2019-01-08 18:29:25 +08:00
# include <stdio.h>
# include <string.h>
# include <freertos/FreeRTOS.h>
# include <freertos/task.h>
# include <freertos/semphr.h>
# include <unity.h>
# include "esp_flash.h"
2019-09-03 14:06:26 +08:00
# include "driver/spi_common_internal.h"
2019-06-24 12:56:39 +08:00
# include "esp_flash_spi_init.h"
2019-01-08 18:29:25 +08:00
# include <esp_attr.h>
# include "esp_log.h"
# include <test_utils.h>
# include "unity.h"
# include "driver/gpio.h"
# include "soc/io_mux_reg.h"
2019-09-04 21:09:30 +08:00
# include "sdkconfig.h"
2019-01-08 18:29:25 +08:00
2019-11-28 09:20:00 +08:00
# include "hal/spi_flash_hal.h"
2020-05-12 02:32:40 +08:00
# include "ccomp_timer.h"
2019-11-28 09:20:00 +08:00
2019-01-08 18:29:25 +08:00
# define FUNC_SPI 1
static uint8_t sector_buf [ 4096 ] ;
# define TEST_SPI_SPEED ESP_FLASH_10MHZ
# define TEST_SPI_READ_MODE SPI_FLASH_FASTRD
2019-11-28 09:20:00 +08:00
// #define FORCE_GPIO_MATRIX
2019-01-08 18:29:25 +08:00
2019-09-04 21:09:30 +08:00
# define EXTRA_SPI1_CLK_IO 17 //the pin which is usually used by the PSRAM clk
2019-11-28 09:20:00 +08:00
# if CONFIG_IDF_TARGET_ESP32
2019-01-08 18:29:25 +08:00
# define HSPI_PIN_NUM_MOSI HSPI_IOMUX_PIN_NUM_MOSI
# define HSPI_PIN_NUM_MISO HSPI_IOMUX_PIN_NUM_MISO
# define HSPI_PIN_NUM_CLK HSPI_IOMUX_PIN_NUM_CLK
# define HSPI_PIN_NUM_HD HSPI_IOMUX_PIN_NUM_HD
# define HSPI_PIN_NUM_WP HSPI_IOMUX_PIN_NUM_WP
2019-11-28 09:20:00 +08:00
# define HSPI_PIN_NUM_CS HSPI_IOMUX_PIN_NUM_CS
2019-06-24 12:56:39 +08:00
2019-01-08 18:29:25 +08:00
# define VSPI_PIN_NUM_MOSI VSPI_IOMUX_PIN_NUM_MOSI
# define VSPI_PIN_NUM_MISO VSPI_IOMUX_PIN_NUM_MISO
# define VSPI_PIN_NUM_CLK VSPI_IOMUX_PIN_NUM_CLK
# define VSPI_PIN_NUM_HD VSPI_IOMUX_PIN_NUM_HD
# define VSPI_PIN_NUM_WP VSPI_IOMUX_PIN_NUM_WP
2019-11-28 09:20:00 +08:00
# define VSPI_PIN_NUM_CS VSPI_IOMUX_PIN_NUM_CS
2020-01-17 11:47:08 +08:00
# elif CONFIG_IDF_TARGET_ESP32S2
2019-11-28 09:20:00 +08:00
# define FSPI_PIN_NUM_MOSI FSPI_IOMUX_PIN_NUM_MOSI
# define FSPI_PIN_NUM_MISO FSPI_IOMUX_PIN_NUM_MISO
# define FSPI_PIN_NUM_CLK FSPI_IOMUX_PIN_NUM_CLK
# define FSPI_PIN_NUM_HD FSPI_IOMUX_PIN_NUM_HD
# define FSPI_PIN_NUM_WP FSPI_IOMUX_PIN_NUM_WP
# define FSPI_PIN_NUM_CS FSPI_IOMUX_PIN_NUM_CS
// Just use the same pins for HSPI and VSPI
# define HSPI_PIN_NUM_MOSI FSPI_PIN_NUM_MOSI
# define HSPI_PIN_NUM_MISO FSPI_PIN_NUM_MISO
# define HSPI_PIN_NUM_CLK FSPI_PIN_NUM_CLK
# define HSPI_PIN_NUM_HD FSPI_PIN_NUM_HD
# define HSPI_PIN_NUM_WP FSPI_PIN_NUM_WP
# define HSPI_PIN_NUM_CS FSPI_PIN_NUM_CS
# define VSPI_PIN_NUM_MOSI FSPI_PIN_NUM_MOSI
# define VSPI_PIN_NUM_MISO FSPI_PIN_NUM_MISO
# define VSPI_PIN_NUM_CLK FSPI_PIN_NUM_CLK
# define VSPI_PIN_NUM_HD FSPI_PIN_NUM_HD
# define VSPI_PIN_NUM_WP FSPI_PIN_NUM_WP
# define VSPI_PIN_NUM_CS FSPI_PIN_NUM_CS
# endif
2019-06-24 12:56:39 +08:00
2020-02-25 14:56:13 +11:00
# define TEST_CONFIG_NUM (sizeof(config_list) / sizeof(flashtest_config_t))
2019-09-04 21:09:30 +08:00
typedef void ( * flash_test_func_t ) ( esp_flash_t * chip ) ;
2019-01-08 18:29:25 +08:00
2020-02-25 14:56:13 +11:00
/* Use FLASH_TEST_CASE for SPI flash tests that only use the main SPI flash chip
*/
2019-09-04 21:09:30 +08:00
# define FLASH_TEST_CASE(STR, FUNC_TO_RUN) \
2020-02-25 14:56:13 +11:00
TEST_CASE ( STR , " [esp_flash] " ) { flash_test_func ( FUNC_TO_RUN , 1 /* first index reserved for main flash */ ) ; }
2020-04-02 17:30:08 +08:00
# define FLASH_TEST_CASE_IGNORE(STR, FUNC_TO_RUN) \
TEST_CASE ( STR , " [esp_flash][ignore] " ) { flash_test_func ( FUNC_TO_RUN , 1 /* first index reserved for main flash */ ) ; }
2020-02-25 14:56:13 +11:00
/* Use FLASH_TEST_CASE_3 for tests which also run on external flash, which sits in the place of PSRAM
( these tests are incompatible with PSRAM )
These tests run for all the flash chip configs shown in config_list , below ( internal and external ) .
