esp-idf/components/bt/common/osi/thread.c

454 lines
11 KiB
C
Raw Normal View History

/******************************************************************************
*
* Copyright (C) 2014 Google, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
#include <string.h>
#include "osi/allocator.h"
#include "freertos/FreeRTOS.h"
#include "freertos/queue.h"
#include "osi/semaphore.h"
#include "osi/thread.h"
#include "osi/mutex.h"
struct work_item {
osi_thread_func_t func;
void *context;
};
struct work_queue {
QueueHandle_t queue;
size_t capacity;
};
struct osi_thread {
TaskHandle_t thread_handle; /*!< Store the thread object */
int thread_id; /*!< May for some OS, such as Linux */
bool stop;
uint8_t work_queue_num; /*!< Work queue number */
struct work_queue **work_queues; /*!< Point to queue array, and the priority inverse array index */
osi_sem_t work_sem;
osi_sem_t stop_sem;
};
struct osi_thread_start_arg {
osi_thread_t *thread;
osi_sem_t start_sem;
int error;
};
struct osi_event {
struct work_item item;
osi_mutex_t lock;
uint16_t is_queued;
uint16_t queue_idx;
osi_thread_t *thread;
};
static const size_t DEFAULT_WORK_QUEUE_CAPACITY = 100;
static struct work_queue *osi_work_queue_create(size_t capacity)
{
if (capacity == 0) {
return NULL;
}
struct work_queue *wq = (struct work_queue *)osi_malloc(sizeof(struct work_queue));
if (wq != NULL) {
wq->queue = xQueueCreate(capacity, sizeof(struct work_item));
if (wq->queue != 0) {
wq->capacity = capacity;
return wq;
} else {
osi_free(wq);
}
}
return NULL;
}
static void osi_work_queue_delete(struct work_queue *wq)
{
if (wq != NULL) {
if (wq->queue != 0) {
vQueueDelete(wq->queue);
}
wq->queue = 0;
wq->capacity = 0;
osi_free(wq);
}
return;
}
static bool osi_thead_work_queue_get(struct work_queue *wq, struct work_item *item)
{
assert (wq != NULL);
assert (wq->queue != 0);
assert (item != NULL);
if (pdTRUE == xQueueReceive(wq->queue, item, 0)) {
return true;
} else {
return false;
}
}
static bool osi_thead_work_queue_put(struct work_queue *wq, const struct work_item *item, uint32_t timeout)
{
assert (wq != NULL);
assert (wq->queue != 0);
assert (item != NULL);
bool ret = true;
if (timeout == OSI_SEM_MAX_TIMEOUT) {
if (xQueueSend(wq->queue, item, portMAX_DELAY) != pdTRUE) {
ret = false;
}
} else {
if (xQueueSend(wq->queue, item, timeout / portTICK_PERIOD_MS) != pdTRUE) {
ret = false;
}
}
return ret;
}
static size_t osi_thead_work_queue_len(struct work_queue *wq)
{
assert (wq != NULL);
assert (wq->queue != 0);
assert (wq->capacity != 0);
size_t available_spaces = (size_t)uxQueueSpacesAvailable(wq->queue);
if (available_spaces <= wq->capacity) {
return wq->capacity - available_spaces;
} else {
assert (0);
}
return 0;
}
static void osi_thread_run(void *arg)
{
struct osi_thread_start_arg *start = (struct osi_thread_start_arg *)arg;
osi_thread_t *thread = start->thread;
osi_sem_give(&start->start_sem);
while (1) {
int idx = 0;
osi_sem_take(&thread->work_sem, OSI_SEM_MAX_TIMEOUT);
if (thread->stop) {
break;
}
struct work_item item;
while (!thread->stop && idx < thread->work_queue_num) {
if (osi_thead_work_queue_get(thread->work_queues[idx], &item) == true) {
item.func(item.context);
idx = 0;
continue;
} else {
idx++;
}
}
}
thread->thread_handle = NULL;
osi_sem_give(&thread->stop_sem);
vTaskDelete(NULL);
}
static int osi_thread_join(osi_thread_t *thread, uint32_t wait_ms)
{
assert(thread != NULL);
return osi_sem_take(&thread->stop_sem, wait_ms);
}
static void osi_thread_stop(osi_thread_t *thread)
{
int ret;
assert(thread != NULL);
//stop the thread
thread->stop = true;
osi_sem_give(&thread->work_sem);
//join
ret = osi_thread_join(thread, 1000); //wait 1000ms
//if join failed, delete the task here
if (ret != 0 && thread->thread_handle) {
vTaskDelete(thread->thread_handle);
}
}
//in linux, the stack_size, priority and core may not be set here, the code will be ignore the arguments
osi_thread_t *osi_thread_create(const char *name, size_t stack_size, int priority, osi_thread_core_t core, uint8_t work_queue_num, const size_t work_queue_len[])
{
int ret;
struct osi_thread_start_arg start_arg = {0};
if (stack_size <= 0 ||
core < OSI_THREAD_CORE_0 || core > OSI_THREAD_CORE_AFFINITY ||
work_queue_num <= 0 || work_queue_len == NULL) {
return NULL;
}
osi_thread_t *thread = (osi_thread_t *)osi_malloc(sizeof(osi_thread_t));
if (thread == NULL) {
goto _err;
}
thread->stop = false;
thread->work_queue_num = work_queue_num;
thread->work_queues = (struct work_queue **)osi_malloc(sizeof(struct work_queue *) * work_queue_num);
if (thread->work_queues == NULL) {
