mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
142 lines
5.3 KiB
C
142 lines
5.3 KiB
C
|
/* Copyright 2014, Kenneth MacKay. Licensed under the BSD 2-clause license.
|
||
|
|
||
|
Modifications Copyright 2020, Espressif Systems (Shanghai) PTE LTD. Licensed under the BSD
|
||
|
2-clause license.
|
||
|
*/
|
||
|
|
||
|
/* uECC_verify() calls a number of static functions form here and
|
||
|
uses other definitions, so we just build that whole source file here and then append
|
||
|
our modified version uECC_verify_antifault(). */
|
||
|
#include "micro-ecc/uECC.c"
|
||
|
|
||
|
/* Version of uECC_verify() which also copies message_hash into verified_hash,
|
||
|
but only if the signature is valid. Does this in an FI resistant way.
|
||
|
*/
|
||
|
int uECC_verify_antifault(const uint8_t *public_key,
|
||
|
const uint8_t *message_hash,
|
||
|
unsigned hash_size,
|
||
|
const uint8_t *signature,
|
||
|
uECC_Curve curve,
|
||
|
uint8_t *verified_hash) {
|
||
|
uECC_word_t u1[uECC_MAX_WORDS], u2[uECC_MAX_WORDS];
|
||
|
uECC_word_t z[uECC_MAX_WORDS];
|
||
|
uECC_word_t sum[uECC_MAX_WORDS * 2];
|
||
|
uECC_word_t rx[uECC_MAX_WORDS];
|
||
|
uECC_word_t ry[uECC_MAX_WORDS];
|
||
|
uECC_word_t tx[uECC_MAX_WORDS];
|
||
|
uECC_word_t ty[uECC_MAX_WORDS];
|
||
|
uECC_word_t tz[uECC_MAX_WORDS];
|
||
|
const uECC_word_t *points[4];
|
||
|
const uECC_word_t *point;
|
||
|
bitcount_t num_bits;
|
||
|
bitcount_t i;
|
||
|
#if uECC_VLI_NATIVE_LITTLE_ENDIAN
|
||
|
uECC_word_t *_public = (uECC_word_t *)public_key;
|
||
|
#else
|
||
|
uECC_word_t _public[uECC_MAX_WORDS * 2];
|
||
|
#endif
|
||
|
uECC_word_t r[uECC_MAX_WORDS], s[uECC_MAX_WORDS];
|
||
|
wordcount_t num_words = curve->num_words;
|
||
|
wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
|
||
|
|
||
|
rx[num_n_words - 1] = 0;
|
||
|
r[num_n_words - 1] = 0;
|
||
|
s[num_n_words - 1] = 0;
|
||
|
|
||
|
#if uECC_VLI_NATIVE_LITTLE_ENDIAN
|
||
|
bcopy((uint8_t *) r, signature, curve->num_bytes);
|
||
|
bcopy((uint8_t *) s, signature + curve->num_bytes, curve->num_bytes);
|
||
|
#else
|
||
|
uECC_vli_bytesToNative(_public, public_key, curve->num_bytes);
|
||
|
uECC_vli_bytesToNative(
|
||
|
_public + num_words, public_key + curve->num_bytes, curve->num_bytes);
|
||
|
uECC_vli_bytesToNative(r, signature, curve->num_bytes);
|
||
|
uECC_vli_bytesToNative(s, signature + curve->num_bytes, curve->num_bytes);
|
||
|
#endif
|
||
|
|
||
|
/* r, s must not be 0. */
|
||
|
if (uECC_vli_isZero(r, num_words) || uECC_vli_isZero(s, num_words)) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* r, s must be < n. */
|
||
|
if (uECC_vli_cmp(curve->n, r, num_n_words) != 1 ||
|
||
|
uECC_vli_cmp(curve->n, s, num_n_words) != 1) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Calculate u1 and u2. */
|
||
|
uECC_vli_modInv(z, s, curve->n, num_n_words); /* z = 1/s */
|
||
|
u1[num_n_words - 1] = 0;
|
||
|
bits2int(u1, message_hash, hash_size, curve);
|
||
|