*/
2020-01-17 11:47:08 +08:00
# if defined(CONFIG_SPIRAM_SUPPORT) || TEMPORARY_DISABLED_FOR_TARGETS(ESP32S2)
2019-09-04 21:09:30 +08:00
# define FLASH_TEST_CASE_3(STR, FUNCT_TO_RUN)
2020-04-02 17:30:08 +08:00
# define FLASH_TEST_CASE_3_IGNORE(STR, FUNCT_TO_RUN)
2019-01-08 18:29:25 +08:00
# else
2020-02-20 16:05:03 +08:00
// Disabled for ESP32-S2 due to lack of runners
2019-09-04 21:09:30 +08:00
# define FLASH_TEST_CASE_3(STR, FUNC_TO_RUN) \
2020-02-25 14:56:13 +11:00
TEST_CASE ( STR " , 3 chips " , " [esp_flash][test_env=UT_T1_ESP_FLASH] " ) { flash_test_func ( FUNC_TO_RUN , TEST_CONFIG_NUM ) ; }
2020-04-02 17:30:08 +08:00
# define FLASH_TEST_CASE_3_IGNORE(STR, FUNC_TO_RUN) \
TEST_CASE ( STR " , 3 chips " , " [esp_flash][test_env=UT_T1_ESP_FLASH][ignore] " ) { flash_test_func ( FUNC_TO_RUN , TEST_CONFIG_NUM ) ; }
2019-01-08 18:29:25 +08:00
# endif
2019-09-04 21:09:30 +08:00
//currently all the configs are the same with esp_flash_spi_device_config_t, no more information required
typedef esp_flash_spi_device_config_t flashtest_config_t ;
2019-01-08 18:29:25 +08:00
static const char TAG [ ] = " test_esp_flash " ;
2019-11-28 09:20:00 +08:00
# define FLASHTEST_CONFIG_COMMON \
/* 0 always reserved for main flash */ \
{ \
/* no need to init */ \
. host_id = - 1 , \
} , \
{ \
. io_mode = TEST_SPI_READ_MODE , \
. speed = TEST_SPI_SPEED , \
. host_id = SPI_HOST , \
. cs_id = 1 , \
/* the pin which is usually used by the PSRAM */ \
. cs_io_num = 16 , \
. input_delay_ns = 0 , \
2020-01-02 14:25:33 +08:00
}
2019-11-28 09:20:00 +08:00
# if CONFIG_IDF_TARGET_ESP32
2019-09-04 21:09:30 +08:00
flashtest_config_t config_list [ ] = {
2019-11-28 09:20:00 +08:00
FLASHTEST_CONFIG_COMMON ,
/* current runner doesn't have a flash on HSPI */
// {
// .io_mode = TEST_SPI_READ_MODE,
// .speed = TEST_SPI_SPEED,
// .host_id = HSPI_HOST,
// .cs_id = 0,
2020-01-17 11:47:08 +08:00
// // uses GPIO matrix on esp32s2 regardles if FORCE_GPIO_MATRIX
2020-01-02 14:25:33 +08:00
// .cs_io_num = HSPI_PIN_NUM_CS,
2019-11-28 09:20:00 +08:00
// .input_delay_ns = 20,
// },
2019-09-04 21:09:30 +08:00
{
. io_mode = TEST_SPI_READ_MODE ,
. speed = TEST_SPI_SPEED ,
. host_id = VSPI_HOST ,
. cs_id = 0 ,
2020-01-02 14:25:33 +08:00
. cs_io_num = VSPI_PIN_NUM_CS ,
2019-09-04 21:09:30 +08:00
. input_delay_ns = 0 ,
} ,
} ;
2020-01-17 11:47:08 +08:00
# elif CONFIG_IDF_TARGET_ESP32S2
2019-11-28 09:20:00 +08:00
flashtest_config_t config_list [ ] = {
FLASHTEST_CONFIG_COMMON ,
2020-01-17 11:47:08 +08:00
/* No runners for esp32s2 for these config yet */
2019-11-28 09:20:00 +08:00
// {
// .io_mode = TEST_SPI_READ_MODE,
// .speed = TEST_SPI_SPEED,
// .host_id = FSPI_HOST,
// .cs_id = 0,
// .cs_io_num = FSPI_PIN_NUM_CS,
// .input_delay_ns = 0,
// },
// /* current runner doesn't have a flash on HSPI */
// {
// .io_mode = TEST_SPI_READ_MODE,
// .speed = TEST_SPI_SPEED,
// .host_id = HSPI_HOST,
// .cs_id = 0,
2020-01-17 11:47:08 +08:00
// // uses GPIO matrix on esp32s2 regardles if FORCE_GPIO_MATRIX
2020-01-02 14:25:33 +08:00
// .cs_io_num = HSPI_PIN_NUM_CS,
2019-11-28 09:20:00 +08:00
// .input_delay_ns = 20,
// },
} ;
# endif
2019-01-08 18:29:25 +08:00
2020-05-12 02:32:40 +08:00
static void get_chip_host ( esp_flash_t * chip , spi_host_device_t * out_host_id , int * out_cs_id )
{
spi_host_device_t host_id ;
int cs_id ;
if ( chip = = NULL ) {
host_id = SPI_HOST ;
cs_id = 0 ;
} else {
spi_flash_memspi_data_t * driver_data = ( spi_flash_memspi_data_t * ) chip - > host - > driver_data ;
host_id = spi_flash_ll_hw_get_id ( driver_data - > spi ) ;
cs_id = driver_data - > cs_num ;
}
if ( out_host_id ) {
* out_host_id = host_id ;
}
if ( out_cs_id ) {
* out_cs_id = cs_id ;
}
}
2019-06-24 12:56:39 +08:00
static void setup_bus ( spi_host_device_t host_id )
2019-01-08 18:29:25 +08:00
{
2019-06-24 12:56:39 +08:00
if ( host_id = = SPI_HOST ) {
ESP_LOGI ( TAG , " setup flash on SPI1 CS1... \n " ) ;
//no need to initialize the bus, however the CLK may need one more output if it's on the usual place of PSRAM
# ifdef EXTRA_SPI1_CLK_IO
gpio_matrix_out ( EXTRA_SPI1_CLK_IO , SPICLK_OUT_IDX , 0 , 0 ) ;
2019-11-28 09:20:00 +08:00
# endif
2020-01-02 14:25:33 +08:00
# if !DISABLED_FOR_TARGETS(ESP32)
2019-11-28 09:20:00 +08:00
} else if ( host_id = = FSPI_HOST ) {
ESP_LOGI ( TAG , " setup flash on SPI%d (FSPI) CS0... \n " , host_id + 1 ) ;
spi_bus_config_t fspi_bus_cfg = {
. mosi_io_num = FSPI_PIN_NUM_MOSI ,
. miso_io_num = FSPI_PIN_NUM_MISO ,
. sclk_io_num = FSPI_PIN_NUM_CLK ,
. quadhd_io_num = FSPI_PIN_NUM_HD ,
. quadwp_io_num = FSPI_PIN_NUM_WP ,
. max_transfer_sz = 64 ,
