In light sleep mode, digital peripherals, most of the RAM, and CPUs are clock-gated, and supply voltage is reduced. Upon exit from light sleep, peripherals and CPUs resume operation, their internal state is preserved.
In deep sleep mode, CPUs, most of the RAM, and all the digital peripherals which are clocked from APB_CLK are powered off. The only parts of the chip which can still be powered on are:
Wakeup from deep and light sleep modes can be done using several sources. These sources can be combined, in this case the chip will wake up when any one of the sources is triggered. Wakeup sources can be enabled using ``esp_sleep_enable_X_wakeup`` APIs and can be disabled using :cpp:func:`esp_sleep_disable_wakeup_source` API. Next section describes these APIs in detail. Wakeup sources can be configured at any moment before entering light or deep sleep mode.
Once wakeup sources are configured, application can enter sleep mode using :cpp:func:`esp_light_sleep_start` or :cpp:func:`esp_deep_sleep_start` APIs. At this point the hardware will be configured according to the requested wakeup sources, and RTC controller will either power down or power off the CPUs and digital peripherals.
In deep sleep and light sleep modes, wireless peripherals are powered down. Before entering deep sleep or light sleep modes, applications must disable WiFi and BT using appropriate calls (:cpp:func:`esp_bluedroid_disable`, :cpp:func:`esp_bt_controller_disable`, :cpp:func:`esp_wifi_stop`). WiFi and BT connections will not be maintained in deep sleep or light sleep, even if these functions are not called.
In deep sleep and light sleep modes, wireless peripherals are powered down. Before entering deep sleep or light sleep modes, applications must disable WiFi using appropriate calls (:cpp:func:`esp_wifi_stop`). WiFi connection will not be maintained in deep sleep or light sleep, even if these functions are not called.
If WiFi connection needs to be maintained, enable WiFi modem sleep, and enable automatic light sleep feature (see :doc:`Power Management APIs <power_management>`). This will allow the system to wake up from sleep automatically when required by WiFi driver, thereby maintaining connection to the AP.
RTC controller has a built in timer which can be used to wake up the chip after a predefined amount of time. Time is specified at microsecond precision, but the actual resolution depends on the clock source selected for RTC SLOW_CLK.
..only:: SOC_ULP_SUPPORTED
For details on RTC clock options, see *{IDF_TARGET_NAME} Technical Reference Manual* > *ULP Coprocessor* [`PDF <{IDF_TARGET_TRM_EN_URL}#ulp>`__].
RTC IO module contains logic to trigger wakeup when a touch sensor interrupt occurs. You need to configure the touch pad interrupt before the chip starts deep sleep.
Revisions 0 and 1 of the ESP32 only support this wakeup mode when RTC peripherals are not forced to be powered on (i.e. ESP_PD_DOMAIN_RTC_PERIPH should be set to ESP_PD_OPTION_AUTO).
RTC IO module contains logic to trigger wakeup when one of RTC GPIOs is set to a predefined logic level. RTC IO is part of RTC peripherals power domain, so RTC peripherals will be kept powered on during deep sleep if this wakeup source is requested.
Because RTC IO module is enabled in this mode, internal pullup or pulldown resistors can also be used. They need to be configured by the application using :cpp:func:`rtc_gpio_pullup_en` and :cpp:func:`rtc_gpio_pulldown_en` functions, before calling :cpp:func:`esp_sleep_start`.
..warning:: After wake up from sleep, IO pad used for wakeup will be configured as RTC IO. Before using this pad as digital GPIO, reconfigure it using ``rtc_gpio_deinit(gpio_num)`` function.