uECC_vli_modMult(u1, u1, z, curve->n, num_n_words); /* u1 = e/s */
|
||
|
uECC_vli_modMult(u2, r, z, curve->n, num_n_words); /* u2 = r/s */
|
||
|
|
||
|
/* Calculate sum = G + Q. */
|
||
|
uECC_vli_set(sum, _public, num_words);
|
||
|
uECC_vli_set(sum + num_words, _public + num_words, num_words);
|
||
|
uECC_vli_set(tx, curve->G, num_words);
|
||
|
uECC_vli_set(ty, curve->G + num_words, num_words);
|
||
|
uECC_vli_modSub(z, sum, tx, curve->p, num_words); /* z = x2 - x1 */
|
||
|
XYcZ_add(tx, ty, sum, sum + num_words, curve);
|
||
|
uECC_vli_modInv(z, z, curve->p, num_words); /* z = 1/z */
|
||
|
apply_z(sum, sum + num_words, z, curve);
|
||
|
|
||
|
/* Use Shamir's trick to calculate u1*G + u2*Q */
|
||
|
points[0] = 0;
|
||
|
points[1] = curve->G;
|
||
|
points[2] = _public;
|
||
|
points[3] = sum;
|
||
|
num_bits = smax(uECC_vli_numBits(u1, num_n_words),
|
||
|
uECC_vli_numBits(u2, num_n_words));
|
||
|
|
||
|
point = points[(!!uECC_vli_testBit(u1, num_bits - 1)) |
|
||
|
((!!uECC_vli_testBit(u2, num_bits - 1)) << 1)];
|
||
|
uECC_vli_set(rx, point, num_words);
|
||
|
uECC_vli_set(ry, point + num_words, num_words);
|
||
|
uECC_vli_clear(z, num_words);
|
||
|
z[0] = 1;
|
||
|
|
||
|
for (i = num_bits - 2; i >= 0; --i) {
|
||
|
uECC_word_t index;
|
||
|
curve->double_jacobian(rx, ry, z, curve);
|
||
|
|
||
|
index = (!!uECC_vli_testBit(u1, i)) | ((!!uECC_vli_testBit(u2, i)) << 1);
|
||
|
point = points[index];
|
||
|
if (point) {
|
||
|
uECC_vli_set(tx, point, num_words);
|
||
|
uECC_vli_set(ty, point + num_words, num_words);
|
||
|
apply_z(tx, ty, z, curve);
|
||
|
uECC_vli_modSub(tz, rx, tx, curve->p, num_words); /* Z = x2 - x1 */
|
||
|
XYcZ_add(tx, ty, rx, ry, curve);
|
||
|
uECC_vli_modMult_fast(z, z, tz, curve);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
uECC_vli_modInv(z, z, curve->p, num_words); /* Z = 1/Z */
|
||
|
apply_z(rx, ry, z, curve);
|
||
|
|
||
|
/* v = x1 (mod n) */
|
||
|
if (uECC_vli_cmp(curve->n, rx, num_n_words) != 1) {
|
||
|
uECC_vli_sub(rx, rx, curve->n, num_n_words);
|
||
|
}
|
||
|
|
||
|
/* Anti-FI addition. Copy message_hash into verified_hash, but do it in a
|
||
|
way that it will only happen if v == r (ie, rx == r)
|
||
|
*/
|
||
|
const uECC_word_t *mhash_words = (const uECC_word_t *)message_hash;
|
||
|
uECC_word_t *vhash_words = (uECC_word_t *)verified_hash;
|
||
|
unsigned hash_words = hash_size / sizeof(uECC_word_t);
|
||
|
for (unsigned int w = 0; w < hash_words; w++) {
|
||
|
/* note: using curve->num_words here to encourage compiler to re-read this variable */
|
||
|
vhash_words[w] = mhash_words[w] ^ rx[w % curve->num_words] ^ r[w % curve->num_words];
|
||
|
}
|
||
|
/* Curve may be longer than hash, in which case keep reading the rest of the bytes */
|
||
|
for (int w = hash_words; w < curve->num_words; w++) {
|
||
|
vhash_words[w % hash_words] |= rx[w] ^ r[w];
|
||
|
}
|
||
|
|
||
|
/* Accept only if v == r. */
|
||
|
return (int)(uECC_vli_equal(rx, r, num_words));
|
||
|
}
|