} ;
# ifdef FORCE_GPIO_MATRIX
fspi_bus_cfg . quadhd_io_num = 5 ;
# endif
esp_err_t ret = spi_bus_initialize ( host_id , & fspi_bus_cfg , 0 ) ;
TEST_ESP_OK ( ret ) ;
2019-06-24 12:56:39 +08:00
# endif
//currently the SPI bus for main flash chip is initialized through GPIO matrix
} else if ( host_id = = HSPI_HOST ) {
2019-11-28 09:20:00 +08:00
ESP_LOGI ( TAG , " setup flash on SPI%d (HSPI) CS0... \n " , host_id + 1 ) ;
2019-06-24 12:56:39 +08:00
spi_bus_config_t hspi_bus_cfg = {
. mosi_io_num = HSPI_PIN_NUM_MOSI ,
. miso_io_num = HSPI_PIN_NUM_MISO ,
. sclk_io_num = HSPI_PIN_NUM_CLK ,
. quadhd_io_num = HSPI_PIN_NUM_HD ,
. quadwp_io_num = HSPI_PIN_NUM_WP ,
. max_transfer_sz = 64 ,
} ;
2020-01-17 11:47:08 +08:00
# if !DISABLED_FOR_TARGETS(ESP32S2)
2019-06-24 12:56:39 +08:00
# ifdef FORCE_GPIO_MATRIX
hspi_bus_cfg . quadhd_io_num = 23 ;
2019-11-28 09:20:00 +08:00
# endif
2019-06-24 12:56:39 +08:00
# endif
esp_err_t ret = spi_bus_initialize ( host_id , & hspi_bus_cfg , 0 ) ;
TEST_ESP_OK ( ret ) ;
2019-11-28 09:20:00 +08:00
2020-01-02 14:25:33 +08:00
# if !DISABLED_FOR_TARGETS(ESP32)
2019-11-28 09:20:00 +08:00
// HSPI have no multiline mode, use GPIO to pull those pins up
gpio_set_direction ( HSPI_PIN_NUM_HD , GPIO_MODE_OUTPUT ) ;
gpio_set_level ( HSPI_PIN_NUM_HD , 1 ) ;
gpio_set_direction ( HSPI_PIN_NUM_WP , GPIO_MODE_OUTPUT ) ;
gpio_set_level ( HSPI_PIN_NUM_WP , 1 ) ;
# endif
2020-01-02 14:25:33 +08:00
}
2020-01-17 11:47:08 +08:00
# if !DISABLED_FOR_TARGETS(ESP32S2)
2019-11-28 09:20:00 +08:00
else if ( host_id = = VSPI_HOST ) {
ESP_LOGI ( TAG , " setup flash on SPI%d (VSPI) CS0... \n " , host_id + 1 ) ;
2019-06-24 12:56:39 +08:00
spi_bus_config_t vspi_bus_cfg = {
. mosi_io_num = VSPI_PIN_NUM_MOSI ,
. miso_io_num = VSPI_PIN_NUM_MISO ,
. sclk_io_num = VSPI_PIN_NUM_CLK ,
. quadhd_io_num = VSPI_PIN_NUM_HD ,
. quadwp_io_num = VSPI_PIN_NUM_WP ,
. max_transfer_sz = 64 ,
} ;
# ifdef FORCE_GPIO_MATRIX
vspi_bus_cfg . quadhd_io_num = 23 ;
# endif
esp_err_t ret = spi_bus_initialize ( host_id , & vspi_bus_cfg , 0 ) ;
TEST_ESP_OK ( ret ) ;
2020-01-02 14:25:33 +08:00
}
2020-01-17 11:47:08 +08:00
# endif // disabled for esp32s2
2019-11-28 09:20:00 +08:00
else {
2019-06-24 12:56:39 +08:00
ESP_LOGE ( TAG , " invalid bus " ) ;
2019-01-08 18:29:25 +08:00
}
}
2019-06-24 12:56:39 +08:00
static void release_bus ( int host_id )
2019-01-08 18:29:25 +08:00
{
2020-01-21 18:35:24 +08:00
//SPI1 bus can't be deinitialized
if ( host_id = = SPI2_HOST | | host_id = = SPI3_HOST ) {
2019-06-24 12:56:39 +08:00
spi_bus_free ( host_id ) ;
}
}
2019-01-08 18:29:25 +08:00
2019-09-04 21:09:30 +08:00
static void setup_new_chip ( const flashtest_config_t * test_cfg , esp_flash_t * * out_chip )
2019-06-24 12:56:39 +08:00
{
//the bus should be initialized before the flash is attached to the bus
2019-09-04 21:09:30 +08:00
if ( test_cfg - > host_id = = - 1 ) {
* out_chip = NULL ;
return ;
}
setup_bus ( test_cfg - > host_id ) ;
2019-01-08 18:29:25 +08:00
2019-06-24 12:56:39 +08:00
esp_flash_spi_device_config_t dev_cfg = {
2019-09-04 21:09:30 +08:00
. host_id = test_cfg - > host_id ,
. io_mode = test_cfg - > io_mode ,
. speed = test_cfg - > speed ,
. cs_id = test_cfg - > cs_id ,
. cs_io_num = test_cfg - > cs_io_num ,
. input_delay_ns = test_cfg - > input_delay_ns ,
2019-01-08 18:29:25 +08:00
} ;
2019-09-04 21:09:30 +08:00
esp_flash_t * init_chip ;
esp_err_t err = spi_bus_add_flash_device ( & init_chip , & dev_cfg ) ;
2019-01-08 18:29:25 +08:00
TEST_ESP_OK ( err ) ;
2019-09-04 21:09:30 +08:00
err = esp_flash_init ( init_chip ) ;
2019-01-08 18:29:25 +08:00
TEST_ESP_OK ( err ) ;
2019-09-04 21:09:30 +08:00
* out_chip = init_chip ;
2019-01-08 18:29:25 +08:00
}
2019-09-04 21:09:30 +08:00
void teardown_test_chip ( esp_flash_t * chip , spi_host_device_t host )
2019-01-08 18:29:25 +08:00
{
2019-09-04 21:09:30 +08:00
//happen to work when chip==NULL
spi_bus_remove_flash_device ( chip ) ;
release_bus ( host ) ;
2019-01-08 18:29:25 +08:00
}
2019-09-04 21:09:30 +08:00
static void flash_test_func ( flash_test_func_t func , int test_num )
{
for ( int i = 0 ; i < test_num ; i + + ) {
2020-02-25 14:56:13 +11:00
ESP_LOGI ( TAG , " Testing config %d/%d " , i , test_num ) ;
2019-09-04 21:09:30 +08:00
flashtest_config_t * config = & config_list [ i ] ;
esp_flash_t * chip ;
setup_new_chip ( config , & chip ) ;
( * func ) ( chip ) ;
teardown_test_chip ( chip , config - > host_id ) ;
}
2020-02-25 14:56:13 +11:00
ESP_LOGI ( TAG , " Completed %d configs " , test_num ) ;
2019-09-04 21:09:30 +08:00
}
/* ---------- Test code start ------------*/