This wakeup source is implemented by the RTC controller. As such, RTC peripherals and RTC memories can be powered down in this mode. However, if RTC peripherals are powered down, internal pullup and pulldown resistors will be disabled. To use internal pullup or pulldown resistors, request RTC peripherals power domain to be kept on during sleep, and configure pullup/pulldown resistors using ``rtc_gpio_`` functions, before entering sleep::
..warning:: After wake up from sleep, IO pad(s) used for wakeup will be configured as RTC IO. Before using these pads as digital GPIOs, reconfigure them using ``rtc_gpio_deinit(gpio_num)`` function.
ULP coprocessor can run while the chip is in sleep mode, and may be used to poll sensors, monitor ADC or touch sensor values, and wake up the chip when a specific event is detected. ULP coprocessor is part of RTC peripherals power domain, and it runs the program stored in RTC slow memory. RTC slow memory will be powered on during sleep if this wakeup mode is requested. RTC peripherals will be automatically powered on before ULP coprocessor starts running the program; once the program stops running, RTC peripherals are automatically powered down again.
Revisions 0 and 1 of the ESP32 only support this wakeup mode when RTC peripherals are not forced to be powered on (i.e. ESP_PD_DOMAIN_RTC_PERIPH should be set to ESP_PD_OPTION_AUTO).
:cpp:func:`esp_sleep_enable_ulp_wakeup` function can be used to enable this wakeup source.
In addition to EXT0 and EXT1 wakeup sources described above, one more method of wakeup from external inputs is available in light sleep mode. With this wakeup source, each pin can be individually configured to trigger wakeup on high or low level using :cpp:func:`gpio_wakeup_enable` function. Unlike EXT0 and EXT1 wakeup sources, which can only be used with RTC IOs, this wakeup source can be used with any IO (RTC or digital).
..only:: not SOC_PM_SUPPORT_EXT_WAKEUP
One more method of wakeup from external inputs is available in light sleep mode. With this wakeup source, each pin can be individually configured to trigger wakeup on high or low level using :cpp:func:`gpio_wakeup_enable` function. This wakeup source can be used with any IO (RTC or digital).
:cpp:func:`esp_sleep_enable_gpio_wakeup` function can be used to enable this wakeup source.
Before entering light sleep mode, check if any GPIO pin to be driven is part of the {IDF_TARGET_SPI_POWER_DOMAIN} power domain. If so, this power domain must be configured to remain ON during sleep.
For example, on ESP32-WROOM-32 board, GPIO16 and GPIO17 are linked to {IDF_TARGET_SPI_POWER_DOMAIN} power domain. If they are configured to remain high during
light sleep, the power domain should be configured to remain powered ON. This can be done with :cpp:func:`esp_sleep_pd_config()`::
When {IDF_TARGET_NAME} receives UART input from external devices, it is often required to wake up the chip when input data is available. UART peripheral contains a feature which allows waking up the chip from light sleep when a certain number of positive edges on RX pin are seen. This number of positive edges can be set using :cpp:func:`uart_set_wakeup_threshold` function. Note that the character which triggers wakeup (and any characters before it) will not be received by the UART after wakeup. This means that the external device typically needs to send an extra character to the {IDF_TARGET_NAME} to trigger wakeup, before sending the data.
By default, :cpp:func:`esp_deep_sleep_start` and :cpp:func:`esp_light_sleep_start` functions will power down all RTC power domains which are not needed by the enabled wakeup sources. To override this behaviour, :cpp:func:`esp_sleep_pd_config` function is provided.
Note: in revision 0 of the ESP32, RTC fast memory will always be kept enabled in deep sleep, so that the deep sleep stub can run after reset. This can be overridden, if the application doesn't need clean reset behaviour after deep sleep.
If some variables in the program are placed into RTC slow memory (for example, using ``RTC_DATA_ATTR`` attribute), RTC slow memory will be kept powered on by default. This can be overridden using :cpp:func:`esp_sleep_pd_config` function, if desired.
