Plaintext
Raw Normal View History

menu "Common ESP-related"
config ESP_ERR_TO_NAME_LOOKUP
bool "Enable lookup of error code strings"
default "y"
help
Functions esp_err_to_name() and esp_err_to_name_r() return string representations of error codes from a
pre-generated lookup table. This option can be used to turn off the use of the look-up table in order to
save memory but this comes at the price of sacrificing distinguishable (meaningful) output string
representations.
config ESP_SYSTEM_EVENT_QUEUE_SIZE
int "System event queue size"
default 32
help
Config system event queue size in different application.
config ESP_SYSTEM_EVENT_TASK_STACK_SIZE
int "Event loop task stack size"
default 2304
help
Config system event task stack size in different application.
config ESP_MAIN_TASK_STACK_SIZE
int "Main task stack size"
default 3584
help
Configure the "main task" stack size. This is the stack of the task
which calls app_main(). If app_main() returns then this task is deleted
and its stack memory is freed.
config ESP_IPC_TASK_STACK_SIZE
int "Inter-Processor Call (IPC) task stack size"
2019-09-13 08:49:11 -04:00
range 512 65536 if !APPTRACE_ENABLE
range 2048 65536 if APPTRACE_ENABLE
default 2048 if APPTRACE_ENABLE
2019-10-04 06:14:05 -04:00
default 1024
help
Configure the IPC tasks stack size. One IPC task runs on each core
(in dual core mode), and allows for cross-core function calls.
See IPC documentation for more details.
The default stack size should be enough for most common use cases.
It can be shrunk if you are sure that you do not use any custom
IPC functionality.
config ESP_IPC_USES_CALLERS_PRIORITY
bool "IPC runs at caller's priority"
default y
depends on !FREERTOS_UNICORE
help
If this option is not enabled then the IPC task will keep behavior
same as prior to that of ESP-IDF v4.0, and hence IPC task will run
at (configMAX_PRIORITIES - 1) priority.
config ESP_MINIMAL_SHARED_STACK_SIZE
int "Minimal allowed size for shared stack"
default 2048
help
Minimal value of size, in bytes, accepted to execute a expression
with shared stack.
choice ESP_CONSOLE_UART
prompt "Channel for console output"
default ESP_CONSOLE_UART_DEFAULT
help
Select where to send console output (through stdout and stderr).
- Default is to use UART0 on pre-defined GPIOs.
- If "Custom" is selected, UART0 or UART1 can be chosen,
and any pins can be selected.
- If "None" is selected, there will be no console output on any UART, except
for initial output from ROM bootloader. This ROM output can be suppressed by
GPIO strapping or EFUSE, refer to chip datasheet for details.
- On chips with USB OTG peripheral, "USB CDC" option redirects output to the
CDC port. This option uses the CDC driver in the chip ROM.
This option is incompatible with TinyUSB stack.
- On chips with an USB serial/JTAG debug controller, selecting the option
for that redirects output to the CDC/ACM (serial port emulation) component
of that device.
config ESP_CONSOLE_UART_DEFAULT
bool "Default: UART0"
config ESP_CONSOLE_USB_CDC
bool "USB CDC"
# The naming is confusing: USB_ENABLED means that TinyUSB driver is enabled, not USB in general.
# && !USB_ENABLED is because the ROM CDC driver is currently incompatible with TinyUSB.
depends on IDF_TARGET_ESP32S2 && !USB_ENABLED
config ESP_CONSOLE_USB_SERIAL_JTAG
bool "USB Serial/JTAG Controller"
depends on IDF_TARGET_ESP32C3
config ESP_CONSOLE_UART_CUSTOM
bool "Custom UART"
config ESP_CONSOLE_NONE
bool "None"
endchoice
choice ESP_CONSOLE_SECONDARY
depends on IDF_TARGET_ESP32C3
prompt "Channel for console secondary output"
default ESP_CONSOLE_SECONDARY_USB_SERIAL_JTAG
help
This secondary option supports output through other specific port like USB_SERIAL_JTAG
when UART0 port as a primary is selected but not connected. This secondary output currently only supports
non-blocking mode without using REPL. If you want to output in blocking mode with REPL or
input through this secondary port, please change the primary config to this port
in `Channel for console output` menu.
config ESP_CONSOLE_SECONDARY_NONE
bool "No secondary console"
config ESP_CONSOLE_SECONDARY_USB_SERIAL_JTAG
bool "USB_SERIAL_JTAG PORT"
depends on !ESP_CONSOLE_USB_SERIAL_JTAG
help
This option supports output through USB_SERIAL_JTAG port when the UART0 port is not connected.