2019-01-08 18:29:25 +08:00
static void test_metadata ( esp_flash_t * chip )
{
ESP_LOGI ( TAG , " Testing chip %p... " , chip ) ;
uint32_t id , size ;
TEST_ESP_OK ( esp_flash_read_id ( chip , & id ) ) ;
TEST_ESP_OK ( esp_flash_get_size ( chip , & size ) ) ;
printf ( " Flash ID %08x detected size %d bytes \n " , id , size ) ;
}
2019-09-04 21:09:30 +08:00
FLASH_TEST_CASE ( " SPI flash metadata functions " , test_metadata ) ;
FLASH_TEST_CASE_3 ( " SPI flash metadata functions " , test_metadata ) ;
2019-01-08 18:29:25 +08:00
static uint32_t erase_test_region ( esp_flash_t * chip , int num_sectors )
{
const esp_partition_t * part = get_test_data_partition ( ) ;
uint32_t offs = part - > address ;
/* chip should be initialised */
TEST_ASSERT ( esp_flash_default_chip ! = NULL
& & esp_flash_chip_driver_initialized ( esp_flash_default_chip ) ) ;
TEST_ASSERT ( num_sectors * 4096 < = part - > size ) ;
bzero ( sector_buf , sizeof ( sector_buf ) ) ;
printf ( " Erase @ 0x%x... \n " , offs ) ;
TEST_ASSERT_EQUAL_HEX32 ( ESP_OK , esp_flash_erase_region ( chip , offs , num_sectors * 4096 ) ) ;
printf ( " Verify erased... \n " ) ;
for ( int i = 0 ; i < num_sectors ; i + + ) {
TEST_ASSERT_EQUAL_HEX32 ( ESP_OK , esp_flash_read ( chip , sector_buf , offs + i * 4096 , sizeof ( sector_buf ) ) ) ;
printf ( " Buffer starts 0x%02x 0x%02x 0x%02x 0x%02x \n " , sector_buf [ 0 ] , sector_buf [ 1 ] , sector_buf [ 2 ] , sector_buf [ 3 ] ) ;
for ( int i = 0 ; i < sizeof ( sector_buf ) ; i + + ) {
TEST_ASSERT_EQUAL_HEX8 ( 0xFF , sector_buf [ i ] ) ;
}
}
return offs ;
}
2019-09-04 21:09:30 +08:00
void test_simple_read_write ( esp_flash_t * chip )
2019-01-08 18:29:25 +08:00
{
ESP_LOGI ( TAG , " Testing chip %p... " , chip ) ;
uint32_t offs = erase_test_region ( chip , 1 ) ;
const int test_seed = 778 ;
srand ( test_seed ) ;
for ( int i = 0 ; i < sizeof ( sector_buf ) ; i + + ) {
sector_buf [ i ] = rand ( ) ;
}
printf ( " Write %p... \n " , ( void * ) offs ) ;
TEST_ASSERT_EQUAL ( ESP_OK , esp_flash_write ( chip , sector_buf , offs , sizeof ( sector_buf ) ) ) ;
bzero ( sector_buf , sizeof ( sector_buf ) ) ;
printf ( " Read back... \n " ) ;
TEST_ASSERT_EQUAL ( ESP_OK , esp_flash_read ( chip , sector_buf , offs , sizeof ( sector_buf ) ) ) ;
printf ( " Buffer starts 0x%02x 0x%02x 0x%02x 0x%02x \n " , sector_buf [ 0 ] , sector_buf [ 1 ] , sector_buf [ 2 ] , sector_buf [ 3 ] ) ;
srand ( test_seed ) ;
for ( int i = 0 ; i < sizeof ( sector_buf ) ; i + + ) {
TEST_ASSERT_EQUAL_HEX8 ( rand ( ) & 0xFF , sector_buf [ i ] ) ;
}
}
2019-09-04 21:09:30 +08:00
FLASH_TEST_CASE ( " SPI flash simple read/write " , test_simple_read_write ) ;
FLASH_TEST_CASE_3 ( " SPI flash simple read/write " , test_simple_read_write ) ;
2019-01-08 18:29:25 +08:00
2019-09-04 21:09:30 +08:00
void test_unaligned_read_write ( esp_flash_t * chip )
2019-01-08 18:29:25 +08:00
{
ESP_LOGI ( TAG , " Testing chip %p... " , chip ) ;
uint32_t offs = erase_test_region ( chip , 2 ) ;
const char * msg = " i am a message " ;
TEST_ASSERT ( strlen ( msg ) + 1 % 4 ! = 0 ) ;
TEST_ASSERT_EQUAL ( ESP_OK , esp_flash_write ( chip , msg , offs + 1 , strlen ( msg ) + 1 ) ) ;
char buf [ strlen ( msg ) + 1 ] ;
memset ( buf , 0xEE , sizeof ( buf ) ) ;
TEST_ASSERT_EQUAL ( ESP_OK , esp_flash_read ( chip , buf , offs + 1 , strlen ( msg ) + 1 ) ) ;
TEST_ASSERT_EQUAL_STRING_LEN ( msg , buf , strlen ( msg ) ) ;
TEST_ASSERT ( memcmp ( buf , msg , strlen ( msg ) + 1 ) = = 0 ) ;
}
2019-09-04 21:09:30 +08:00
FLASH_TEST_CASE ( " SPI flash unaligned read/write " , test_unaligned_read_write ) ;
FLASH_TEST_CASE_3 ( " SPI flash unaligned read/write " , test_unaligned_read_write ) ;
2019-01-08 18:29:25 +08:00
2019-09-04 21:09:30 +08:00
void test_single_read_write ( esp_flash_t * chip )
2019-01-08 18:29:25 +08:00
{
ESP_LOGI ( TAG , " Testing chip %p... " , chip ) ;
uint32_t offs = erase_test_region ( chip , 2 ) ;
for ( unsigned v = 0 ; v < 512 ; v + + ) {
TEST_ASSERT_EQUAL_HEX ( ESP_OK , esp_flash_write ( chip , & v , offs + v , 1 ) ) ;
}
for ( unsigned v = 0 ; v < 512 ; v + + ) {
uint8_t readback ;
TEST_ASSERT_EQUAL_HEX ( ESP_OK , esp_flash_read ( chip , & readback , offs + v , 1 ) ) ;
TEST_ASSERT_EQUAL_HEX8 ( v , readback ) ;
}
}
2019-09-04 21:09:30 +08:00
FLASH_TEST_CASE ( " SPI flash single byte reads/writes " , test_single_read_write ) ;
FLASH_TEST_CASE_3 ( " SPI flash single byte reads/writes " , test_single_read_write ) ;
2019-01-08 18:29:25 +08:00
/* this test is notable because it generates a lot of unaligned reads/writes,
and also reads / writes across both a sector boundary & many page boundaries .