goto _err;
}
for (int i = 0; i < thread->work_queue_num; i++) {
size_t queue_len = work_queue_len[i] ? work_queue_len[i] : DEFAULT_WORK_QUEUE_CAPACITY;
thread->work_queues[i] = osi_work_queue_create(queue_len);
if (thread->work_queues[i] == NULL) {
goto _err;
}
}
ret = osi_sem_new(&thread->work_sem, 1, 0);
if (ret != 0) {
goto _err;
}
ret = osi_sem_new(&thread->stop_sem, 1, 0);
if (ret != 0) {
goto _err;
}
start_arg.thread = thread;
ret = osi_sem_new(&start_arg.start_sem, 1, 0);
if (ret != 0) {
goto _err;
}
if (xTaskCreatePinnedToCore(osi_thread_run, name, stack_size, &start_arg, priority, &thread->thread_handle, core) != pdPASS) {
goto _err;
}
osi_sem_take(&start_arg.start_sem, OSI_SEM_MAX_TIMEOUT);
osi_sem_free(&start_arg.start_sem);
return thread;
_err:
if (thread) {
if (start_arg.start_sem) {
osi_sem_free(&start_arg.start_sem);
}
if (thread->thread_handle) {
vTaskDelete(thread->thread_handle);
}
for (int i = 0; i < thread->work_queue_num; i++) {
if (thread->work_queues[i]) {
osi_work_queue_delete(thread->work_queues[i]);
}
thread->work_queues[i] = NULL;
}
if (thread->work_queues) {
osi_free(thread->work_queues);
thread->work_queues = NULL;
}
if (thread->work_sem) {
osi_sem_free(&thread->work_sem);
}
if (thread->stop_sem) {
osi_sem_free(&thread->stop_sem);
}
osi_free(thread);
}
return NULL;
}
void osi_thread_free(osi_thread_t *thread)
{
if (!thread)
return;
osi_thread_stop(thread);
for (int i = 0; i < thread->work_queue_num; i++) {
if (thread->work_queues[i]) {
osi_work_queue_delete(thread->work_queues[i]);
thread->work_queues[i] = NULL;
}
}
if (thread->work_queues) {
osi_free(thread->work_queues);
thread->work_queues = NULL;
}
if (thread->work_sem) {
osi_sem_free(&thread->work_sem);
}
if (thread->stop_sem) {
osi_sem_free(&thread->stop_sem);
}
osi_free(thread);
}
bool osi_thread_post(osi_thread_t *thread, osi_thread_func_t func, void *context, int queue_idx, uint32_t timeout)
{
assert(thread != NULL);
assert(func != NULL);
if (queue_idx >= thread->work_queue_num) {
return false;
}
struct work_item item;
item.func = func;
item.context = context;
if (osi_thead_work_queue_put(thread->work_queues[queue_idx], &item, timeout) == false) {
return false;
}
osi_sem_give(&thread->work_sem);
return true;
}
bool osi_thread_set_priority(osi_thread_t *thread, int priority)
{
assert(thread != NULL);
vTaskPrioritySet(thread->thread_handle, priority);
return true;
}
const char *osi_thread_name(osi_thread_t *thread)
{
assert(thread != NULL);
return pcTaskGetName(thread->thread_handle);
}
int osi_thread_queue_wait_size(osi_thread_t *thread, int wq_idx)
{
if (wq_idx < 0 || wq_idx >= thread->work_queue_num) {
return -1;
}
return (int)(osi_thead_work_queue_len(thread->work_queues[wq_idx]));
}
struct osi_event *osi_event_create(osi_thread_func_t func, void *context)
{
struct osi_event *event = osi_calloc(sizeof(struct osi_event));
if (event != NULL) {
if (osi_mutex_new(&event->lock) == 0) {
event->item.func = func;
event->item.context = context;
return event;
}
osi_free(event);
}
return NULL;
}
void osi_event_delete(struct osi_event* event)
{
if (event != NULL) {
osi_mutex_free(&event->lock);
memset(event, 0, sizeof(struct osi_event));
osi_free(event);
}
}
bool osi_event_bind(struct osi_event* event, osi_thread_t *thread, int queue_idx)
{
if (event == NULL || event->thread != NULL) {
return false;
}
if (thread == NULL || queue_idx >= thread->work_queue_num) {
return false;
}
event->thread = thread;
event->queue_idx = queue_idx;
return true;
}
static void osi_thread_generic_event_handler(void *context)
{
struct osi_event *event = (struct osi_event *)context;
if (event != NULL && event->item.func != NULL) {
osi_mutex_lock(&event->lock, OSI_MUTEX_MAX_TIMEOUT);
event->is_queued = 0;
osi_mutex_unlock(&event->lock);
event->item.func(event->item.context);
}
}
bool osi_thread_post_event(struct osi_event *event, uint32_t timeout)
{
assert(event != NULL && event->thread != NULL);
assert(event->queue_idx >= 0 && event->queue_idx < event->thread->work_queue_num);
bool ret = false;
if (event->is_queued == 0) {
uint16_t acquire_cnt = 0;
osi_mutex_lock(&event->lock, OSI_MUTEX_MAX_TIMEOUT);
event->is_queued += 1;
acquire_cnt = event->is_queued;
osi_mutex_unlock(&event->lock);
if (acquire_cnt == 1) {
ret = osi_thread_post(event->thread, osi_thread_generic_event_handler, event, event->queue_idx, timeout);
if (!ret) {
// clear "is_queued" when post failure, to allow for following event posts
osi_mutex_lock(&event->lock, OSI_MUTEX_MAX_TIMEOUT);
event->is_queued = 0;
osi_mutex_unlock(&event->lock);
}
}
}
return ret;
}