..only:: not SOC_RTC_SLOW_MEM_SUPPORTED
In {IDF_TARGET_NAME} there is only RTC fast memory, so if some variables in the program are marked by ``RTC_DATA_ATTR``, ``RTC_SLOW_ATTR`` or ``RTC_FAST_ATTR`` attributes, all of them go to RTC fast memory. It will be kept powered on by default. This can be overridden using :cpp:func:`esp_sleep_pd_config` function, if desired.
By default, to avoid potential issues, :cpp:func:`esp_light_sleep_start` function will **not** power down flash. To be more specific, it takes time to power down the flash and during this period the system may be woken up, which then actually powers up the flash before this flash could be powered down completely. As a result, there is a chance that the flash may not work properly.
So, in theory, it's ok if you only wake up the system after the flash is completely powered down. However, in reality, the flash power-down period can be hard to predict (for example, this period can be much longer when you add filter capacitors to the flash's power supply circuit) and uncontrollable (for example, the asynchronous wake-up signals make the actual sleep time uncontrollable).
..warning::
If a filter capacitor is added to your flash power supply circuit, please do everything possible to avoid powering down flash.
Therefore, it's recommended not to power down flash when using ESP-IDF. For power-sensitive applications, it's recommended to use Kconfig option :ref:`CONFIG_ESP_SLEEP_FLASH_LEAKAGE_WORKAROUND` to reduce the power consumption of the flash during light sleep, instead of powering down the flash.
..only:: SOC_SPIRAM_SUPPORTED
It is worth mentioning that PSRAM has a similar Kconfig option :ref:`CONFIG_ESP_SLEEP_PSRAM_LEAKAGE_WORKAROUND`.
However, for those who have fully understood the risk and are still willing to power down the flash to further reduce the power consumption, please check the following mechanisms:
..list::
- Setting Kconfig option :ref:`CONFIG_ESP_SLEEP_POWER_DOWN_FLASH` only powers down the flash when the RTC timer is the only wake-up source **and** the sleep time is longer than the flash power-down period.
- Calling ``esp_sleep_pd_config(ESP_PD_DOMAIN_VDDSDIO, ESP_PD_OPTION_OFF)`` powers down flash when the RTC timer is not enabled as a wakeup source **or** the sleep time is longer than the flash power-down period.
:cpp:func:`esp_light_sleep_start` function can be used to enter light sleep once wakeup sources are configured. It is also possible to go into light sleep with no wakeup sources configured, in this case the chip will be in light sleep mode indefinitely, until external reset is applied.
:cpp:func:`esp_deep_sleep_start` function can be used to enter deep sleep once wakeup sources are configured. It is also possible to go into deep sleep with no wakeup sources configured, in this case the chip will be in deep sleep mode indefinitely, until external reset is applied.
Some {IDF_TARGET_NAME} IOs have internal pullups or pulldowns, which are enabled by default. If an external circuit drives this pin in deep sleep mode, current consumption may increase due to current flowing through these pullups and pulldowns.
To isolate a pin, preventing extra current draw, call :cpp:func:`rtc_gpio_isolate` function.
For example, on ESP32-WROVER module, GPIO12 is pulled up externally. GPIO12 also has an internal pulldown in the ESP32 chip. This means that in deep sleep, some current will flow through these external and internal resistors, increasing deep sleep current above the minimal possible value.
Before entering sleep mode, :cpp:func:`esp_deep_sleep_start` will flush the contents of UART FIFOs.
When entering light sleep mode using :cpp:func:`esp_light_sleep_start`, UART FIFOs will not be flushed. Instead, UART output will be suspended, and remaining characters in the FIFO will be sent out after wakeup from light sleep.
Previously configured wakeup source can be disabled later using :cpp:func:`esp_sleep_disable_wakeup_source` API. This function deactivates trigger for the given wakeup source. Additionally it can disable all triggers if the argument is ``ESP_SLEEP_WAKEUP_ALL``.
Implementation of basic functionality of deep sleep is shown in :example:`protocols/sntp` example, where ESP module is periodically waken up to retrieve time from NTP server.