*/
2019-09-04 21:09:30 +08:00
void test_three_byte_read_write ( esp_flash_t * chip )
2019-01-08 18:29:25 +08:00
{
ESP_LOGI ( TAG , " Testing chip %p... " , chip ) ;
uint32_t offs = erase_test_region ( chip , 2 ) ;
ets_printf ( " offs:%X \n " , offs ) ;
for ( uint32_t v = 0 ; v < 2000 ; v + + ) {
TEST_ASSERT_EQUAL ( ESP_OK , esp_flash_write ( chip , & v , offs + 3 * v , 3 ) ) ;
}
for ( uint32_t v = 0 ; v < 2000 ; v + + ) {
uint32_t readback ;
TEST_ASSERT_EQUAL ( ESP_OK , esp_flash_read ( chip , & readback , offs + 3 * v , 3 ) ) ;
TEST_ASSERT_EQUAL_HEX32 ( v & 0xFFFFFF , readback & 0xFFFFFF ) ;
}
}
2019-09-04 21:09:30 +08:00
FLASH_TEST_CASE ( " SPI flash three byte reads/writes " , test_three_byte_read_write ) ;
FLASH_TEST_CASE_3 ( " SPI flash three byte reads/writes " , test_three_byte_read_write ) ;
2019-01-08 18:29:25 +08:00
void test_erase_large_region ( esp_flash_t * chip )
{
ESP_LOGI ( TAG , " Testing chip %p... " , chip ) ;
const esp_partition_t * part = get_test_data_partition ( ) ;
/* Write some noise at the start and the end of the region */
const char * ohai = " OHAI " ;
uint32_t readback ;
TEST_ASSERT_EQUAL ( ESP_OK , esp_flash_write ( chip , ohai , part - > address , 5 ) ) ;
TEST_ASSERT_EQUAL ( ESP_OK , esp_flash_write ( chip , ohai , part - > address + part - > size - 5 , 5 ) ) ;
/* sanity check what we just wrote. since the partition may haven't been erased, we only check the part which is written to 0. */
uint32_t written_data = * ( ( const uint32_t * ) ohai ) ;
TEST_ASSERT_EQUAL ( ESP_OK , esp_flash_read ( chip , & readback , part - > address + part - > size - 5 , 4 ) ) ;
TEST_ASSERT_EQUAL_HEX32 ( 0 , readback & ( ~ written_data ) ) ;
TEST_ASSERT_EQUAL ( ESP_OK , esp_flash_read ( chip , & readback , part - > address , 4 ) ) ;
TEST_ASSERT_EQUAL_HEX32 ( 0 , readback & ( ~ written_data ) ) ;
/* Erase whole region */
TEST_ASSERT_EQUAL ( ESP_OK , esp_flash_erase_region ( chip , part - > address , part - > size ) ) ;
/* ensure both areas we wrote are now all-FFs */
TEST_ASSERT_EQUAL ( ESP_OK , esp_flash_read ( chip , & readback , part - > address , 4 ) ) ;
TEST_ASSERT_EQUAL_HEX32 ( 0xFFFFFFFF , readback ) ;
TEST_ASSERT_EQUAL ( ESP_OK , esp_flash_read ( chip , & readback , part - > address + part - > size - 5 , 4 ) ) ;
TEST_ASSERT_EQUAL_HEX32 ( 0xFFFFFFFF , readback ) ;
}
2019-09-04 21:09:30 +08:00
FLASH_TEST_CASE ( " SPI flash erase large region " , test_erase_large_region ) ;
FLASH_TEST_CASE_3 ( " SPI flash erase large region " , test_erase_large_region ) ;
2019-01-08 18:29:25 +08:00
2019-08-02 13:04:48 +08:00
static void test_write_protection ( esp_flash_t * chip )
{
bool wp = true ;
esp_err_t ret = ESP_OK ;
ret = esp_flash_get_chip_write_protect ( chip , & wp ) ;
TEST_ESP_OK ( ret ) ;
for ( int i = 0 ; i < 4 ; i + + ) {
bool wp_write = ! wp ;
ret = esp_flash_set_chip_write_protect ( chip , wp_write ) ;
TEST_ESP_OK ( ret ) ;
bool wp_read ;
ret = esp_flash_get_chip_write_protect ( chip , & wp_read ) ;
TEST_ESP_OK ( ret ) ;
TEST_ASSERT ( wp_read = = wp_write ) ;
wp = wp_read ;
}
}
2019-09-04 21:09:30 +08:00
FLASH_TEST_CASE ( " Test esp_flash can enable/disable write protetion " , test_write_protection ) ;
FLASH_TEST_CASE_3 ( " Test esp_flash can enable/disable write protetion " , test_write_protection ) ;
2019-08-02 13:04:48 +08:00
2019-01-08 18:29:25 +08:00
static const uint8_t large_const_buffer [ 16400 ] = {
203 , // first byte
1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 ,
21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 ,
[ 50 . . . 99 ] = 2 ,
[ 1600 . . . 2000 ] = 3 ,
[ 8000 . . . 9000 ] = 77 ,
[ 15000 . . . 16398 ] = 8 ,
43 // last byte
} ;
static void test_write_large_buffer ( esp_flash_t * chip , const uint8_t * source , size_t length ) ;
static void write_large_buffer ( esp_flash_t * chip , const esp_partition_t * part , const uint8_t * source , size_t length ) ;
static void read_and_check ( esp_flash_t * chip , const esp_partition_t * part , const uint8_t * source , size_t length ) ;
2019-09-04 21:09:30 +08:00
// Internal functions for testing, from esp_flash_api.c
esp_err_t esp_flash_set_io_mode ( esp_flash_t * chip , bool qe ) ;
esp_err_t esp_flash_get_io_mode ( esp_flash_t * chip , bool * qe ) ;
esp_err_t esp_flash_read_chip_id ( esp_flash_t * chip , uint32_t * flash_id ) ;
2020-04-02 17:30:08 +08:00
esp_err_t spi_flash_chip_mxic_probe ( esp_flash_t * chip , uint32_t flash_id ) ;
2019-09-04 21:09:30 +08:00
2020-04-02 17:30:08 +08:00
static bool is_winbond_chip ( esp_flash_t * chip )
2019-09-04 21:09:30 +08:00
{
uint32_t flash_id ;
esp_err_t ret = esp_flash_read_chip_id ( chip , & flash_id ) ;
TEST_ESP_OK ( ret ) ;
if ( ( flash_id > > 16 ) = = 0xEF ) {
return true ;
} else {
return false ;
}
}
2020-04-02 17:30:08 +08:00
static bool is_mxic_chip ( esp_flash_t * chip )
{
uint32_t flash_id ;
esp_err_t ret = esp_flash_read_chip_id ( chip , & flash_id ) ;
TEST_ESP_OK ( ret ) ;
return ( spi_flash_chip_mxic_probe ( chip , flash_id ) = = ESP_OK ) ;
}
2019-09-04 21:09:30 +08:00
static void test_toggle_qe ( esp_flash_t * chip )
2019-01-08 18:29:25 +08:00
{
2019-09-04 21:09:30 +08:00
bool qe ;
if ( chip = = NULL ) {
chip = esp_flash_default_chip ;
}
esp_flash_io_mode_t io_mode_before = chip - > read_mode ;
esp_err_t ret = esp_flash_get_io_mode ( chip , & qe ) ;
TEST_ESP_OK ( ret ) ;
2020-04-02 17:30:08 +08:00
bool allow_failure = is_winbond_chip ( chip ) | | is_mxic_chip ( chip ) ;
2019-09-04 21:09:30 +08:00
for ( int i = 0 ; i < 4 ; i + + ) {
ESP_LOGI ( TAG , " write qe: %d->%d " , qe , ! qe ) ;
qe = ! qe ;
chip - > read_mode = qe ? SPI_FLASH_QOUT : SPI_FLASH_SLOWRD ;
ret = esp_flash_set_io_mode ( chip , qe ) ;
2020-04-02 17:30:08 +08:00
if ( allow_failure & & ! qe & & ret = = ESP_ERR_FLASH_NO_RESPONSE ) {
2019-09-04 21:09:30 +08:00
//allows clear qe failure for Winbond chips
ret = ESP_OK ;
}
TEST_ESP_OK ( ret ) ;
bool qe_read ;
ret = esp_flash_get_io_mode ( chip , & qe_read ) ;
TEST_ESP_OK ( ret ) ;
ESP_LOGD ( TAG , " qe read: %d " , qe_read ) ;
2020-04-02 17:30:08 +08:00
if ( ! qe & & qe_read ) {
if ( allow_failure ) {
ESP_LOGW ( TAG , " cannot clear QE bit for known permanent QE (Winbond or MXIC) chips. " ) ;
} else {
ESP_LOGE ( TAG , " cannot clear QE bit, please make sure force clearing QE option is enabled in `spi_flash_common_set_io_mode`, and this chip is not a permanent QE one. " ) ;
}
2019-09-04 21:09:30 +08:00
chip - > read_mode = io_mode_before ;
return ;
}
TEST_ASSERT_EQUAL ( qe , qe_read ) ;
}
//restore the io_mode after test
chip - > read_mode = io_mode_before ;
}
2020-04-02 17:30:08 +08:00
// These tests show whether the QE is permanent or not for the chip tested.