The output currently only supports non-blocking mode without using the console.
If you want to output in blocking mode with REPL or input through USB_SERIAL_JTAG port,
please change the primary config to ESP_CONSOLE_USB_SERIAL_JTAG above.
endchoice
config ESP_CONSOLE_UART
# Internal option, indicates that console UART is used (and not USB, for example)
bool
default y if ESP_CONSOLE_UART_DEFAULT || ESP_CONSOLE_UART_CUSTOM
config ESP_CONSOLE_MULTIPLE_UART
bool
default y if !IDF_TARGET_ESP32C3
choice ESP_CONSOLE_UART_NUM
prompt "UART peripheral to use for console output (0-1)"
depends on ESP_CONSOLE_UART_CUSTOM && ESP_CONSOLE_MULTIPLE_UART
default ESP_CONSOLE_UART_CUSTOM_NUM_0
help
This UART peripheral is used for console output from the ESP-IDF Bootloader and the app.
If the configuration is different in the Bootloader binary compared to the app binary, UART
is reconfigured after the bootloader exits and the app starts.
Due to an ESP32 ROM bug, UART2 is not supported for console output
via esp_rom_printf.
config ESP_CONSOLE_UART_CUSTOM_NUM_0
bool "UART0"
config ESP_CONSOLE_UART_CUSTOM_NUM_1
bool "UART1"
endchoice
config ESP_CONSOLE_UART_NUM
int
default 0 if ESP_CONSOLE_UART_DEFAULT
default 0 if !ESP_CONSOLE_MULTIPLE_UART
default 0 if ESP_CONSOLE_UART_CUSTOM_NUM_0
default 1 if ESP_CONSOLE_UART_CUSTOM_NUM_1
default -1 if !ESP_CONSOLE_UART
config ESP_CONSOLE_UART_TX_GPIO
int "UART TX on GPIO#"
depends on ESP_CONSOLE_UART_CUSTOM
range 0 46
default 1 if IDF_TARGET_ESP32
default 21 if IDF_TARGET_ESP32C3
default 43
help
This GPIO is used for console UART TX output in the ESP-IDF Bootloader and the app (including
boot log output and default standard output and standard error of the app).
If the configuration is different in the Bootloader binary compared to the app binary, UART
is reconfigured after the bootloader exits and the app starts.
config ESP_CONSOLE_UART_RX_GPIO
int "UART RX on GPIO#"
depends on ESP_CONSOLE_UART_CUSTOM
range 0 46
default 3 if IDF_TARGET_ESP32
default 20 if IDF_TARGET_ESP32C3
default 44
help
This GPIO is used for UART RX input in the ESP-IDF Bootloader and the app (including
default default standard input of the app).
Note: The default ESP-IDF Bootloader configures this pin but doesn't read anything from the UART.
If the configuration is different in the Bootloader binary compared to the app binary, UART
is reconfigured after the bootloader exits and the app starts.
config ESP_CONSOLE_UART_BAUDRATE
int
prompt "UART console baud rate" if ESP_CONSOLE_UART_CUSTOM
depends on ESP_CONSOLE_UART
default 115200
range 1200 4000000 if !PM_ENABLE
range 1200 1000000 if PM_ENABLE
help
This baud rate is used by both the ESP-IDF Bootloader and the app (including
boot log output and default standard input/output/error of the app).
The app's maximum baud rate depends on the UART clock source. If Power Management is disabled,
the UART clock source is the APB clock and all baud rates in the available range will be sufficiently
accurate. If Power Management is enabled, REF_TICK clock source is used so the baud rate is divided
from 1MHz. Baud rates above 1Mbps are not possible and values between 500Kbps and 1Mbps may not be
accurate.
If the configuration is different in the Bootloader binary compared to the app binary, UART
is reconfigured after the bootloader exits and the app starts.
config ESP_CONSOLE_USB_CDC_RX_BUF_SIZE
int "Size of USB CDC RX buffer"
depends on ESP_CONSOLE_USB_CDC
default 64
range 4 16384
help
Set the size of USB CDC RX buffer. Increase the buffer size if your application
is often receiving data over USB CDC.
config ESP_CONSOLE_USB_CDC_SUPPORT_ETS_PRINTF
bool "Enable esp_rom_printf / ESP_EARLY_LOG via USB CDC"
depends on ESP_CONSOLE_USB_CDC
default n
help
If enabled, esp_rom_printf and ESP_EARLY_LOG output will also be sent over USB CDC.