// To test the behaviour of a new SPI flash chip, enable force_check flag in generic driver
// `spi_flash_common_set_io_mode` and then run this test.
FLASH_TEST_CASE_IGNORE ( " Test esp_flash_write can toggle QE bit " , test_toggle_qe ) ;
FLASH_TEST_CASE_3_IGNORE ( " Test esp_flash_write can toggle QE bit " , test_toggle_qe ) ;
2019-09-04 21:09:30 +08:00
void test_permutations ( flashtest_config_t * config )
{
//replace config pointer with pointer to internal temporary config
flashtest_config_t temp_cfg ;
memcpy ( & temp_cfg , config , sizeof ( flashtest_config_t ) ) ;
flashtest_config_t * cfg = & temp_cfg ;
esp_flash_t * chip ;
2019-01-08 18:29:25 +08:00
const int length = sizeof ( large_const_buffer ) ;
uint8_t * source_buf = malloc ( length ) ;
TEST_ASSERT_NOT_NULL ( source_buf ) ;
srand ( 778 ) ;
for ( int i = 0 ; i < length ; i + + ) {
source_buf [ i ] = rand ( ) ;
}
const esp_partition_t * part = get_test_data_partition ( ) ;
TEST_ASSERT ( part - > size > length + 2 + SPI_FLASH_SEC_SIZE ) ;
2019-09-04 21:09:30 +08:00
//write data to be read, and use the lowest speed to write and read to make sure success
cfg - > io_mode = SPI_FLASH_READ_MODE_MIN ;
cfg - > speed = ESP_FLASH_SPEED_MIN ;
setup_new_chip ( cfg , & chip ) ;
write_large_buffer ( chip , part , source_buf , length ) ;
read_and_check ( chip , part , source_buf , length ) ;
teardown_test_chip ( chip , cfg - > host_id ) ;
if ( config - > host_id ! = - 1 ) {
2019-01-08 18:29:25 +08:00
esp_flash_speed_t speed = ESP_FLASH_SPEED_MIN ;
while ( speed ! = ESP_FLASH_SPEED_MAX ) {
2019-09-04 21:09:30 +08:00
//test io_mode in the inner loop to test QE set/clear function, since
//the io mode will switch frequently.
esp_flash_io_mode_t io_mode = SPI_FLASH_READ_MODE_MIN ;
while ( io_mode ! = SPI_FLASH_READ_MODE_MAX ) {
cfg - > io_mode = io_mode ;
cfg - > speed = speed ;
setup_new_chip ( cfg , & chip ) ;
2019-11-28 09:20:00 +08:00
2020-05-12 02:32:40 +08:00
spi_host_device_t host_id ;
get_chip_host ( chip , & host_id , NULL ) ;
2020-01-02 14:25:33 +08:00
if ( io_mode > SPI_FLASH_FASTRD
2020-05-12 02:32:40 +08:00
& & ! SOC_SPI_PERIPH_SUPPORT_MULTILINE_MODE ( host_id ) ) {
2019-11-28 09:20:00 +08:00
continue ;
}
ESP_LOGI ( TAG , " test flash io mode: %d, speed: %d " , io_mode , speed ) ;
2019-09-04 21:09:30 +08:00
read_and_check ( chip , part , source_buf , length ) ;
teardown_test_chip ( chip , cfg - > host_id ) ;
io_mode + + ;
}
2019-01-08 18:29:25 +08:00
speed + + ;
}
2019-09-04 21:09:30 +08:00
} else {
//test main flash
write_large_buffer ( NULL , part , source_buf , length ) ;
read_and_check ( NULL , part , source_buf , length ) ;
2019-01-08 18:29:25 +08:00
}
free ( source_buf ) ;
}
2019-09-04 21:09:30 +08:00
TEST_CASE ( " SPI flash test reading with all speed/mode permutations " , " [esp_flash] " )
{
test_permutations ( & config_list [ 0 ] ) ;
}
2020-01-02 14:25:33 +08:00
# ifndef CONFIG_SPIRAM_SUPPORT
2020-01-17 11:47:08 +08:00
# if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32S2)
2020-02-20 16:05:03 +08:00
// No runners
2020-01-02 14:25:33 +08:00
TEST_CASE ( " SPI flash test reading with all speed/mode permutations, 3 chips " , " [esp_flash][test_env=UT_T1_ESP_FLASH] " )
2019-01-08 18:29:25 +08:00
{
2020-02-25 14:56:13 +11:00
for ( int i = 0 ; i < TEST_CONFIG_NUM ; i + + ) {
2019-09-04 21:09:30 +08:00
test_permutations ( & config_list [ i ] ) ;
}
}
2019-01-08 18:29:25 +08:00
# endif
2020-01-02 14:25:33 +08:00
# endif
2019-09-04 21:09:30 +08:00
static void test_write_large_const_buffer ( esp_flash_t * chip )
{
test_write_large_buffer ( chip , large_const_buffer , sizeof ( large_const_buffer ) ) ;
2019-01-08 18:29:25 +08:00
}
2019-09-04 21:09:30 +08:00
FLASH_TEST_CASE ( " Test esp_flash_write large const buffer " , test_write_large_const_buffer ) ;
FLASH_TEST_CASE_3 ( " Test esp_flash_write large const buffer " , test_write_large_const_buffer ) ;
static void test_write_large_ram_buffer ( esp_flash_t * chip )
2019-01-08 18:29:25 +08:00
{
// buffer in RAM
uint8_t * source_buf = malloc ( sizeof ( large_const_buffer ) ) ;
TEST_ASSERT_NOT_NULL ( source_buf ) ;
memcpy ( source_buf , large_const_buffer , sizeof ( large_const_buffer ) ) ;
2019-09-04 21:09:30 +08:00
test_write_large_buffer ( chip , source_buf , sizeof ( large_const_buffer ) ) ;
2019-01-08 18:29:25 +08:00
free ( source_buf ) ;
}
2019-09-04 21:09:30 +08:00
FLASH_TEST_CASE ( " Test esp_flash_write large RAM buffer " , test_write_large_ram_buffer ) ;
FLASH_TEST_CASE_3 ( " Test esp_flash_write large RAM buffer " , test_write_large_ram_buffer ) ;
2019-01-08 18:29:25 +08:00
static void write_large_buffer ( esp_flash_t * chip , const esp_partition_t * part , const uint8_t * source , size_t length )
{
printf ( " Writing chip %p, %d bytes from source %p \n " , chip , length , source ) ;
ESP_ERROR_CHECK ( esp_flash_erase_region ( chip , part - > address , ( length + SPI_FLASH_SEC_SIZE ) & ~ ( SPI_FLASH_SEC_SIZE - 1 ) ) ) ;
// note writing to unaligned address
ESP_ERROR_CHECK ( esp_flash_write ( chip , source , part - > address + 1 , length ) ) ;
}
static void read_and_check ( esp_flash_t * chip , const esp_partition_t * part , const uint8_t * source , size_t length )
{
printf ( " Checking chip %p, %d bytes \n " , chip , length ) ;
uint8_t * buf = malloc ( length ) ;
TEST_ASSERT_NOT_NULL ( buf ) ;
ESP_ERROR_CHECK ( esp_flash_read ( chip , buf , part - > address + 1 , length ) ) ;
TEST_ASSERT_EQUAL_HEX8_ARRAY ( source , buf , length ) ;
free ( buf ) ;
// check nothing was written at beginning or end
uint8_t ends [ 8 ] ;
ESP_ERROR_CHECK ( esp_flash_read ( chip , ends , part - > address , sizeof ( ends ) ) ) ;
TEST_ASSERT_EQUAL_HEX8 ( 0xFF , ends [ 0 ] ) ;
TEST_ASSERT_EQUAL_HEX8 ( source [ 0 ] , ends [ 1 ] ) ;
ESP_ERROR_CHECK ( esp_flash_read ( chip , ends , part - > address + length , sizeof ( ends ) ) ) ;
TEST_ASSERT_EQUAL_HEX8 ( source [ length - 1 ] , ends [ 0 ] ) ;
TEST_ASSERT_EQUAL_HEX8 ( 0xFF , ends [ 1 ] ) ;
TEST_ASSERT_EQUAL_HEX8 ( 0xFF , ends [ 2 ] ) ;
TEST_ASSERT_EQUAL_HEX8 ( 0xFF , ends [ 3 ] ) ;
}
static void test_write_large_buffer ( esp_flash_t * chip , const uint8_t * source , size_t length )
{
ESP_LOGI ( TAG , " Testing chip %p... " , chip ) ;
const esp_partition_t * part = get_test_data_partition ( ) ;
TEST_ASSERT ( part - > size > length + 2 + SPI_FLASH_SEC_SIZE ) ;
write_large_buffer ( chip , part , source , length ) ;
read_and_check ( chip , part , source , length ) ;
2020-02-25 14:56:13 +11:00
}
2020-05-12 02:32:40 +08:00
typedef struct {
uint32_t us_start ;
size_t len ;
const char * name ;
} time_meas_ctx_t ;
static void time_measure_start ( time_meas_ctx_t * ctx )
{
ctx - > us_start = esp_timer_get_time ( ) ;
ccomp_timer_start ( ) ;
}
static uint32_t time_measure_end ( time_meas_ctx_t * ctx )
{
uint32_t c_time_us = ccomp_timer_stop ( ) ;
uint32_t time_us = esp_timer_get_time ( ) - ctx - > us_start ;
ESP_LOGI ( TAG , " %s: compensated: %.2lf kB/s, typical: %.2lf kB/s " , ctx - > name , ctx - > len / ( c_time_us / 1000. ) , ctx - > len / ( time_us / 1000. ) ) ;
return ctx - > len * 1000 / ( c_time_us / 1000 ) ;
}
# define TEST_TIMES 20
# define TEST_SECTORS 4
static uint32_t measure_erase ( const esp_partition_t * part )
{
const int total_len = SPI_FLASH_SEC_SIZE * TEST_SECTORS ;
time_meas_ctx_t time_ctx = { . name = " erase " , . len = total_len } ;
time_measure_start ( & time_ctx ) ;
esp_err_t err = esp_flash_erase_region ( part - > flash_chip , part - > address , total_len ) ;
TEST_ESP_OK ( err ) ;
return time_measure_end ( & time_ctx ) ;
}
// should called after measure_erase
static uint32_t measure_write ( const char * name , const esp_partition_t * part , const uint8_t * data_to_write , int seg_len )
{
const int total_len = SPI_FLASH_SEC_SIZE ;
time_meas_ctx_t time_ctx = { . name = name , . len = total_len * TEST_TIMES } ;
time_measure_start ( & time_ctx ) ;
for ( int i = 0 ; i < TEST_TIMES ; i + + ) {
// Erase one time, but write 100 times the same data
size_t len = total_len ;
int offset = 0 ;
while ( len ) {
int len_write = MIN ( seg_len , len ) ;
esp_err_t err = esp_flash_write ( part - > flash_chip , data_to_write + offset , part - > address + offset , len_write ) ;
TEST_ESP_OK ( err ) ;
offset + = len_write ;
len - = len_write ;
}
}
return time_measure_end ( & time_ctx ) ;
}
static uint32_t measure_read ( const char * name , const esp_partition_t * part , uint8_t * data_read , int seg_len )
{
const int total_len = SPI_FLASH_SEC_SIZE ;
time_meas_ctx_t time_ctx = { . name = name , . len = total_len * TEST_TIMES } ;
time_measure_start ( & time_ctx ) ;
for ( int i = 0 ; i < TEST_TIMES ; i + + ) {
size_t len = total_len ;
int offset = 0 ;
while ( len ) {
int len_read = MIN ( seg_len , len ) ;
esp_err_t err = esp_flash_read ( part - > flash_chip , data_read + offset , part - > address + offset , len_read ) ;
TEST_ESP_OK ( err ) ;
offset + = len_read ;
len - = len_read ;
}
}
return time_measure_end ( & time_ctx ) ;
}
# define MEAS_WRITE(n) (measure_write("write in "#n"-byte chunks", &test_part, data_to_write, n))
# define MEAS_READ(n) (measure_read("read in "#n"-byte chunks", &test_part, data_read, n))
static void test_flash_read_write_performance ( esp_flash_t * chip )
{
const esp_partition_t * part = get_test_data_partition ( ) ;
// Copy to new partition variable and replace the chip member
// Actually there's no "partition" in the external flash on runners. We just don't bother creating a new partition variable.