Disabling this option saves about 1kB or RAM.
config ESP_INT_WDT
bool "Interrupt watchdog"
default y
help
This watchdog timer can detect if the FreeRTOS tick interrupt has not been called for a certain time,
either because a task turned off interrupts and did not turn them on for a long time, or because an
interrupt handler did not return. It will try to invoke the panic handler first and failing that
reset the SoC.
config ESP_INT_WDT_TIMEOUT_MS
int "Interrupt watchdog timeout (ms)"
depends on ESP_INT_WDT
default 300 if !ESP32_SPIRAM_SUPPORT
default 800 if ESP32_SPIRAM_SUPPORT
range 10 10000
help
The timeout of the watchdog, in miliseconds. Make this higher than the FreeRTOS tick rate.
config ESP_INT_WDT_CHECK_CPU1
bool "Also watch CPU1 tick interrupt"
depends on ESP_INT_WDT && !FREERTOS_UNICORE
default y
help
Also detect if interrupts on CPU 1 are disabled for too long.
config ESP_TASK_WDT
bool "Initialize Task Watchdog Timer on startup"
default y
help
The Task Watchdog Timer can be used to make sure individual tasks are still
running. Enabling this option will cause the Task Watchdog Timer to be
initialized automatically at startup. The Task Watchdog timer can be
initialized after startup as well (see Task Watchdog Timer API Reference)
config ESP_TASK_WDT_PANIC
bool "Invoke panic handler on Task Watchdog timeout"
depends on ESP_TASK_WDT
default n
help
If this option is enabled, the Task Watchdog Timer will be configured to
trigger the panic handler when it times out. This can also be configured
at run time (see Task Watchdog Timer API Reference)
config ESP_TASK_WDT_TIMEOUT_S
int "Task Watchdog timeout period (seconds)"
depends on ESP_TASK_WDT
range 1 60
default 5
help
Timeout period configuration for the Task Watchdog Timer in seconds.
This is also configurable at run time (see Task Watchdog Timer API Reference)
config ESP_TASK_WDT_CHECK_IDLE_TASK_CPU0
bool "Watch CPU0 Idle Task"
depends on ESP_TASK_WDT
default y
help
If this option is enabled, the Task Watchdog Timer will watch the CPU0
Idle Task. Having the Task Watchdog watch the Idle Task allows for detection
of CPU starvation as the Idle Task not being called is usually a symptom of
CPU starvation. Starvation of the Idle Task is detrimental as FreeRTOS household
tasks depend on the Idle Task getting some runtime every now and then.
config ESP_TASK_WDT_CHECK_IDLE_TASK_CPU1
bool "Watch CPU1 Idle Task"
depends on ESP_TASK_WDT && !FREERTOS_UNICORE
default y
help
If this option is enabled, the Task Wtachdog Timer will wach the CPU1
Idle Task.
config ESP_PANIC_HANDLER_IRAM
bool "Place panic handler code in IRAM"
default n
help
If this option is disabled (default), the panic handler code is placed in flash not IRAM.
This means that if ESP-IDF crashes while flash cache is disabled, the panic handler will
automatically re-enable flash cache before running GDB Stub or Core Dump. This adds some minor
risk, if the flash cache status is also corrupted during the crash.
If this option is enabled, the panic handler code is placed in IRAM. This allows the panic
handler to run without needing to re-enable cache first. This may be necessary to debug some
complex issues with crashes while flash cache is disabled (for example, when writing to
SPI flash.)
2019-09-13 08:49:11 -04:00
config ESP_DEBUG_STUBS_ENABLE
bool
default COMPILER_OPTIMIZATION_LEVEL_DEBUG
depends on !ESP32_TRAX && !ESP32S2_TRAX
help
Debug stubs are used by OpenOCD to execute pre-compiled onboard code
which does some useful debugging stuff, e.g. GCOV data dump.
2020-01-10 04:46:46 -05:00
config ESP_MAC_ADDR_UNIVERSE_WIFI_STA
bool
config ESP_MAC_ADDR_UNIVERSE_WIFI_AP
bool
config ESP_MAC_ADDR_UNIVERSE_BT
bool
config ESP_MAC_ADDR_UNIVERSE_ETH
bool
config ESP_ALLOW_BSS_SEG_EXTERNAL_MEMORY
# Invisible option that is set by SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY, but
# exists even if SPIRAM is not supported
bool
endmenu # Common ESP-related