esp_partition_t test_part ;
memcpy ( & test_part , part , sizeof ( esp_partition_t ) ) ;
test_part . flash_chip = chip ;
const int total_len = SPI_FLASH_SEC_SIZE ;
uint8_t * data_to_write = heap_caps_malloc ( total_len , MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT ) ;
uint8_t * data_read = heap_caps_malloc ( total_len , MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT ) ;
srand ( 777 ) ;
for ( int i = 0 ; i < total_len ; i + + ) {
data_to_write [ i ] = rand ( ) ;
}
uint32_t erase_1 = measure_erase ( & test_part ) ;
uint32_t speed_WR_4B = MEAS_WRITE ( 4 ) ;
uint32_t speed_RD_4B = MEAS_READ ( 4 ) ;
uint32_t erase_2 = measure_erase ( & test_part ) ;
uint32_t speed_WR_2KB = MEAS_WRITE ( 2048 ) ;
uint32_t speed_RD_2KB = MEAS_READ ( 2048 ) ;
TEST_ASSERT_EQUAL_HEX8_ARRAY ( data_to_write , data_read , total_len ) ;
# if !CONFIG_SPIRAM_SUPPORT && !CONFIG_FREERTOS_CHECK_PORT_CRITICAL_COMPLIANCE
# define CHECK_DATA(bus, suffix) TEST_PERFORMANCE_GREATER_THAN(FLASH_SPEED_BYTE_PER_SEC_##bus##suffix, "%d", speed_##suffix)
# define CHECK_ERASE(bus, var) TEST_PERFORMANCE_GREATER_THAN(FLASH_SPEED_BYTE_PER_SEC_##bus##ERASE, "%d", var)
# else
# define CHECK_DATA(bus, suffix) ((void)speed_##suffix)
# define CHECK_ERASE(bus, var) ((void)var)
# endif
// Erase time may vary a lot, can increase threshold if this fails with a reasonable speed
# define CHECK_PERFORMANCE(bus) do {\
CHECK_DATA ( bus , WR_4B ) ; \
CHECK_DATA ( bus , RD_4B ) ; \
CHECK_DATA ( bus , WR_2KB ) ; \
CHECK_DATA ( bus , RD_2KB ) ; \
CHECK_ERASE ( bus , erase_1 ) ; \
CHECK_ERASE ( bus , erase_2 ) ; \
} while ( 0 )
spi_host_device_t host_id ;
int cs_id ;
get_chip_host ( chip , & host_id , & cs_id ) ;
if ( host_id ! = SPI_HOST ) {
// Chips on other SPI buses
CHECK_PERFORMANCE ( EXT_ ) ;
} else if ( cs_id = = 0 ) {
// Main flash
CHECK_PERFORMANCE ( ) ;
} else {
// Other cs pins on SPI1
CHECK_PERFORMANCE ( SPI1_ ) ;
}
free ( data_to_write ) ;
free ( data_read ) ;
}
FLASH_TEST_CASE ( " Test esp_flash read/write performance " , test_flash_read_write_performance ) ;
FLASH_TEST_CASE_3 ( " Test esp_flash read/write performance " , test_flash_read_write_performance ) ;
2020-02-25 14:56:13 +11:00
# ifdef CONFIG_SPIRAM_USE_MALLOC
2020-02-27 11:57:00 +11:00
/* Utility: Read into a small internal RAM buffer using esp_flash_read() and compare what
we read with ' buffer ' */
static void s_test_compare_flash_contents_small_reads ( esp_flash_t * chip , const uint8_t * buffer , size_t offs , size_t len )
{
const size_t INTERNAL_BUF_SZ = 1024 ; // Should fit in internal RAM
uint8_t * ibuf = heap_caps_malloc ( INTERNAL_BUF_SZ , MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL ) ;
TEST_ASSERT_NOT_NULL ( ibuf ) ;
for ( int i = 0 ; i < len ; i + = INTERNAL_BUF_SZ ) {
size_t to_read = MIN ( INTERNAL_BUF_SZ , len - i ) ;
ESP_ERROR_CHECK ( esp_flash_read ( chip , ibuf , offs + i , to_read ) ) ;
TEST_ASSERT_EQUAL_HEX8_ARRAY ( buffer + i , ibuf , to_read ) ;
}
free ( ibuf ) ;
}
2020-02-25 14:56:13 +11:00
static void test_flash_read_large_psram_buffer ( esp_flash_t * chip )
{
const size_t BUF_SZ = 256 * 1024 ; // Too large for internal RAM
const size_t TEST_OFFS = 0x1000 ; // Can be any offset, really
uint8_t * buf = heap_caps_malloc ( BUF_SZ , MALLOC_CAP_8BIT | MALLOC_CAP_SPIRAM ) ;
TEST_ASSERT_NOT_NULL ( buf ) ;
ESP_ERROR_CHECK ( esp_flash_read ( chip , buf , TEST_OFFS , BUF_SZ ) ) ;
// Read back the same into smaller internal memory buffer and check it all matches
2020-02-27 11:57:00 +11:00
s_test_compare_flash_contents_small_reads ( chip , buf , TEST_OFFS , BUF_SZ ) ;
2020-02-25 14:56:13 +11:00
free ( buf ) ;
}
FLASH_TEST_CASE ( " esp_flash_read large PSRAM buffer " , test_flash_read_large_psram_buffer ) ;
2020-02-27 11:57:00 +11:00
/* similar to above test, but perform it under memory pressure */
static void test_flash_read_large_psram_buffer_low_internal_mem ( esp_flash_t * chip )
{
const size_t BUF_SZ = 256 * 1024 ; // Too large for internal RAM
const size_t REMAINING_INTERNAL = 1024 ; // Exhaust internal memory until maximum free block is less than this
const size_t TEST_OFFS = 0x8000 ;
/* Exhaust the available free internal memory */
test_utils_exhaust_memory_rec erec = test_utils_exhaust_memory ( MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT , REMAINING_INTERNAL ) ;
uint8_t * buf = heap_caps_malloc ( BUF_SZ , MALLOC_CAP_8BIT | MALLOC_CAP_SPIRAM ) ;
TEST_ASSERT_NOT_NULL ( buf ) ;
/* Calling esp_flash_read() here will need to allocate a small internal buffer,
so check it works . */
ESP_ERROR_CHECK ( esp_flash_read ( chip , buf , TEST_OFFS , BUF_SZ ) ) ;
test_utils_free_exhausted_memory ( erec ) ;
// Read back the same into smaller internal memory buffer and check it all matches
s_test_compare_flash_contents_small_reads ( chip , buf , TEST_OFFS , BUF_SZ ) ;
free ( buf ) ;
}
FLASH_TEST_CASE ( " esp_flash_read large PSRAM buffer low memory " , test_flash_read_large_psram_buffer_low_internal_mem ) ;
2020-02-25 14:56:13 +11:00
# endif